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Abstract Friction-induced vibration is a common phe-

nomenon in nature and thus has attracted many research-

ers’ attention. Many of the mathematical models that have

been proposed on the basis of mode coupling principle,

however, cannot be utilized directly to analyse the gener-

ation of friction-induced vibration that occurs between two

bodies because of a difficulty relating model parameters to

definite physical meaning for real friction pairs. In this

paper, a brake squeal experiment is firstly carried out by

using a simple beam-on-disc laboratory apparatus. Exper-

imental results show that brake squeal correlates with the

bending mode of the beam and the nodal diameter out-of-

plane mode of the disc as well as the cantilever length of

the beam. Then, a specific three degree-of-freedom

dynamic model is developed of the beam-on-disc system

and the vibration behaviour is simulated by using the

complex eigenvalue analysis method and a transient

response analysis. Numerical simulation shows that the

bending mode frequency of the beam a little greater than

the frequency of the nodal diameter out-of-plane mode and

a specific incline angle of the leading area to the normal

line of the disc as well as a certain friction coefficient, are

necessary conditions for the mode coupling of a frictional

system. Results also show that when the frictional system is

transited from a steady state to an unstable state for the

variation of parameters, its kinetic and potential energy

increase with time due to continuous feed-in energy from

the friction force while the dynamic responses of the sys-

tem change from the beating oscillation to the divergent,

which leads to the friction-induced vibration and squeal

noise.

Keywords Friction-induced vibration � Brake squeal �
Instability � Three degree-of-freedom model � Mode

coupling

1 Introduction

Friction-induced vibration due to sliding contact between

two objects is a common phenomenon in nature. Examples

of this are a violin sound, a cricket chirp, wheel/rail noise,

brake squeal, machining chatter, earthquake motion, etc.

Utilizing or preventing friction-induced vibration in dif-

ferent occasions is of great significance for society and

industry [1]. Much research has been conducted on this

issue, especially the brake squeal from the aspects of

generation mechanism, influence factors, numerical simu-

lation, experimental analysis and elimination countermea-

sures. Among these, the generation mechanism is still a

concern of research because of its fundamental role [2, 3].

Bowden thought that the variation in the friction coef-

ficient with sliding velocity was the cause of stick–slip

vibration [4]. Not only the difference between the static

and kinetic coefficient of friction but also the negative

& Hongming Lyu

lhmyg@163.com

1 School of Mechanical Engineering, Southwest Jiaotong

University, Chengdu 610031, China

2 Department of Aeronautical and Automotive Engineering,

Loughborough University, Loughborough LE11 3TU, UK

3 College of Automotive Studies, Tongji University,

Shanghai 201804, China

4 Technology Center, CRRC Qishuyan Institute Co., Ltd.,

Changzhou 213011, China

5 School of Automotive Engineering, Yancheng Institute of

Technology, Yancheng 224051, China

123

Tribol Lett (2017) 65:105

DOI 10.1007/s11249-017-0887-8

http://orcid.org/0000-0002-0551-1286
http://crossmark.crossref.org/dialog/?doi=10.1007/s11249-017-0887-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11249-017-0887-8&amp;domain=pdf


slope of the friction–velocity curve could lead to a stick–

slip behaviour and produce self-excited vibration [5, 6].

Spurr proposed a sprag-slip model to explain the gen-

eration mechanism of brake squeal [7]. As a rigid articu-

lated bar in friction contact with a rigid moving surface at

an inclined angle that equals the friction angle, the bar

could be spragged or self-locked and then followed by a

slip due to a displacement of its flexibly supported end.

This is known as geometrically induced or kinematic

constraint instability, which occurs even though the coef-

ficient of friction is constant [8].

Tlusty firstly presented a mode coupling principle to

study the formation of machining chatter by using a two

degree-of-freedom (DOF) dynamic model [9]. North built

an 8-DOF lumped-parameter model for disc brake squeal

considering the translation and rotation motions of the disc,

pads and calliper. He proposed a ‘‘binary flutter mecha-

nism’’ by using a simplified 2-DOF model referred from an

airfoil flutter theory. The dynamical system of a brake may

be unstable if two modes of the disc under the action of

friction. The theoretical solution can be obtained by

deducing the eigenvalues of dynamical equations [10–12].

Earles built a 2-DOF model and a 4-DOF model with two

masses based on a beam-on-disc system to investigate the

problem of brake squeal [13, 14] while Hamabe built a

single-mass and 2-DOF model [15]. But no contact stiff-

ness between contact surfaces was considered in these

models. Hoffmann proposed a concise 2-DOF mass-spring-

belt model by introducing the contact stiffness between the

mass and the belt. In this model, both normal force and the

frictional force are assumed to be functions of the contact

stiffness and the normal displacement of the mass. There-

fore, the non-conservative frictional force leads to an

asymmetric stiffness matrix and an eigenvalue solution of

the resulting problem may be utilized to analyse the fric-

tional instability. This model not only illustrated the role of

contact stiffness but also provided a clear explanation of

the mode coupling principle of friction-induced vibration

[16, 17], and therefore has been referred widely in the

works of other scholars. In addition, Millner built a 6-DOF

lumped-parameter model including the translation and

rotation motions of the disc, pad and calliper [18]. Ahamed

proposed a 10-DOF model for a fixed calliper disc brake

considering both translation and rotation motions of the

disc, pads and pistons [19]. Papinniemi extended a 4-DOF

model from Hoffman’s 2-DOF model plus the disc motions

in normal and tangential directions [20]. Oura proposed a

3-DOF model for a pad-on-disc system including the

rotation and translation motions of the pad as well as the

translation motion of the disc [21, 22]. These models

mentioned above revealed that even when the friction

coefficient is constant, the systems may be unstable if the

friction force couples related degrees-of-freedom together

[23]. However, it is difficult to attribute definite physical

meaning to the parameters of these models and thus they

cannot be applied directly to analyse the instability prob-

lem of real friction pairs.

Hoffmann and his colleagues also performed a lot of

work on the experiment and modelling of a beam-on-disc

system. Tuchinda built a continuum mathematical model

of a disc and a beam to simulate the mode lock-in beha-

viour. Although in this model the beam axis is inclined

along the disc rotation, numerical simulation showed that

the friction system would be unstable only when the

incline angle of the axis is taken as a negative value, i.e.,

the beam inclination is opposite to the disc rotation [24].

To solve this contradiction, Tuchinda thought the contact

point should be the corner of the contact surface of the

beam. However, finite element analysis showed that there

exists a small discrepancy between theoretical predictions

and measurements when the beam is inclined at 4� [25].

Based on a specially designed beam-on-disc test appara-

tus, Allgaier found that when the cantilever length of an

aluminium beam equals 156.7 mm and the incline angle

of the beam axis against the aluminium disc is 4�, the

third nodal diameter out-of-plane mode will be coupled

with the second bending mode of the beam, which leads to

friction-induced squeal. A finite element model was built

to analyse the effects of the rotation speed of the disc and

the applied normal load on friction-induced vibration

[26].

Akay et al. carried out a lot on experiments and finite

element simulations based on different beam-on-disc test

rigs [27–30], and summarized the research results in Ref.

[31]. Because of the contact effect of a brake pad, the nodal

diameter out-of-plane mode will split into two modes

which have the same mode shapes but different phases and

frequencies [27–29]. When the frequency of a split mode at

higher frequency is close to the bending mode frequency of

the pad, both modes will be coupled. By adjusting the beam

length, added mass, different system modes may be cou-

pled to generate squeal noise at different frequencies.

Experimental results showed that when the beam length

equals 180 mm, several disc modes are coupled with sev-

eral beam modes simultaneously, i.e., a squeal noise occurs

at a mixed frequency [30, 31].

With the development of computation technology, the

mode coupling-based finite element (FE) method has

established itself as the most common numerical method

used for predicting the instability of real friction pairs

[32–34]. However, much research showed that brake

squeal is actually influenced by many factors such as

component geometry, material property, friction coeffi-

cient, contact interface, applied load and thermal effect.

Because most of the influence factors are time-varying and

difficult to model accurately, application of FE method is
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still far from satisfactory and results often suffer from over-

prediction or under-prediction [35, 36].

Therefore, the generation mechanism and reduction

countermeasures of friction-induced squeal for real brakes

still need further investigation. Experiment research based

on beam-on-disc or pin-on-disc systems is an effective way

to investigate the essential of friction-induced squeal.

Because a single-mass model cannot incorporate the main

motions of a real frictional pair while those models with

many degree-of-freedoms are actually difficult to obtain

the corresponding parameters, the lumped-parameter

models mentioned above may be used to explain the mode

coupling principle but is still not suitable for investigating

the problem of friction-induced vibration occurs between

two bodies. In addition, the rotation degree-of-freedom of a

frictional part such as a pad, a beam or a pin that also

proposed in some models may not represent the real

motion.

In order to clearly illustrate the generation of friction-

induced vibration due to sliding contact between two

objects, a 3-DOF dynamic model incorporating the main

motions of a frictional pair and the contact stiffness

between frictional interfaces is proposed and analysed in

this paper. In Sect. 2, a simple beam-on-disc brake squeal

experimental apparatus is introduced. The relationship

between the brake squeal frequency and the mode fre-

quencies of the beam and disc as well as the cantilever

length of the beam is extracted from experiment results. In

Sect. 3, a specific 3-DOF lumped-parameter model of

friction-induced vibration is therefore developed of the

beam-on-disc system. In Sect. 4, with the identified and

estimated parameters of the experimental apparatus, the

instability of a frictional system as well as the influence

factors is simulated by using the complex eigenvalue

analysis method and a transient response analysis. The

relationship among mode coupling, system instability,

oscillating behaviour, energy feed-in and brake squeal is

analysed and discussed. Finally, some concluding remarks

are presented in Sect. 5.

2 Brake Squeal Experiments of a Beam-on-Disc
System

2.1 Beam-on-Disc Experimental Apparatus

For the reason of complication of real brake system on

vehicles, it is still difficult to deal with the problem of disc

brake squeal. Thus, a beam-on-disc brake squeal apparatus

having a simple structure is designed for the experiments in

this study. An automobile brake disc (Cast iron) is installed

on the lathe machine together with a metal beam (alu-

minium alloy, u 28 mm). The schematic layout of the

experimental apparatus is shown in Fig. 1a. The disc is

driven by a motor and through a transmission. The contact

end of the beam to the disc is pasted by a piece of friction

material while the other end is held by the cutter carrier.

The cantilever length of the beam is denoted by the symbol

L. By using the carriage handle, the axial force P is thus

applied on the beam to make it move into contact with the

surface of the rotating disc and produce brake squeal. The

sound pressure of brake squeal is measured by a micro-

phone and output to a data acquisition system for further

analysis. A photograph of the beam-on-disc brake squeal

apparatus is shown in Fig. 1b.

2.2 Brake Squeal Experimental Method and Results

Firstly, the cantilever length of the aluminium alloy beam

is adjusted to 90 mm by changing its installation position,

and then the disc is rotated at a speed of about 18 rpm.

Brake squeal due to friction-induced vibration is triggered

intermittently. The sound of disc brake squeal produced

during the whole process from start to finish is measured

P
L

Disc

Beam

Microphone

Data acquisition system

10cm

50
cm

(a) (b)

Cutter carrier

Beam

Disc

Fig. 1 Beam-on-disc brake squeal apparatus: a schematic layout and b photograph
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and analysed as shown in Fig. 2. Because of the influence

of disc surface run-out (SRO), the sound signal is repeated

in each disc rotation. It can be seen that similar brake

squeal generated in the range between 2.9 and 6.2 s is

repeated again between 6.2 and 9.5 s. The FFT analysis

shows that the frequencies of brake squeal noise are

1637 Hz and its harmonics. The dominant frequency is

near the second frequency of the nodal diameter out-of-

plane mode of the constrained disc (1529 Hz) and the first

frequency of the bending mode of the constrained beam

(1563 Hz). Both mode frequencies of the disc and the beam

are extracted from experimental hammer impact tests.

Similar brake squeal experiments are repeated except

that the cantilever length L of the beam is adjusted grad-

ually. When the cantilever beam is adjusted at the length

from 50 to 300 mm, it is found that the dominant frequency

of brake squeal changes with the cantilever length, as

shown in Fig. 3. However, when the cantilever length is

less than 50 mm, greater than 290 mm, or in the range

from 110 to 155 mm, no squeal noise is observed in the

experiment. In Fig. 3, the cantilever length of the beam is

shown along the x-axis while the frequency of brake squeal

is shown along the y-axis. Results show that the frequency

of brake squeal decreases as the cantilever length increases

from 50 to 110 mm. The brake squeal appears again at

L = 155 mm and then decreases in frequency from 3704 to

1306 Hz as the cantilever length increases from 155 to

290 mm. Unlike the squeal noise of a real disc brake

occurs indefinitely because of many uncertain influence

factors, the friction-induced squeal of the beam-on-disc

system at different frequencies always appears and there-

fore can be repeated when the cantilever beam is adjusted

to the same length.

Considered the brake squeal frequency relates well with

the geometric structure of the system, the relationships

between the squeal frequency, the first four nodal diameter

out-of-plane modes of the constrained disc and the first two

bending modes of the constrained beam are illustrated in

Fig. 4a, b, respectively. Figure 4a shows that the first

bending mode frequency of the beam plays an important

role in triggering brake squeal. When the cantilever length

is equal to 50, 70, 90 or 110 mm, the first bending mode

frequency of the beam is close to the fourth, third, second

or first frequency of the nodal diameter out-of-plane modes

of the disc, respectively. Thus, the system generates brake

squeal at an adjacent frequency to both the mode fre-

quencies of the disc and the beam. Figure 4b shows that the

second bending mode frequency of the beam is also

important. When the cantilever length equals 155, 200, 250

or 290 mm, the second bending mode frequency of the

beam is close to the fourth, third, second or first frequency

of the nodal diameter out-of-plane modes of the disc,

respectively. Thus, it produces brake squeal at a frequency

near to both mode frequencies of the disc and the beam.

Because no squeal noise at other frequencies are produced

no matter how the cantilever length is adjusted in the range
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un
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Fig. 2 Signal characteristics of

beam-on-disc brake squeal:

a time history and b frequency

spectrum
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from 110 to 155 mm, it is thought that the first four nodal

diameter out-of-plane modes of the constrained disc and

the first two bending modes of the constrained beam may

be much easier to excite than other modes to produce

squeal noise.

Therefore, it is concluded from the experiments that the

generation of brake squeal of the beam-on-disc system is

mostly related to the frequencies of the first four nodal

diameter out-of-plane modes of the constrained disc and

the first two bending modes of the constrained beam. It

(50mm, 3704Hz)

(70mm, 2369Hz)

(90mm, 1637Hz)

(110mm, 1220Hz)

(155mm, 3704Hz)
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Fig. 3 Brake squeal frequency

versus cantilever length

(L = 50–300 mm)
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the disc (solid line):
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b L = 140–300 mm
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seems that when they are close to each other, brake squeal

is prone to produce at a coupled mode frequency. If they

are separated to a certain degree, the brake squeal may

disappear or appear at another coupled mode frequency of

the next order. But the generation mechanism of friction-

induced squeal as well as its main influence factors still

needs a further theoretical analysis.

3 A 3-DOF Model of Friction-Induced Vibration

For a rotating beam-on-disc system, the contact end of the

beam usually deflects by a small displacement along the

tangential direction of disc rotation due to the action of

frictional force, as shown in Fig. 5. The leading area of the

contact end of the beam is the actual contact position and

creates a digging-in effect while the trailing area is out of

touch with the disc surface in the friction process. There-

fore, the line from the actual contact point to the installa-

tion point is inclined at a small angle to the original

centreline of the beam. Considering the horizontal and

vertical motions of the beam as well as the vertical motion

of the disc, a 3-DOF mass-spring dynamic model is

therefore developed of the beam-on-disc system, as shown

in Fig. 6. Here, m1 is the mass of the stationary part (beam)

which is subjected to the actions of the spring k1 at an

incline angle a to the horizontal direction as well as the

spring k2 at the same incline angle a to the vertical direc-

tion. m2 is the mass of the moving part (disc) which is

subjected to the action of the spring k3 in the vertical

direction. There exists a normal contact stiffness kc, a

normal force N and a frictional force Ff between m1 and

m2.

Assume that: �m1 is tilted in its perpendicular directions

(x1 and y1) by an angle a relative to the fixed points (O and

O0) simultaneously; ` the incline angle a is taken as a

constant value to simplify the dynamics analysis process on

the basis that the high-frequency and low-amplitude

vibration of m1 affects the incline angle a only negligibly; ´

m2 moves forward continuously at an even speed v along the

x2 direction and only vibrates in the y2 direction; ˆ both m1

and m2 are subjected to the actions of the normal force

N and the frictional force Ff during the friction process. The

normal force N on the contact spring kc is proportional to the

difference in the vertical displacement (y2 - y1) between

m1 and m2; ˜ and that the positive damping of the system is

not considered in this model in order to simplify the study. It

is obvious that a non-damped frictional system is more

convenient to investigate the essence of friction-induced

vibration though positive damping exists in actual frictional

systems [37, 38].

According to the Newton’s Second Law, the equations

of motions in the x1, y1 and y2 directions for the present

model are derived as following.

Fig. 5 Schematic diagram of the beam-on-disc system (the solid

outline represents the deformed beam and the dashed outline

represents the un-deformed beam)

Fig. 6 3-DOF model of the frictional system

m1€x1 þ k1 cos2 aþ k2 sin2 a
� �

x1 þ �k1 þ k2ð Þ sin a cos ay1 ¼ Ff

m1€y1 þ �k1 þ k2ð Þ sin a cos ax1 þ k1 sin2 aþ k2 cos2 a
� �

y1 ¼ N

m2€y2 þ k3y2 ¼ �N

8
<

:
; ð1Þ
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where

N ¼ �kc y1 � y2ð Þ ð2Þ

and

Ff ¼ lN ¼ �lkc y1 � y2ð Þ: ð3Þ

Substituting Eqs. (2) and (3) into Eq. (1), and defining a

state vector X = [x1 y1 y2]T, the system equations can be

written in the form of state equation.

M €X þ K þ KFð ÞX ¼ 0; ð4Þ

where

Obviously, the elements in the stiffness matrix (K ? KF)

become asymmetrical due to the introduction of the non-

conservative frictional force.

4 Numerical Results and Discussion

4.1 Complex Eigenvalue Analysis

For a time-invariant linear system, the local stability could

be analysed through the Routh Hurwitz criterion or the

Lyapunov methods. The complex eigenvalue method based

on the first Lyapunov method is often utilized to simplify

the analysis of frictional instability. According to the

complex modal theory, when the dynamic equations con-

tain non-proportional damping, asymmetrical damping or

asymmetrical stiffness matrices, the ith eigenvalue ki is can

be expressed in the form of a complex number [39]:

ki ¼ ri þ j2pfdi ð5Þ

where the imaginary part 2p fdi is the ith damped natural angular

frequency of the system while the real part ri is the respective

modal damping factor. The system becomes unstable if one of

the real parts reaches a positive value. The ith dimensionless

damping factor fi can be expressed in the following form:

fi ¼ � ri
2pfdi

: ð6Þ

For a dynamic system without positive damping, if the

dimensionless damping factor is negative due to the

positive real part of the complex eigenvalue, the system is

in an unstable state which leads to a divergent oscillation. It

is obvious that the greater the absolute value of fi, the more

unstable is the system. If fi is zero because ri is equal to

zero, the system is in a stable state. Therefore, both ri and

fi are often utilized as the performance index to estimate

the instability of frictional systems.

In the present investigation, the masses of the cantilever

beam (L = 90 mm) and the disc are calculated or weight,

respectively, m1 = 0.15 kg and m2 = 4.35 kg. Although

the actual beam and disc may have an infinite order of

modes and corresponding mode parameters, only the

modes related to the brake squeal are considered for the

following analysis. The results of an experimental modal

test and a finite element analysis show that the first bending

mode frequency of the constrained beam fbend-

ing = 1563 Hz, the first tensile mode frequency of the

constrained beam ftensile = 10907 Hz, and the second nodal

diameter out-of-plane mode frequency of the constrained

disc fout = 1529 Hz. Then, the mode stiffness are com-

puted for the proposed 3-DOF dynamic system according

to their modal frequencies, thus, k1 = 1.45 9 107 N/m,

k2 = 7.04 9 108 N/m and k3 = 4.01 9 108N/m. The

contact stiffness between the beam and the disc is esti-

mated according to the material properties and actual

contact size of the beam [40], as kc = 1.50 9 107 N/m.

When the friction coefficient l varies between 0 and 0.8

and the incline angle a varies between 0� and 16�, the

variation of the complex eigenvalue of the 3-DOF fric-

tional system is shown in Fig. 7a, b, respectively.

Figure 7a shows that the real part r of the complex

eigenvalue is equal to zero and the mode frequencies fd are

separated when the friction coefficient l is smaller than 0.05

under the condition of an incline angle a = 2�, which means

that the frictional system is in a stable state. However, the real

part of the complex eigenvalue becomes positive when the

friction coefficient l is greater than 0.05, i.e., both the modes

of the disc and the beam are coupled to form an unstable mode,

which leads the system to friction-induced vibration.

Figure 7b shows that the real part r of the complex

eigenvalue is equal to zero and the mode frequencies fd are

M ¼
m1 0 0

0 m1 0

0 0 m2

2

4

3

5; K ¼
k1 cos2 aþ k2 sin2 a � k1 � k2ð Þ sin a cos a 0

� k1 � k2ð Þ sin a cos a k1 sin2 aþ k2 cos2 aþ kc �kc

0 �kc k3 þ kc

2

4

3

5;

KF ¼
0 lkc �lkc

0 0 0

0 0 0

2

4

3

5:
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separated only when the incline angle a = 0� or a[ 11.5�
under the condition of a friction coefficient l = 0.2, which

also means the frictional system is in a stable state. But the

real part r of the complex eigenvalue becomes positive

when a is in the range from 0� to 11�, i.e., both the modes

of the disc and the beam are coupled to form an unsta-

ble mode, which also leads the system to friction-induced

vibration.

In order to analyse the combined influence of the fric-

tion coefficient l and the incline angle a on the system

instability simultaneously, the variation of the dimension-

less damping factor f with l and a is shown in Fig. 8. It is

found that only when both l and a are in a particular range,

does the dimensionless damping factor f become smaller

than zero, i.e., the frictional system is unstable. The fig-

ure also shows that f does not always increase as l or a
increases.

There is an interesting phenomenon for such a frictional

system with these particular parameters. In the range of

l = 0–0.25, the damping factor f is equal to zero when the

incline angle a = 0� or when a[ atan (l). For example,

when l = 0.2 and a = atan (0.2), i.e., a = 11.3�, and the

system is in a critical stable state. However, it cannot be

regarded as a sprag-slip phenomenon. The reason is that the

frictional system proposed in this paper is a flexible system

while that proposed by Spurr is a rigid system before the

articulated bar is locked [7]. In fact, the solution form of a

critical unstable condition may be difficult to express in a

concise equation for such a 3-DOF dynamic model and is

more complicated than that proposed by Spurr.

Because the mode frequencies of a beam change with

the cantilever length, friction-induced squeal is therefore

produced at different frequencies. Table 1 lists the com-

parison of experiment and analysis results. For the reasons

of measurement error in experiments and estimation error

of contact stiffness for simulation, there exists an error

between the experiment and analysis results, but all are

smaller than 5%. This means that the model proposed in

this paper has an acceptable level of accuracy and can be

applied for further study.

According the analysis of the influence of incline angle

a on the instability of a frictional system, for such a beam-

μfd [Hz]

σ

(a)

fd [Hz]

σ

α [o]

(b)

Fig. 7 Influence of the friction coefficient l and the incline angle a
on the real part r of the complex eigenvalue and the damped natural

frequency fd: a influence of the friction coefficient l while the incline

angle a = 2� and b influence of the incline angle a while the friction

coefficient l = 0.2

α [o]μ

ζ

Fig. 8 Influence of the incline angle a and the friction coefficient l
on the dimensionless damping factor f

Table 1 Comparison of

experiment and analysis results

of the squeal frequency at

different cantilever lengths

Length (mm) 50 70 90 110 155 200 250 290

Exp. (Hz) 3704 2369 1637 1220 3704 2369 1637 1306

Analysis (Hz) 3731 2367 1556 1247 3704 2376 1572 1248

Error (%) 0.73 -0.08 -4.95 2.21 0.70 0.30 -3.97 -4.44
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on-disc system developed in Sect. 2, when the cantilever

length is too short (\50 mm), the end surface of the beam

almost completely contacts with the disc surface because of

its high stiffness and small deflection, and the contact

centre is almost the geometric centre of the end surface of

the beam. The actual incline angle to the normal line of the

disc is very small, and thus the frictional system is stable.

When the cantilever length is too long ([290 mm), because

the beam neutral axis deflects a lot as well as the leading

area does, the actual incline angle is also very small or even

negative so that the frictional system is also stable. If the

cantilever length is in the range from 110 to 155 mm, the

higher order mode frequencies of the beam and disc are

difficult to excite to couple with each other. These may be

the reasons why there is no squeal noise generated when

the cantilever length of the beam is located in some range.

4.2 Transient Response Analysis

In order to predict the tendency of disc brake squeal, Guan

proposed a finite element analysis method of feed-in

energy on the brake system [41]. The main idea is to cal-

culate the total feed-in energy of all node pairs of a finite

element model that is induced during one cycle of vibra-

tion. It was concluded that the lager the feed-in energy

induced by frictional force during one cycle of vibration,

the more unstable the system is, and the more frequently

the squeal occurs. For the 3-DOF frictional system pro-

posed in this paper, the kinetic energy of the system at any

time can be expressed as following [42]:

Ek tð Þ ¼ 1

2
_XM _XT ¼ 1

2
m1 _x

2
1 þ m1 _y

2
1 þ m2 _y

2
2

� �
ð7Þ

The potential energy of the system

Ep tð Þ ¼ 1

2
XKXT

¼ 1

2
k11x

2
1 þ k22y

2
1 þ k33y

2
2 þ 2k12x1y1 þ 2k23y1y2

� �

ð8Þ

Thus, the total energy

ET tð Þ ¼ Ek tð Þ þ Ep tð Þ ¼ 1

2
_XM _XT þ XKXT

� �

¼ 1

2
m1 _x

2
1 þ m1 _y

2
1 þ m2 _y

2
2 þ k11x

2
1 þ k22y

2
1

�

þk33y
2
2 þ 2k12x1y1 þ 2k23y1y2

�

ð9Þ

In order to analyse the onset of friction-induced vibra-

tion, the time response histories of the present 3-DOF

model under the initial condition, [x1, y1, y2]t=0 = [0, 0,

1 9 10-5] [m], when the incline angle a = 2� and the

friction coefficient l = 0.2, are simulated through the

transient response analysis, as shown in Fig. 9. The other

parameter values for this simulation are the same as those

used in Sect. 4.1. It is found that the vibration responses x1,

y1, y2, Ff, Ek, Ep and ET all increase with time. In addition,

the response of y1 is more complicated than the others. The

FFT analysis shows that the frequency response of y1

consists of a large amplitude low-frequency component

(1600 Hz) and a small amplitude high-frequency compo-

nent (10800 Hz), as shown in Fig. 10. The latter frequency

is near the vertical natural frequency of m1 (ftensile,

10907 Hz). The former frequency (1600 Hz) is near the

horizontal natural frequency of m1 (fbending, 1563 Hz) and

the vertical natural frequency of m2 (fout, 1529 Hz) and is

close to the actual brake squeal frequency (1637 Hz).

It could be seen in Fig. 9 that at the beginning of the

process of friction-induced vibration, m1 moves forwards

(x1) and downwards (y1) while m2 also moves downwards

(y2) (digging-in phase) under the action of normal force.

When the frictional force Ff is gradually decreased to zero,

m1 also decreases its forward speed until it reaches zero, and

then starts to move backwards and forwards followed by the

motion change of y2 (release phase), thus the frictional force

Ff becomes negative. Because of the interaction of the fric-

tional force, the horizontal and vertical movements ofm1 and

the vertical movement of m2, both the kinetic and potential

energy,Ek andEp, of the system increase with time due to the

continuous feed-in energy ET from the non-conservative

frictional force, which not only keeps the digging-in and

release motions of m1 in process but also leads to increasing

vibration levels of m1 and m2 with time and then produces a

squeal noise at a coupled system frequency. Figure 9 also

shows that the friction-induced vibration simulated in this

paper is different from the sprag-slip behaviour [7].

When the incline angle a is taken as 20� while friction

coefficient l is still equal to 0.2, the time response histories

are simulated and shown in Fig. 11. At the beginning of the

process, the motions (x1 and y1) of m1 are very similar to

those in Fig. 9, and the vibration amplitudes increase with

time. However, the vibration amplitude of y2 decreases

with time because of the effect of phase lagging, which

leads to the decreasing of normal force and frictional force.

The total energy ET of this system is therefore decreased.

In the whole process, there appears a phenomenon of

beating for all the variables x1, y1, y2 and Ff of this 3-DOF

system. Because the beat frequency is much smaller than

the vibration frequency, the beating vibration might consist

of two components having similar frequencies near

1600 Hz. The beating vibrations of x1 and y1 are in

opposite phase to those of y2 and Ff. In every cycle of

beating vibration, the total feed-in energy ET from the

frictional force to the system is equal to the output energy

from the system. No divergent vibration leading to squeal

noise is generated because there only exists a small amount

of kinetic and potential energy, Ek and Ep, in the system. It
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is worth to note that Hoffmann also found the phenomenon

of the beating oscillation occurred in a 2-DOF frictional

system with closely neighbouring natural frequencies. He

thought that both parameters of friction coefficient and

contact stiffness have a significant influence on the energy

budget of beating states [16, 43].

4.3 Influence of the Natural Frequencies

on the System Instability

Take the values of the stiffness coefficients k1 and k3 in a

specific range with other parameters unaltered, and then

convert the k1 and k3 into the corresponding natural fre-

quencies f1 and f3 according to the following equations.

f1 ¼ 1

2p

ffiffiffiffiffiffi
k1

m1

r

and f3 ¼ 1

2p

ffiffiffiffiffiffi
k3

m2

r

: ð10Þ

For different values of f1 and f3, the instability of the

frictional system Eq. (1) can be analysed by calculating the

real part r of the complex eigenvalue or the dimensionless

damping factor f. The relationship between the natural

frequencies (f1 and f3) and the system instability is shown

in Fig. 12.

Only when the nature frequencies f1 and f3 are located in

the middle belt region, does the real part of the system

complex eigenvalue become greater than zero, thus the

frictional system is in an unstable state. But when the

frequency f1 or f3 is increased to a certain value, i.e., they

t [s]
x 1

 [m
]

(a)

t [s]

y 1
 [m

]

(b)

t [s]

y 2
 [m

]
(c)

t [s]

F f
 [N

]

(d)

(e)

t [s]

E 
[J

]

Fig. 9 Time histories of the

transient response of the 3-DOF

system when the incline angle

a = 2� and the friction

coefficient l = 0.2: a–

c displacement of the masses m1

and m2 along the x1, y1 and y2

directions, respectively;

d friction force between the

masses m1 and m2 and e energy

of the system (thin solid line

represents the kinetic energy Ek

of the system; thin dashed line

represents the potential energy

Ep of the system; thick solid line

represents the total energy ET of

the system)

Frequency [Hz]

D
is

pl
ac

em
en

t [
m

] X:1600
Y:1.22e-09

X:1.08e+04
Y:1.285e-11

Fig. 10 Frequency spectrum of the displacement of the mass m1 in

the y1 direction
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are located in the upper left or the lower right corner, the

real part of the complex eigenvalue is equal to zero, and

thus the system is in a stable condition. Because the contact

stiffness kc has an effect on increasing the value of the

stiffness k3 more than that of k1, it is found that when the

bending mode frequency f1 of the beam is a little greater

than the nodal diameter out-of-plane mode frequency f3 of

the disc, both modes of the beam and the disc are coupled

to generate friction-induced vibration leading to brake

squeal at a coupled frequency. When both mode frequen-

cies are separated to a certain extent, the frictional system

will transfer from the unstable state to a stable state, and

the brake squeal at this coupled system frequency will

disappear. The analysis agrees well with the experimental

result as given in Sect. 2. According to the numerical

simulation in Sects. 4.1 and 4.2, the mode coupling of the

system is also influenced by the incline angle of the beam

and the coefficient of friction.

5 Conclusions

For the simple beam-on-disc frictional apparatus developed

in this paper, when the cantilever length is adjusted in a

specific range, it is prone to produce squeal noise at corre-

sponding frequencies. The frequency of squeal is near the

t [s]

x 1
 [m

]

(a)

t [s]

y 1
 [m

]

(b)

t [s]

y 2
 [m

]
(c)

t [s]

F f
 [N

]

(d)

(e)

t [s]

E 
[J

]

Fig. 11 Time histories of the

transient response of the 3-DOF

system when the incline angle

a = 20� and the friction

coefficient l = 0.2: a–

c displacement of the masses m1

and m2 along the x1, y1 and y2

directions, respectively;

d friction force between the

masses m1 and m2 and e energy

of the system (thin solid line

represents the kinetic energy Ek

of the system; thin dashed line

represents the potential energy

Ep of the system; thick solid line

represents the total energy ET of

the system)

Stable

Stable

f 1 (Hz)

f 3
 (H

z)

Fig. 12 Stability region of the system instability with respect to the

natural frequencies f1 and f3
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frequencies of the first two-order bending modes of the beam

and the first four-order nodal diameter out-of-plane mod-

es of the disc. It will not produce squeal if the cantilever

length is too short or too long. When the cantilever length is

too short, the end surface of the beam almost completely

contacts with the disc because of its high stiffness and small

deflection, and the contact centre is near the geometric centre

of the beam. The actual incline angle is very small, and thus

the frictional system is stable. When the cantilever length is

too long, because the beam axis deflects a lot as well as the

leading area does, the actual incline angle is also very small

or even negative so that the frictional system is also stable.

Experimental results also show that the lower order modes of

the beam and disc may be easier to excite than the higher

order modes to produce squeal noise, which is instructive for

the reduction design of disc brake squeal.

Considering the bending and tensile modes of the beam

and the nodal diameter out-of-plane mode of the disc, the

incline angle of the leading area to the normal line of the

disc, and the contact stiffness between the beam and the

disc, a 3-DOF lumped-parameter model is proposed to

investigate the generation mechanism of friction-induced

vibration that occurs between two bodies. Compared to

other lumped-parameter models, the proposed 3-DOF

model has a definite physical meaning and can be in

application to the investigation of friction-induced vibra-

tion that occurs in frictional pairs as well as the parameters

can be easily identified or estimated.

Numerical simulation shows that because of the effect of

the contact stiffness on the beam different from that of the

disc, only when the bending mode frequency of the beam is

a little greater than the frequency of the nodal diameter out-

of-plane of the disc, both modes will couple with each

other and lead to friction-induced vibration. It is also found

that when the frictional system is transited from a steady

state to an unstable state for the variation of the incline

angle, its kinetic and potential energy increase with time

due to continuous feed-in energy from the friction force

while the dynamic responses of the system change from the

beating oscillation to the divergent, which results in the

friction-induced vibration and squeal noise. When the

incline angle is too big or too small, because of the phase

changing of each degree-of-freedom, the total feed-in

energy from the frictional force to the system is equal to

the output energy from the system in every cycle of beating

vibration. Because there only exists a small amount of

kinetic and potential energy in the system, no divergent

vibration is generated.

Therefore, the bending mode frequency of the beam a

little greater than the frequency of the nodal diameter out-

of-plane mode and a specific incline angle of the leading

area to the normal line of the disc as well as a certain

friction coefficient are necessary conditions for the mode

coupling of a frictional system.
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