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Abstract This study provides a novel insight into the study

of static friction force. From numerical simulations with a

simplified sliding model in which the friction force

between an elastic slider with a split contact interface and a

rigid base block with a smooth surface was analyzed, it was

found that the existence of the stop–restart motion works to

increase static friction force, while the stop–inversion

motion reduces static friction force. Thus, the numerical

simulations in this study demonstrated that the magnitude

of static friction force varies with different types of tan-

gential loading sequences. Furthermore, it was found from

an analytical discussion that the magnitude of this tan-

gential loading history effect is characterized by the dis-

persion level of the threshold lengths for the onset of slip

motion at each contact point and also by the ratio of kinetic

friction coefficient to static friction coefficient at the con-

tact interface. Through the previously mentioned analytical

approaches, this study emphasizes that the sequence of

tangential loading is an important factor for characterizing

the magnitude of static friction force.

Keywords Static friction � Tangential loading history �
Elastomer � Split contact surface

List of symbols

A Fitting parameter used in Eqs. (9)–(11)

ci Viscosity at ith contact point

dki Small statistical deviations of ki distribution

dfz
i Small statistical deviations of fz

i distribution

fk
i Local kinetic friction force at ith contact

point

fs
i Local static friction force at ith contact

point
�fk Averaged values of fk

i of the contact points

under slip states
�fs Averaged values of fs

i of the contact points

under stick states

Fsmax (Maximum) static friction force

Fsmax
1st (Maximum) static friction force at 1st

loading period

Fsmax
2nd (Maximum) static friction force at 2nd

loading period

Fsmax
3rd (Maximum) static friction force at 3rd

loading period

fsmax
i Maximum static friction force at ith contact

point

fx
i Local tangential force at ith contact point

Fx Total tangential force

fz
i Local normal load at ith contact point

Fz Total normal load

ki Tangential stiffness at ith contact point

K Total tangential stiffness

lini_c Center value of lini distribution

lSI_c Center value of lSI distribution

lSR_c Center value of lSR distribution

li Threshold length for the onset of slip

motion

leffective
i Effective threshold length

lini
i Threshold length at 1st loading period
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lresidual
i The stored strain length at ith contact point

in the stopping period

lSI
i Threshold length at SI motion

lSR
i Threshold length at SR motion

mi Mass at ith contact point

N Number of contact points

Nslip Number of contact points under slip state

Nstick Number of contact points under stick state

P(l) Probability distribution function of l

Pini(leffective) Probability distribution function of leffective
at 1st loading period

PSI(leffective) Probability distribution function of leffective
at SI motion

PSR(leffective) Probability distribution function of leffective
at SR motion

U Macroscopic displacement

ui Displacement at ith contact point

V Driving speed

DFx_ini Difference between static and kinetic

friction forces at initial motion defined in

Fig. 6

DFx_SI Difference between static and kinetic

friction forces at SI motion defined in

Fig. 6

DFx_SR Difference between static and kinetic

friction forces at SR motion defined in

Fig. 6

kK Variation parameter of ki distribution

kFz Variation parameter of fz
i distribution

lk Kinetic friction coefficient

ls Static friction coefficient

rini Standard deviation of lini distribution

rSI Standard deviation of lSI distribution

rSR Standard deviation of lSR distribution

vSI Increasing ratio of static friction force at SI

motion

vSR Increasing ratio of static friction force at SR

motion

1 Introduction

Static friction force is an important factor for determining

the capabilities of sliding systems. A large static friction

force is effective to prevent unnecessary slippage. On the

other hand, in some cases, a low static friction force is

required to achieve a smooth start motion without unsta-

ble slippage because large static friction sometimes causes

an unstable sliding motion, such as stick–slip vibration

[1, 2]. For the above reasons, designing static friction force

has been an important issue in the study of friction, espe-

cially in mechanical engineering.

One of the methods for designing static friction force is

based on the use of surface textures, which includes arti-

ficial surface structures ranging from lm to mm scales. For

example, as experimentally and theoretically demonstrated,

the use of a split contact interface is an effective method to

reduce the level of static friction force [3–9]. When a split

contact interface slides on a rigid smooth plane, the tran-

sition from static to kinetic friction at each contact region

occurs independently at different times because the local

stiffness and normal load at each contact region are not

perfectly equal to each other. Therefore, the local static

friction force that appears in the local scale is canceled at

the macroscopic scale. When a time change in macroscopic

friction force is focused on, a smooth start motion is often

observed, even if a local stick–slip motion occurs at each

contact point.

In the previous report by Maegawa et al. [10], it was

pointed out that the existence of the stop–restart (SR)

motion works to increase macroscopic static friction force,

based on numerical and experimental results focusing on

the sliding friction of a rubber slider with a split contact

interface. In this study, the effect of SR motion on static

friction force is reported again with some additional dis-

cussions. In addition, as a new insight, the effect of stop–

inversion (SI) motion on static friction force is discussed.

From numerical simulations, it was found that SI motion

reduces static friction force, in contrast to the case for SR

motion. Furthermore, the mechanism of this tangential

loading history dependence of static friction force is also

discussed.

2 Analytical Model

Figure 1 shows a schematic illustration of the analytical

model used in this study, which was already developed in

the previous study by Maegawa et al. [10]. The model is

based on a simplified analytical model developed by

Kligerman and Varenberg [7], which suggested treating

dynamic stick–slip phenomena in terms of massless quasi-

static approach based on the difference between static and

kinetic friction. In order to facilitate discussion, the details

of this model are described again. This model represents

the sliding friction between an elastic split surface with

multiple contact points and a rigid smooth plane that moves

in the x direction with a driving speed of V. The contact

interface is divided into N contact points, and the ith

contact point is connected to the bulk region via a spring

with a stiffness of ki. It should be noted that to simplify the

analysis, the mass of the contact point, mi, and the viscosity

at the connection, ci, were set to zero values: mi = 0 and

ci = 0. In addition, the interaction between neighboring
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contacts points was not considered; all of the contact points

were connected to the bulk region independently. There-

fore, dynamic behaviors, such as crack propagation

[11–13], were not considered in this study. At each contact

point, a local normal load, fz
i , was applied on the contact

interface, and a local tangential force, fx
i , also acts along the

tangential direction.

As discussed by Farkas et al. [14], the coherence of the

contact interface, which is the magnitude of the dispersion

in the distribution of threshold lengths for the onset of slip

at each contact point, is an important factor for character-

izing the level of macroscopic static friction force in a split

(or rough) contact interface. Similarly, Kligerman and

Varenberg [7] numerically analyzed the effect of the dis-

tributions on the local stiffness of ki and the effects of the

local normal load, fz
i , on macroscopic static friction force.

In this study, based on the description by Kligerman and

Varenberg, the stiffness of the spring, ki, and the local

normal load, fz
i , are statistically scattered as:

ki ¼ K=N þ dki

f iz ¼ Fz=N þ df iz ;
ð1Þ

where K and Fz are the total tangential stiffness and the

normal load, respectively. Here, the dispersions of stiffness

and normal load distributions are characterized by dki and
dfz

i, which represent small statistical deviations (positive or

negative) of those parameters from their average values.

The random values of dki and dfz
i are chosen using a ran-

dom number generator with a Gaussian distribution. Here,

the mean values of the distributions of ki and fz
i correspond

to K/N and Fz/N, respectively. In addition, the standard

deviations of these distributions are formulated as kKK/N and

kFzFz/N, respectively. Therefore, the level of their variation

is characterized by the values of kK and kFz.
The motion of each contact point is governed by the

force balance between the spring force and friction force;

thus, kiui = fx
i . Here, ui, which is denoted in Fig. 1b, is the

displacement that originates from the position under the

natural length of the spring of the ith contact point, and fx
i is

the local friction force that acts on the contact between the

ith contact point and the counter face. The relationship

between fx
i and ui is illustrated in Fig. 1c, where li is the

threshold displacement for the onset of the transition from

static to kinetic friction at each contact point. Considering

that the maximum static friction force is described as

fsmax
i = lsfz

i, where ls is the static friction coefficient, li can

be formulated as lsfz
i/ki. Thus, fx

i is described by:

f ix ¼
f is ¼ kiui when in the stick state; i:e:; ui\li

f ik when in the slip state; i:e:; ui � li

�
: ð2Þ

Here, li = lsfz
i/ki. On the other hand, in the slip state, the

local kinetic friction force fk
i is described as fk

i = lkfz
i ,

where lk is the kinetic friction coefficient. This study does

not consider the velocity dependence of the kinetic friction

coefficient and assumes that ls[lk. Here, the total tan-

gential force, Fx, was determined by the sum of the local

friction forces; thus,

Fx ¼
X

f ix ¼ �fsNstick þ �fkNslip; ð3Þ

Fig. 1 Schematic diagram of the analytical model
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where �fs and �fk are the averaged values of fs
i and fk

i of the

contact points under stick and slip states, respectively. In

addition, Nstick and Nslip are the number of masses under

stick or slip states, respectively. Here, Nstick ? Nslip = N. It

should be noted that in this study, for a simple description,

the term ‘‘static friction force’’ is used in referring to

‘‘maximum static friction force.’’

The four types of tangential loading sequences focused

on in this study are illustrated in Fig. 2, in which time

changes in the driving velocity V of the moving counter

face are shown. In all cases, the loading sequence includes

three loading periods (LPs), 1st LP, 2nd LP, and 3rd LP,

and two stopping periods (SPs). During the SP, V = 0. For

example, in the SR–SR motion (Fig. 2a), during all LPs,

V has a positive value. In contrast, in the SR–SI motion

(Fig. 2b), in the first and second LPs, V is positive; while in

the third LP, V is negative. In addition, in Fig. 2, two

different types of basic motions (SI motion and SR motion)

are included in the four loading sequences and are repre-

sented using large color arrows. Here, ‘‘SR motion’’ refers

to the stop–restart motion, in which the sign of V does not

change before or after the SP. In contrast, ‘‘SI motion’’

refers to the stop-inversion motion, in which the sign of

V changes before and after the SP. Therefore, for example,

the SR–SR motion includes two SR motions, and the SI–SI

motion includes two SI motions, as illustrated in Fig. 2.

3 Results

Figure 3 shows calculation results under four types of

loading sequences: (a) SR–SR, (b) SR–SI, (c) SI–SR, and

(d) SI–SI motions. Based on the above descriptions, time

changes in driving velocity (V), total tangential force (Fx)

calculated by Eq. (3), and the ratio of the mass number

under stick condition Nstick on the total mass number

(N) are presented. The gray bands between the first and

second LPs and between the second and third LPs depict

Fig. 2 Schematic illustration of

the four types of tangential

loading sequences considered in

this study

cFig. 3 Time changes in V (top), FX (middle), and Nstick/N (bottom)

under the SR–SR, SR–SI, SI–SR, and SI–SI motions: Fz = 10 N,

K = 1 N/lm, ls = 1.0, lk = 0.5, N = 1000, kK = 0.1, and

kFz = 0.1
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the SP, where V = 0 mm/s. The top graphs in Fig. 3 cor-

respond to the illustration in Fig. 2. The calculation con-

ditions are as follows: Fz = 10 N, K = 1 N/lm,

V = 0.1 mm/s, ls = 1.0, lk = 0.5, N = 1000, kK = 0.1,

and kFz = 0.1.

From the middle graph in Fig. 3a, it was found that in

the SR–SR motion, the first static friction force Fsmax
1st ,

which is defined as the maximum value of Fx during the

first LP, is lower than Fsmax
2nd and Fsmax

3rd ; thus,

Fsmax
1st \Fsmax

2nd = Fsmax
3rd . Similarly, in the other three load-

ing sequences, depicted in Fig. 3b–d, Fsmax
2nd and Fsmax

3rd do

not equal Fsmax
1st . The changes in Fsmax due to the change in

the tangential loading sequence are summarized in Fig. 4.

It should be noted that the vertical axis in Fig. 4 represents

the absolute values of static friction force, i.e., |Fsmax|. It is

clear that after the SR motion, |Fsmax| increases from its

value at the first LP; while after the SI motion, it decreases

from its value at the first LP. Therefore, it was determined

that Fsmax depends on the type of tangential loading

sequence. The mechanism of the effect of the tangential

loading history on static friction force will be discussed in

the following section.

The bottom graphs in Fig. 3 show the changes in Nstick/N.

At the initial condition when time is 0 s, Nstick/N is unity

because all of the contact points are under the stick state.

After the onset of the driving motion, Nstick/N decreases

with time, and then, reaches a zero value when global slip

is established. The values of Nstick/N when Fx = Fsmax
1st ,

Fx = Fsmax
2nd , and Fx = Fsmax

3rd are also depicted in Fig. 3.

Comparing with each of the loading sequences, it was

found that during the SR motion, Nstick/N at Fx = Fsmax
2nd , or

Fx = Fsmax
3rd increases from the value at Fx = Fsmax

1st ; while

during the SI motion, they decrease from the values at

Fx = Fsmax
1st . For example, in the SR–SI motion (Fig. 3b),

during the SR motion, Nstick/N at Fx = Fsmax
2nd is 0.95, but

during the SI motion, Nstick/N at Fx = Fsmax
2rd is 0.78. As

formulated in Eq. (3), the value of the macroscopic tan-

gential force, Fx, is characterized by Nstick and Nslip, where

Nslip = N - Nstick. Here, Nstick is described using a prob-

ability distribution function of the threshold length, l, i.e.,

P(l),

Nstick ¼ N

Z1

U

PðlÞdl; ð4Þ

where U is the macroscopic sliding distance (displace-

ment), and
R1
0

PðlÞdl ¼ 1: From Eq. (4), it is obvious that

the magnitude of the dispersion of the threshold length

distribution characterizes the value of Nstick at the macro-

scopic sliding distance U, and it determines the value of Fx.

Therefore, considering that the magnitude of static friction

force is characterized by the value of Nstick/N, as shown in

Fig. 3, it was found that the coherence of the threshold

length, l, is an important factor for determining the

macroscopic static friction force. The role of the coherence

on friction has been already pointed out in the reference in

[14], based on the theoretical analysis. Thus, the static

friction force of the slider with a relatively high coherence

of the threshold length is larger than that with a low

coherence slider.

4 Discussion

We considered the mechanism of the effect of tangential

loading history on static friction force. From the above

discussion, it was found that the threshold length distri-

bution, i.e., P(l), affects the magnitude of the static fric-

tion force. Therefore, in this section, we focused on the

changes in P(l) during the tangential loading sequences.

Here, we again define the threshold length for the onset of

the transition from static to kinetic friction. When the

spring ki is perfectly relaxed before applying tangential

loading, li can be described by lsfz
i /ki, as denoted in Fig. 1.

However, in many cases, a certain strain is stored in the

contact interface before tangential loading, i.e.,

lresidual
i

= 0 and li = lsfz
i /ki. Therefore, the effective

Fig. 4 Changes in static friction force during three loading periods in the

SR–SR, SR–SI, SI–SR, and SI–SI motions: Fz = 10 N, K = 1 N/lm,

ls = 1.0, lk = 0.5, N = 1000, kK = 0.1, and kFz = 0.1
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threshold length, leffective
i , which varies with time during

tangential loading sequence, should be defined as

lieffective ¼ lsf
i
z=k

i � liresidual: ð5Þ

Here, it is clear that the value of lresidual
i at the jth loading

period (LP) is determined by the kinetic friction force at

the j - 1th LP because during the SP, the strain of the ith

spring for the kinetic friction that is applied during the

j - 1th LP is stored for the jth LP. Thus, lresidual
i at the

second LP is determined by the value of fk
i at the first LP,

and lresidual
i at the third LP is determined by the value of fk

i

at the second LP. On the other hand, lresidual
i at the first LP

is zero value because no residual strain is stored before the

start of the first tangential loading. Consider that after the

SR motion the sign of fk
i does not change; while after the SI

motion, fk
i after the SP is the opposite sign as before the SP,

lieffective
�� �� ¼

lsf
i
z

ki
at 1st LP

lsf
i
z

ki
�
lkf

i
z

ki
at SRmotion

lsf
i
z

ki
þ
lkf

i
z

ki
at SImotion

8>>>>><
>>>>>:

: ð6Þ

Using the following relationship:

liini ¼
lsf

i
z

ki
; ð7Þ

Equation (6) can be written as

lieffective
�� �� ¼

liini at 1st LP

liSR ¼ liini 1� lk
ls

� �
at SRmotion

liSI ¼ liini 1þ lk
ls

� �
at SImotion

8>>>><
>>>>:

: ð8Þ

From Eq. (8), the changes in the effective threshold

length, leffective
i , during the tangential loading sequence

were quantified. Thus, the changes in the distribution of

leffective
i during the changes in tangential loading sequence

are characterized by the factor lk/ls.
Figure 5 shows histograms of the distributions of

leffective
i , which were calculated using Eq. (6). The black,

dark gray, and gray bars represent leffective
i distributions for

the SR, initial, and SI motions, respectively. It is obvious

that the dispersion of leffective
i for the SR motion is smaller

than that at the initial motion. In contrast, the dispersion for

the SI motion is larger than that at the initial motion. In this

study, it is assumed that a probability distribution function

at the initial motion Pini(leffective) can be described by using

the Gaussian function. Therefore, Pini(leffective) is deter-

mined by a fitting process as

Pini leffectiveð Þ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2effective

p exp � leffective � leffective cð Þ2

2r2effective

 !

¼ Affiffiffiffiffiffiffiffiffiffiffiffi
2pr2ini

p exp � lini � lini cð Þ2

2r2ini

 !
;

ð9Þ

where A and rini are fitting parameters, which were

determined to be A = 512, and rinitial = 1.45 lm. In

addition, it is assumed that the center value of the distri-

bution lini_c is lini_c = lkFz/K. Here, from Eq. (8), the

following relationships are obtained: lSR
i = lini

i (1 - lk/ls),
lSR_c = lini_c(1 - lk/ls), lSI

i = lini
i (1 ? lk/ls), and

lSI_c = lini_c (1 ? lk/ls). Therefore, the probability distri-

bution functions at the SR and SI motions, i.e., PSR(leffec-

tive) and PSI(leffective), are described as

PSR leffectiveð Þ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2SR

p exp � lSR � lSR cð Þ2

2r2SR

 !
ð10Þ

and

PSI leffectiveð Þ ¼ Affiffiffiffiffiffiffiffiffiffiffi
2pr2SI

p exp � lSI � lSI cð Þ2

2r2SI

 !
; ð11Þ

where rSR = rini(1 - lk/ls) and rSI = rini(1 ? lk/ls).
The black and gray curves for the SR and SI motions in

Fig. 7 are based on Eqs. (10) and (11), respectively. Con-

sidering that the magnitude of the static friction force is

determined by the coherence of the threshold length dis-

tribution, which is characterized by rini, rSR(=rini(1 - lk/
ls)), and rSR(=rini(1 ? lk/ls)), it was determined that the

factor lk/ls is an important factor for determining the

magnitude of the changes in static friction force due to the

existence of SR or SI motions.

In order to quantify the magnitude of the tangential

loading history dependence of static friction force, the

following parameters are defined:
Fig. 5 Histograms for threshold length. Black bars SR motion, dark

gray bars initial motion, and gray bars SI motion
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vSR ¼ DFx SR

DFx ini

ð12Þ

and

vSI ¼
DFx SI

DFx ini

; ð13Þ

where the meanings of DFx_ini, DFx_SR, and DFx_SI are

illustrated in Fig. 6. Here, it should be noted that the ver-

tical axis of Fig. 6 represents the absolute value of Fx.

When vSR has a large value, the static friction force largely

increases because of the SR motion. On the other hand, a

small vSI means that a large decrement of static friction

force due to the SI motion occurs.

Figure 7 shows the relationship between vSR or vSI and
the factor lk/ls under different kK and kFz. From the figure,

it is seen that vSR (or vSI) monotonically increases (or

decreases) as lk/ls increases. This indicates that when lk
has a relatively large value, a large effect of the tangential

loading history on static friction force is observed. In

contrast, in the case for lk = 0, the tangential loading

history dependence of static friction force is not observed.

It is easily understood from Eq. (6); when lk = 0, the

value of leffective
i does not change during the tangential

loading sequence. Thus, the value of static friction force

does not depend on the type of tangential loading sequence.

In addition, from Fig. 7, it was found that when the dis-

persion of the local tangential stiffness and local normal

load has large values, there is a large tangential loading

history dependence.

From Fig. 7, it was also found that a macroscopic static

friction force depends not only on local static friction force

but also on local kinetic friction force. As described in

Eq. (3), the change in total tangential force, Fx, includes

local static friction force, fs, and also the local kinetic

friction force, fk. Therefore, the optimization of kinetic

friction force is one of the options for designing the

macroscopic static friction. Thus, it was found that the

development process of micro-slip that occurs prior to

global slip, which characterizes the changes in Nstick and

Nslip during tangential loading, is an important factor for

determining the static friction force. In addition, this study

newly presents the finding that static friction force can be

adjusted by controlling surface topography focusing on the

coherence of the distribution of threshold length.

The analytical model used in this study is based on the

Amonton–Coulomb friction laws; thus, friction coefficients

do not depend on normal load, and kinetic friction force is

Fig. 6 Definitions of DFx_ini,

DFx_SR, and DFx_SI used in

Eqs. (12) and (13)

Fig. 7 Relationships between

a vSR and lk/ls and b vSI and
lk/ls under different kK and kFz;
Fz = 10 N, K = 1 N/lm,

ls = 1.0, lk = 0.5, and

N = 1000
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constant for the change in sliding speed. However, in the

case of friction in polymers, the Amonton–Coulomb fric-

tion laws are not even broadly applicable. The friction

coefficients depend on normal load, sliding speed, and

other conditions [15, 16]. Therefore, the magnitude of the

effect of the tangential loading history on static friction

force will depend on a number of conditions, including

sliding speed, normal load, temperature, and surface

roughness.

Similar to the case of the effect of tangential loading

history on static friction force, the effect of normal loading

history on static friction force has been discussed [17–19].

The essence of the normal and tangential loading history

dependence is the same; static friction force is character-

ized by the magnitude of the initial strain distribution,

which affects the development process of micro-slip and

also characterizes the macroscopic static friction force.

Therefore, the control of the micro-slip propagation,

focusing on the tangential or normal loading sequence, can

design macroscopic static friction force. Finally, it is noted

that, as presented in the previous research [20], the tan-

gential loading history dependence of static friction force

can be observed in another sliding system, in which a

continuous sliding interface is considered instead of the

split contact interface.

5 Conclusions

Through numerical analysis, tangential loading history

dependence of static friction force was discussed, focusing

on the sliding friction between an elastic slider with a split

contact interface and a rigid flat surface. Consequently, it

was found that the existence of the stop–restart (SR)

motion works to increase static friction force compared to

the static friction force under nonresidual surface strain

conditions. In contrast, the SI motion reduces static friction

force compared to that under no surface strain conditions.

In addition, it was found that the coherence of the distri-

bution of threshold length for the onset of transition from

static to kinetic friction at each contact point characterizes

the magnitude of the effect of tangential loading history on

static friction force. Furthermore, the ratio of kinetic fric-

tion coefficient on static friction coefficient also charac-

terizes the tangential loading history effect. Therefore,

when kinetic friction coefficient has a relatively large

value, a large tangential loading history effect is observed.

Because the SR and SI motions are basic behaviors in

many sliding systems, the effect of the tangential loading

history on static friction force is an important consideration

for improvements in the capabilities of systems that have

sliding interfaces.
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