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Abstract Tribology is concerned with the influence of

mechanically applied forces on interfacial phenomena that

accompany and control sliding. A wide range of models

has been developed to describe these phenomena, which

include frictional dissipation, wear and tribochemical re-

actions. This paper shows that these apparently disparate

models are based on the same fundamental concept that an

externally applied force accelerates the rate of thermal

transition of atoms or molecules across energy barriers

present in solid and liquid materials, thereby promoting

flow, slip or bond cleavage. Such ‘‘stress-assisted’’ effects

and the associated thermal activation concepts were de-

veloped independently and in different forms by Prandtl (Z

Angew Math Mech 8:85, 1928) and Eyring (J Chem Phys

4(4):283–291, 1936). These two works have underpinned

subsequent theories of dry friction, boundary lubrication,

EHD rheology, tribochemistry and nanoscale wear mod-

elling. This paper first reviews the historical development

of the concepts, focussing in particular on the models of

Prandtl and Eyring and how they have subsequently been

used and adapted by others. The two approaches are then

compared and contrasted, noting that although superficially

similar, they contain quite different assumptions and con-

straints. First, the Prandtl model assumes that the force is

exerted through a compliant spring, while constant force

sliding is assumed by Eyring. Second, different ap-

proximations are made in the two models to describe the

change in energy barrier with external force. Prandtl ex-

plores the asymptotic behaviour of the energy barrier as the

applied force become sufficiently high to reduce it to zero,

while Eyring assumes that the energy barrier is reduced by

an amount equal to the external work carried out on the

system. The theoretical underpinnings of these differences

are discussed along with the implications of compliant

coupling and constant force sliding on the velocity and

temperature dependence of the friction forces for the two

models.

Keywords Prandtl friction model � Eyring viscosity

model � Wear � Fracture � Tribochemistry

1 Introduction

Tribology is concerned with the influence of mechanically

applied forces on interfacial phenomena that accompany

and control sliding, including frictional dissipation, wear

and tribochemical reactions. A wide range of models has

been developed to describe these phenomena. Fundamen-

tally, however, they all aim to understand the way in which

an external force affects the state of a solid or liquid at a

sliding interface, so that the underlying principles of these

models are essentially identical, although often framed in

somewhat different language. The aim of this paper is to

highlight the commonality between many apparently dis-

parate tribological models that are used to describe dry

friction, boundary friction, elastohydrodynamic friction,

wear and tribochemical reactions.

The equilibrium state of a material and the associated

thermodynamic potentials (enthalpy, entropy, Gibbs free

energy, etc.) can be calculated from first principles using
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statistical thermodynamics [3]. Much of physics and

chemistry is concerned with the way in which the equi-

librium state is modified by the application of some ex-

ternal potential, for example an electric field, pressure or

change in chemical potential. In the case of relatively small

perturbations, the change is completely reversible; removal

of the external potential restores the initial, unperturbed

state and can be modelled by non-equilibrium thermody-

namics [4] or perturbation theory [5]. In case of external

forces acting on solid materials, the mechanical response is

expressed by the elastic moduli.

In many cases of interest, particularly for sliding in-

terfaces, the mechanical forces are sufficiently large that

the initial, equilibrium state is driven over some meta-

stable state into another configuration. This was first re-

alised by Prandtl in 1928 in the context of crystal

plasticity, although he pointed out that similar concepts

would apply equally well to sliding interfaces [1]. In 1929,

Tomlinson developed a very similar concept based on

inter-atomic forces, which was directed specifically at

explaining sliding friction [6]. The combined approach is

now widely known as the Prandtl–Tomlinson model. The

energy of this metastable state is known in chemical re-

action rate theory as the activation energy DHz. The rate

at which a system can surmount this energy barrier at

some temperature T depends on the proportion of the

system that has an energy higher than DHz. At equilibri-
um, this is given by a Boltzmann energy distribution,

which yields a transition rate over the barrier that is pro-

portional to Ae
�DHz

kBT , where kB is the Boltzmann constant,

and A is a pre-exponential factor with units of seconds-1

and can be thought of as an attempt frequency. The central

concept in describing the effect of an external force on the

rate of the process is to realise that the external force F can

carry out work W(F) on the system to reduce the activation

barrier from DHz to DHz �WðFÞ, thereby increasing the

rate at which the system transits the barrier in the direction

of the applied force by a factor e
WðFÞ
kBT . The same principle

was also exploited by Eyring in the development of a

model of liquid viscosity in 1936 [2]. It should be em-

phasised that the process is still thermally activated but

that the external force reduces the energy barrier that must

be surmounted. Consequently, they will be referred to in

the following as stress-assisted effects.

The goal of this paper is to point out that this concept, in

various guises, has been used to describe a wide range of

tribological phenomena and to compare the approaches

used. While similar effects will occur in general under the

influence of an external force, such as when pulling to

cause bond scission, or fracture, we restrict our discussion

primarily to those phenomena that occur under the

influence of a shear force that is parallel to the contacting

interface imposed during sliding.

The discussion of shear-assisted effects is divided into

two general classes: (1) those processes in which the final

state, after having transited the energy (activation) barrier,

is degenerate with the initial state, and (2) those for which

it is not. When the initial and final states are degenerate, no

structural evolution of the system will have occurred after

transit of the energy barrier, only energy dissipation. In this

case, the applied force is just the friction force. However, if

the final state energy differs from the initial state, this must

be accompanied by a structural evolution, such as occurs

during wear or a chemical reaction.

The paper is divided into two parts. In the first, we adopt

an historical approach to describe how the ideas proposed

by Prandtl and Eyring described above have been devel-

oped and applied, first to degenerate and later to non-de-

generate tribological processes. Here, we preserve the

original notation used for each approach and point out

when different symbols are used to describe similar pa-

rameters. They are also tabulated (see Table 1) for

convenience.

In the second, Discussion part of the paper, the ap-

proaches of Prandtl and Eyring are compared and con-

trasted, in particular their respective treatments of the

effect of applied force on the energy barrier. The first

significant difference is that Prandtl assumes that the force

is coupled elastically, while Eyring assumes a constant

force. Prandtl’s approach is especially applicable to the

analysis of AFM friction (the Prandtl–Tomlinson model)

since the AFM tip can be considered as a moving contact

constrained by an elastic cantilever, while constant force

sliding is relevant to macroscopic interfaces. The second

difference lies in the fact that the problem of calculating

the change in energy barrier as a function of the external

force cannot be solved exactly, even for a simple sinusoidal

energy profile. This requires the use of approximate solu-

tions that are different in the Prandtl and Eyring models.

Treatments are presented to compare both elastic and

constant force sliding and the approximations used to cal-

culate force-dependent energy barriers and their applica-

tion to both the Prandtl–Tomlinson friction and Eyring’s

viscosity models and the models that derive from them.

2 Degenerate Initial and Final States: Friction
Forces

2.1 Prandtl–Tomlinson Model for Sliding Friction

In 1928, Prandtl developed a model of crystal plasticity [1]

based on the forces experienced and consequent motion of
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a point mass constrained in an elastic surface as this surface

slides across the periodic force field created by the particles

in a parallel counter-surface. Although intended primarily

to model plastic deformation, in last few paragraphs of his

paper Prandtl also briefly noted its applicability to sliding

friction. This remarkable paper will be outlined in some

detail since, together with Eyring’s work to be described in

the next section, it underpins, or at least anticipates most

modern attempts to model sliding friction.

Prandtl’s paper is effectively divided into two parts. In

the first, he shows that for incommensurate surfaces, the

combination of attractive and repulsive forces acting on

individual point masses (atoms) can lead to instability in

their sliding motion as they pass over potential barriers, so

that they jump from one stable state to another, producing a

consequently irreversible, energy-dissipating process.

Prandtl illustrates this behaviour using the experimental

model shown in Fig. 1.

Here, a flat substrate (A) moves horizontally and is at-

tached through two springs (F1 and F2) to a heavy roller

(M), which represents an elastically constrained point

mass. The substrate can be moved horizontally (a distance

n in the ± x directions) against another straight edge

(B) that has an undulating surface to represent the periodic

potential. To represent the motion that occurs when the

slider A moves, the roller M is attached by a cord S via two

pulleys, to a weight G. The pulleys are rigidly attached to

the slider A. An arm with a pointer Z is attached to the

weight G to plot out curves used to analyse the model,

presumably, in 1928 by attaching a piece of chalk to the

pointer. The horizontal motion of the pointer corresponds

to the rigid displacement of the sliding substrate A.

Now, as the slider moves, it pulls the mass M some

distance X, such that the weight G moves vertically a

distance (X - n). If the combined force constant of the

springs is k, then the restoring force is -k(X - n) so that

the vertical displacement in the Prandtl machine corre-

sponds to the force acting on the system. Initially, motion

of the slider A produces a restoring force that increases as

the slider is displaced, resulting in a stable region where the

force on the springs is balanced by the restoring force of

the mass M on the slope.

However, when the force field is relatively strong and

the elastic constraint weak, there is a point of instability

when the mass jumps from one position to another as il-

lustrated by the blue downward pointing arrow in Prandtl’s

force–displacement curve shown in Fig. 2.

Reversing the motion will cause the curve to trace along

the lower stable position until it reaches the inflection point

once again, to move back to the original stable position

along the red upward pointing arrow. Accordingly, there is

a metastable (labil) region between the two points. In the

regions between these two points, during displacement n

Fig. 1 Depiction of the Prandtl machine, reproduced with permission

from [1]

Table 1 List of symbols used

in the various models discussed

above

This work Prandtl

[1]

Eyring

[2]

Schallamach

[22, 23]

Briscoe

[19]

Zhurkov

[28]

Activation barrier height (J) Eo U Ea E Q0 Uo

Periodicity (m) a l k – b –

Sliding velocity (m/s) v c DV u v –

Critical distance (m) x*, d a k/2 c / (vol.) c (vol.)

Critical force (N) F* Pmax – – – –

Transition time (s) – s – s0 – s0
Attempt frequency (s-1) fo – k1 – m –

Fig. 2 Force–displacement curve from the Prandtl machine, adapted

with permission from the Prandtl paper [1]

Tribol Lett (2015) 59:21 Page 3 of 14 21

123



from C to C’, for example, there are three equilibrium

states, F0, F00 and F000, two of which are stable. The energy

of the system at some point is rFðnÞdn and is therefore

given by the area under the curve.

Prandtl applied this model to explore hysteresis effects

in inelastic stress–strain behaviour, but it can also be

considered as explaining the origins of dissipative sliding

friction. However, the above explanation of sliding friction

represents only the first of Prandtl’s innovations. In the

second part of his 1928 paper, he then considers what he

refers to as ‘‘time effects’’ by coupling the influences of

both thermal and mechanical effects to predict the move-

ment of atoms over the energy barrier and thus the rate of

deformation or sliding. Prandtl recognised that, as atoms

are forced up the ‘‘stabil’’ part of the force–distance curve

shown in Fig. 2, there is an increasing probability that they

will possess enough thermal energy to surmount the re-

mainder of the barrier without further application of force.

In Fig. 2, if the slider is displaced to position F’, it will

require further energy U, the area under the curve to the

right of F0F00 and shown as the shaded, grey area, to tran-

sition to F00. The probability W of thermally undergoing

this transition is W / e
� U

kBT (Prandtl actually used the term

Um, ‘‘the average value of the oscillatory energy of the

particle’’ in place of kBT).

Prandtl then considers a large ensemble of particles at

one position n, with fraction l in the upper position (see

Fig. 2) and (1 - l) in the lower position, and assumes a

transition time, s, which he suggests is of the same order of

magnitude as the period of oscillation of the particles.

Thus, the rate of increase in the fraction of particles in the

upper position is simply the rate of transfer from lower to

upper positions minus the rate of transfer from upper to

lower, where the positions are shown in Fig. 2, i.e.

dl
dt

¼ 1

s
ð1� lÞe�

U2
kBT � le�

U1
kBT

� �
ð1Þ

U1 is the energy needed to reach the unstable position from

the upper position, and U2 is that needed from the lower

position, so the equation considers forward and reverse

motions. For a steady rate of deformation (or sliding speed

in the case of friction), dl/dt can be replaced by dl/dx.dx/
dt, so Eq. 1 becomes:

dl
dx

¼ 1

sc
1� lð Þe�

U2
kBT � le�

U1
kBT

� �
ð2Þ

where c is the deformation rate or sliding speed, dx/dt.

Solution of Eq. 2 requires expressions for the variation

of the values of U1 and U2 with displacement. Prandtl notes

that for a sinusoidal sliding potential, the balance between

the elastic force (proportional to x) and the gradient of the

potential (a sinusoid) leads to a transcendental equation. He

thus makes two alternative simplifying approximations. In

the first, he expands the shaded area in Fig. 2 as a Taylor

series as a function of x to give U1

kBT
¼ A� Bx and

U2

kBT
¼ Aþ Bx. Even with this extreme simplification, Eq. 2

could only be solved if the first term was considered neg-

ligible, giving 1
l
dl
dx
¼ � e�A

cs e
Bx. Prandtl integrates this ex-

pression twice, first to determine lðxÞ ¼ e
� 1

Bcse�Ae
Bx

and then

over the ‘‘stabil’’ region from x = 0 to a, where a is the

value of x at the critical position where spontaneous sliding

occurs, to determine the total force required to provide a

constant deformation rate c. He obtains a relationship be-

tween the applied force P and the deformation rate or

sliding speed c of the form:

P ¼ Pmax

aB
lnðcÞ þ Aþ lnðBsÞ � 0:5772ð Þ ð3Þ

where Pmax is the applied force at which spontaneous

sliding occurs. The constant -0.5772 originates from the

integration process and is the value of
R 1

0
lnð� lnlÞdl.

As will be seen in this review, and indeed as Prandtl

notes, this linear logarithmic form is characteristic of the

relationship between force and speed for many sliding

contacts.

Prandtl also proposes a more accurate asymptotic ap-

proximation for U(x) by approximating the shaded area in

Fig. 2 as a parabola. Then the forces F at positions F0 and

F00 in Fig. 2 can be written as (a–x)¼ F xð Þ2
a2 , where a is a

constant. Putting a – x = y and integrating give:

U ¼
Z

FðxÞdx ¼ ary1=2dy ¼ 2

3
aðx� aÞ3=2 ð4Þ

Assuming that U = kT at a point from the transition given

by a – x = b gives a more convenient formula for U as:

U
kBT

¼ a�x
b

� �3=2
.

This can be substituted into the above rate equation and

integrated directly as:

ln lðxÞ ¼ � 1

cs

Zx

�1

e�
a�x0
bð Þ3=2dx0 ð5Þ

This integral cannot be solved exactly, but Prandtl provides

a series solution.

Prandtl also discusses the impact of temperature on

deformation rate according to his model and notes that his

assumption of a parabolic form of U(x) predicts that the

applied force to give constant deformation, or sliding rate,

will decrease with temperature according to:

P ¼ a1 � a2T
2=3 ð6Þ

Prandtl’s model outlined above received relatively little

attention until the 1990s. Unfortunately, its approach,

which involves integration of the probability of transition
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twice, both locally and over the approach distance, pre-

cludes many analytical solutions. Prandtl could show that

applied force varies linearly with deformation rate at high

temperatures and low rates and that it varies logarithmi-

cally at high applied forces, when the reverse term in Eq. 2

can be neglected. But in the absence of numerical com-

puters in 1928, further solution was not practicable.

However, with the growth of interest in nanotribology in

the 1990s, the significance of Prandtl’s ‘‘time effects’’ in

describing the impact of both sliding speed and tem-

perature on dry friction was recognised. Since then,

Prandtl’s approach has been very widely employed to

analyse friction in atomic force microscopes (AFMs)

[7–11], while Müser has argued its application to model the

sliding between two confined liquid layers at high pressure

[12].

2.2 Eyring Model for Viscosity and Shear Thinning

of Liquids

Early models of liquid viscosity were based on the mo-

mentum transfer concepts used to explain gas viscosity, but

these were not realistic for dense fluids. In 1936, Eyring

developed a molecular model of liquid viscosity based on

activated flow [2]. He started from the transition state

theory of absolute reaction rates that he developed in the

preceding year to model chemical kinetics [13] and con-

sidered liquid flow as a unimolecular, ‘‘chemical’’ reaction

in which the elementary process is a molecule passing from

one equilibrium position to another, identical state over an

energy barrier [2, 14]. A molecule moves approximately

one molecular distance k into a neighbouring hole in the

liquid as shown in Fig. 3a. If no external force is applied,

the rate k at which a molecule transits the energy barrier

and hence moves in either direction is given by:

k ¼ Re�Ea=kBT ð7Þ

where Ea is the thermal activation energy for flow and

R is a pre-exponential factor that depends on the ratio

of the partition functions of the activated and initial

states.

When a shear force is applied, this has the effect of

lowering the effective activation energy for a flow process

in the direction of the force and increasing it in the reverse

direction, as shown in Fig. 3b. Eyring assumed that the

energy barrier is raised and lowered by the work done in

moving the molecule to the midpoint of the energy barrier

(the transition state), i.e. Fk/2, where F is the applied shear

force on the molecule and k/2 is the distance the molecule

moves.

The specific flow rates in the forward and backward

directions, kf and kb, are therefore given by:

kf ¼ Be� Ea�Fk=2ð Þ=kBT ¼ keFk=2kBT ð8Þ

and

kb ¼ Be� EaþFk=2ð Þ=kBT ¼ ke�F=2kBT ð9Þ

Since each time that a molecule passes over a potential

barrier it moves a distance k, the rate of motion of

the molecule relative to the neighbouring layer DV is given

by:

DV ¼ kk kf � kbð Þ

¼ kk eFk=2kBT � e�Fk=2kBT
� �

¼ 2kk sinh
Fk
2kBT

� � ð10Þ

The shear rate is given by the difference in velocity divided

by the spacing between layers, k1, while Eyring equates the

shear force, F, on the molecule to the shear stress, f, by

F = fk2k3 where k2 and k3 are the lengths of the molecule

(or flow unit) in the direction of applied force and the

transverse direction, respectively. This gives:

_c ¼ DV
k1

¼ 2kk
k1

sinh
fk2k3k
2kBT

� �
ð11Þ

The effective viscosity is the shear stress divided by the

strain rate:

Fig. 3 Schematic description of

the Eyring model for viscosity

[14, 15]. Reprinted with

permission from [15]. Copyright

1940 American Chemical

Society
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ge ¼
f

_c
¼ fk1

2kk sinh fk2k3k
2kBT

� � ð12Þ

At low shear stresses, when f � kBT/k2k3k, sinh
fk2k3k
2kBT

� �
¼

fk2k3k
2kBT

so the (Newtonian) viscosity is given by:

gN ¼ kBTk1
kk2k3k

2
ð13Þ

Eyring then expanded the thermal rate constant k to

obtain an expression for viscosity in terms of free volume

and enthalpy of vaporisation. Eyring found that for liquids

comprising approximately spherical molecules, Eq. 13

predicted the measured Newtonian viscosity quite closely

based on k1, k2, k3 being the dimensions of the molecules,

but that it predicted too low a viscosity for polymeric

molecules [15]. He suggested that this was because in the

latter case the flow unit was only a segment of the mole-

cule. Subsequently, the model was modified to take ac-

count of elongated molecules, molecular aggregates, high

polymer melts and by assuming multiple flow units with

different properties, polymer solutions and colloids [14].

Eyring’s model of liquid viscosity has, to some extent,

been superseded by more complex models, although it has

recently been applied to predict the energy of vaporisation

and thus the volatility of lubricants from their viscosities

[16]. However, his model had an important ‘‘by-product’’

in that it provided the first molecular-based model of shear

thinning (pseudoplastic) behaviour of liquids, where, at

high shear stresses, the ratio of shear stress to strain rate

decreases reversibly with increasing shear stress. Substi-

tuting Eq. 13 into Eq. 11 and replacing Eyring’s shear

stress, f, by the more modern terminology, s, gives:

_c ¼ 2kBT

gNk2k3k
sinh

sk2k3k
2kBT

� �
ð14Þ

If we set 2kBT=k2k3k = se, the ‘‘Eyring stress’’, this be-

comes the nonlinear relationship between stress and strain:

_c ¼ se
gN

sinh
s
se

� �
ð15Þ

In the decade or so after it was developed, this equation

was applied with varying degrees of success to describe the

shear thinning properties of polymer melts, solutions and

colloids, for which, being a model based on simple, quasi-

spherical molecules, it was arguably not suited [17].

Eventually, it was superseded for this purpose by network-

based models of shear thinning.

However, since the 1970s, the Eyring sinh-based rela-

tionship between strain rate and shear stress has become

very widely used to describe the shear stress/strain rate

behaviour of liquid lubricant films in high-pressure

elastohydrodynamic (EHD) contacts and thus the frictional

properties of such contacts [18]. In EHD lubrication, the

extremely high local pressures within the lubricated contact

result in a very large viscosity increase which, at high

strain rates, gives rise to very large shear stresses. Under

these conditions, even simple molecular liquids show ex-

tensive shear thinning. It is found that EHD friction (or

mean shear stress) versus strain rate closely follows an

‘‘arsinh’’ relationship over a wide range of shear rates, in

accord with Eq. 15. At very high shear stresses, this results

in friction being proportional to log(strain rate).

Although Eyring’s model was developed to describe

liquid viscosity, essentially it describes the sliding speed/

shear stress relationship between layers of molecules. As

such, it was adapted by Briscoe and Evans in 1982 to in-

terpret boundary friction between opposing Langmuir–

Blodgett monolayers in a surface force apparatus [19].

They assumed that hydrostatic pressure will increase the

height of the energy barrier so that the sliding speed

becomes:

Du ¼ vb e� Q0þpX�s/ð Þ=kBT � e Q0þpX�s/ð Þ=kBT
� �

¼ 2vbe� Q0þpXð Þ=kBT sinh
s/
kBT

� � ð16Þ

where Q0 is the thermal activation barrier, m is the effective
vibration frequency of the sliding molecules, b is the dis-

tance across the energy barrier, / is the shear activation

volume, equivalent to Eyring’s kk2k3/2, and X also has

units of volume and is termed the pressure activation vol-

ume. At large applied shear stresses when er/ � e-r/, this

equation reduces to:

Du ¼ vbe� Q0þpXð Þ=kBTes/=kBT ð17Þ

or

s ¼ kBT

/
log

Du
vb

� �
þ 1

/
Q0 þ pXð Þ ð18Þ

so that the shear stress and thus the friction coefficient

depend on the logarithm of the sliding speed. Equation 18

also predicts that the shear stress increases linearly with

pressure and, since Du\ mb, decreases linearly with tem-

perature. Briscoe and Evans found good agreement be-

tween this equation and experimental measurements of

friction between monolayers of fatty acid soaps in glass/

mica contacts. Recently, Eyring’s model has been applied

in a very similar fashion to analyse friction behaviour of

grafted polymer surfaces in an AFM [20].

Most applications of Eyring’s model to sliding friction

have considered the forward flow process to dominate,

leading to a logarithmic dependence of friction on sliding

velocity. However, a recent study by Müser used molecular

dynamics simulation to predict dry friction over a very
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wide sliding velocity range and obtained an arsinh depen-

dence of shear stress on velocity extending down to low

sliding velocities [21]. Although Müser did not interpret

this explicitly in the context of the combined forward and

reverse transitions, similarity to the prediction of Eyring’s

model is striking.

2.3 Schallamach Model

In 1951, Schallamach developed a model to describe the

friction of rubber sliding on ground glass [22]. Like Eyring,

he interpreted sliding as an activated slip process whose

rate and thus the sliding velocity could be described under

high levels of tangential stress by:

v ¼ Ae�ðEþFcÞ=kBT ð19Þ

where F is the applied force and c is a constant. Schalla-

mach only considered the influence of mechanical stress in

the forward direction and thus predicted that the driving

force will increase logarithmically with the sliding velocity

as described above. He noted the similarity of his approach

to Eyring’s in his paper.

Experiments subsequently showed that, after initially

rising as log(speed), rubber friction could then decrease at

high speeds, and in 1963, Schallamach extended his model

to account for this [23]. He treated polymer sliding as a

process in which bonds between polymer molecules on the

contacting surfaces are continually formed and ruptured.

He retained Eq. 19 to describe the rate of bond rupture but

introduced a different and much shorter relaxation time for

bond reformation. At normal speeds, bonds effectively

reform immediately but, at very high sliding speeds, they

do not have time to reform, so the shear stress for slip and

thus the friction is reduced.

Schallamach’s approach has been used quite extensively

in recent years as the starting point for the development of

friction models for a range of sliding contact types. The

concept of sliding taking place due to motion of atoms or

molecular groups over energy barriers has been broadened

to consider sliding as resulting from the incoherent shear-

ing and reformation of nano-domains or ‘‘junctions’’ as a

surface moves against its counterface. Each junction is

stretched until it either breaks due to thermal excitation or

by external force.

In 2003, Drummond et al. applied Schallamach’s ap-

proach to model boundary lubrication and compared the

predictions with friction measurements of mica surfaces

lubricated by aqueous surfactant solutions [24]. In addition

to Schallamach’s (and Eyring and Prandtl’s) principle, that

applied force reduces the energy barrier, thus allowing

more rapid junction breaking, Drummond et al. also as-

sumed that all junctions will break when they reached a

critical elastic deformation. Mazuyer et al. have recently

applied Drummond’s model to the measured friction be-

haviour of solutions of two organic friction modifiers in

polyalphaolefin base fluid in a surface force apparatus [25].

3 Non-degenerated Initial and Final States:
Fracture, Tribochemical Reactions and Wear

3.1 Fracture Models

In 1941, Eyring and Tobolsky applied Eyring’s absolute

reaction rate model to describe the rupture and formation of

bonds between polymer chains and thus to the creep of

polymers [26]. In subsequent years, this was extended by

Coleman to describe polymer creep failure [27] and

Zhurkov to model the fracture properties of a wide range of

materials including metals, polymers and ceramics [28].

Zhurkov considered the fracture of a solid to be a time-

dependent process whose rate is determined by mechanical

stress and temperature and related the time to fracture to

the applied stress, r, in a form that will, by now, be fa-

miliar to the reader:

s ¼ soe
Uo�crð Þ=kBT½ � ð20Þ

where so is the reciprocal of the natural oscillation fre-

quency of atoms in the solid and Uo is the magnitude of the

energy barrier to break bonds in the solid. This barrier is

assumed to decrease linearly with applied load under ten-

sile stress r. Zhurkov’s Eq. 20, which neglects any bond

reformation process, was confirmed by experiments on

several metals and polymers. With the advent of fracture

mechanics, this approach was subsequently applied to

model crack propagation rate [29, 30].

3.2 Tribochemical Reactions and the Bell Model

Zhurkov’s equation was also used by Bell in 1978 to model

to adhesion of cells and the forces required to separate

them [31]. His model, often called the ‘‘Bell model’’, has

subsequently been quite widely adopted by researchers

concerned with the influence of external forces on chemical

bond breakage, i.e. the field of ‘‘mechanochemistry’’. In

this case, the effect of an external force F increases the

thermal reaction rate constant k0 to yield a rate constant

under the influence of a force k(F) as:

kðFÞ ¼ k0e
FDxz=kBT ð21Þ

where Dxz is the distance along the reaction coordinate

from the initial to the transition state. Much of this research

is concerned with the effect of tensional forces and is of no

direct relevance to tribology although it includes study of

the effect of applied stress on the rupture of linear polymers
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[32, 33], which has considerable application to permanent

shear stability of viscosity-modified lubricants.

3.3 Nanoscale Wear

Similar activation energy models have been used to de-

scribe dissolution [34] and nanoscale wear rates measured

in an AFM [35–38]. In these models, it is assumed that

small clusters of atoms are removed from the surface by the

AFM tip during sliding. The rate of atom loss due to wear

Catom�loss (in units of s-1) is assumed to be an activated

process and modelled using transition state theory:

Catom�loss ¼ C0 exp �DGact

kBT

� �
ð22Þ

where C0 is a pre-exponential factor (analogous to 1/s in

Eq. 1 and R in Eq. 7). The effect of a stress component r is

assumed to lower the activation barrier and is written as

DGact ¼ DUact � rDVact where DVact is the activation vol-

ume. This leads to an overall equation for the wear rate:

Catom�loss ¼ C0 exp �DUact

kBT

� �� 	
exp

rDVact

kBT

� �
ð23Þ

where DUact is an internal energy of activation. This pre-

dicts an exponential increase in nanoscale wear rate with

contact stress, r, and this has been found to be the case

experimentally for a number of systems. Fits to the data

allow DUact and DVact to be estimated leading to physically

reasonable values of DUact from * 0.35 to 1.0 eV (* 34

to 96 kJ/mol) and DVact varying from 37 to 350 Å3.

However, since this wear process is likely to be relatively

complex, it is difficult to relate the value of DVact, which

corresponds to some volume change from the initial to the

transition state, to some clearly identifiable physical

process.

4 Discussion

4.1 Comparison of Prandtl and Eyring Models

From the above, it can be seen that the original works of

Prandtl [1] and Eyring [2] underpin all subsequent devel-

opments in the field. While the general concepts used by

Prandtl and Eyring are similar in the sense that they both

describe the lowering of the barrier of a thermally activated

process by an external force, it is of interest to compare the

two models and see how they differ and the extent to which

they can be reconciled. It should be noted that in a recent

‘‘Retrospective’’ that accompanied their English translation

of Prandtl’s paper [39], Popov and Gray ascribed Eyr-

ing’s Eq. 10 directly to Prandtl, although without

explanation.

There appear to be three main differences between the

models. The most significant is that Prandtl combines the

sinusoidal potential of the counterface with the elastically

constrained ‘‘point mass’’ to obtain a new potential surface,

in effect allowing the work done on the point mass to

influence the shape of the energy barrier. His (A-Bx) ap-

proximation (Eq. 3) assumes that the combined energy

barrier decreases linearly with force 9 distance as the

force approaches the critical value at which the energy

barrier becomes zero. This is superficially similar to Eyring

who also assumes that the energy barrier reduces linearly

with the product of applied force and distance moved.

However, Eyring’s linear variation represents the work

carried out by the particle as it moves from the initial to the

transition state; the energy barrier itself does not distort.

This suggests that Eyring is most appropriate at relatively

low applied forces compared to the maximum.

The second difference, quite closely related to the first,

concerns the force experienced by a particle as it is driven

towards the energy barrier and thus the work done on this

particle. Prandtl assumes that the constraining force is

elastic and so varies linearly with displacement. This is

arguably appropriate for crystalline solids with short-range

attractive forces. By contrast, Eyring assumes that the force

is constant so that the work done is simply the product of

force 9 distance. This is perhaps appropriate to materials

with weaker, longer-range inter-particle forces, including

organic liquids. These two quite different assumptions are

analysed in detail later in this paper.

The third difference is that Prandtl assumes that sliding

results from the simultaneous, forced transition across an

energy barrier of many particles in a surface. He assumes

that these elastically constrained particles can, depending

on their thermal energy, undergo transition from all posi-

tions as they are forced up the energy barrier. This as-

sumption necessitates the use of a fraction term l in Eq. 1

along with the integration of this term to determine the

relationship between overall applied force and sliding

speed. By contrast, Eyring simply assumes that all particles

move the same distance from the bottom of a potential well

to the transition state, which corresponds to the mid-point

of the energy barrier. Eyring’s general approach is also that

adopted by Schallamach (Eq. 19) and Bell (Eq. 21) and for

fracture (Eq. 20) and nanoscale wear (Eq. 23) models. The

simplicity of Eyring’s approach means that it is possible to

combine forward and reverse flow rates in equations that

are analytically tractable.

In recent years, one of the main applications of Prandtl’s

model has been to describe the sliding of an AFM tip

across a surface. Here, the atoms or molecules in the sur-

face are assumed to provide a periodically varying poten-

tial, equivalent to the undulating stationary surface in

Fig. 1, while the tip represents the point mass. Whereas in
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Prandtl’s analysis the spring force on the point mass ori-

ginates from internal inter-particle forces, in the AFM

analogy the cantilever acts as an external, restraining

spring. Because there is just one sliding ‘‘point mass’’,

Prandtl’s concept of a fraction of particles available to

undergo transition at a given position can be discarded,

though the probability of transition as a function of position

relative to the peak of the energy barrier is still relevant.

The cantilever spring is generally assumed to be perfectly

elastic with force constant k giving an external potential

given by VeðxÞ ¼ � 1
2
ðx� XÞ2 where X describes the po-

sition of the end of the spring (corresponding to the can-

tilever position).

In an analogous approach for the constant force sliding

assumed by Eyring, VeðxÞ ¼ �Fx, where F is the constant

force. In both cases, the full potential results from a com-

bination of a surface corrugation, invariably assumed to be

sinusoidal, plus Ve. The resulting decrease in barrier height

as a function of force DE(F) cannot be derived analytically

in either of these cases so that the next section in the fol-

lowing discussion focuses on deriving asymptotic solutions

for both types of spring.

From Sect. 2.1, it should be clear that a distinction must

be made between the Prandtl–Tomlinson model, which

considers the lowering in activation barrier resulting from

the forces acting on a point mass moving over a periodic

potential, and the Prandtl and Eyring ‘‘time effects’’, which

examine the influence of applied forces on thermal acti-

vation. Section 4.3 below considers the consequent tem-

perature and velocity dependences on sliding for the two

models with constant force (Eyring) and compliant

(Prandtl) sliding.

The terminology used below is that now usually em-

ployed when applying Prandtl’s approach to model AFM

friction. To assist the reader, Table 1 compares this with

the nomenclatures employed by Prandtl, Eyring and other

previous researchers. It should be noted that Briscoe and

Zhurkov, and also recent wear modelling, use an activation

volume accompanied by an applied stress rather than a

critical distance accompanied by an applied force.

4.2 Dependence of Activation Energy on Force

4.2.1 Force-Dependent Energy Barrier for a Compliant

Contact: A Modern Description of the Prandtl–

Tomlinson Model

Because of the extensive use of AFM to measure nanoscale

friction, the Prandtl–Tomlinson model has been fully dis-

cussed elsewhere [7–10, 40, 41] and will only be briefly

summarised here. The surface energy profile is assumed to

be sinusoidal and is written as � E0

2
cos 2px

a

� �
, where E0 is the

activation barrier height, a is the periodicity and x is the

position of the AFM tip on the surface. Combining this

with an elastic potential cantilever with an effective force

constant keff with a tip support that is moving at some

constant scanning velocity v, X ¼ vt, the combined time-

dependent potential is given by:

Vðx; tÞ ¼ �E0

2
cos

2px
a

� �
þ 1

2
keffðx� vtÞ2 ð24Þ

The shape of the potential depends on the height of the

energy corrugation and the effective force constant; a large

force constant yields a potential that is similar to a

parabola, while a small force constant yields a more si-

nusoidal shape. This effect is captured by using a corru-

gation factor c defined as:

c ¼ 2p2E0

keffa2
ð25Þ

In this model, the critical tip distance x� (equivalent to a in

Prandtl’s paper) is the point at which the potential in

Eq. (24) has an inflection to give:

x�

a
¼ 1

2p
arcos � 1

c

� �
ð26Þ

In this picture, the force increases as the tip moves, giving

rise to stick–slip behaviour, so that spontaneous sliding

occurs at a critical distance x�, which corresponds to a

critical force given by:

F� ¼ keffa

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
ð27Þ

As pointed out by Prandtl, an asymptotic solution as F

approaches F*can be written as:

DEðFÞ ¼ 1

b
ðF� � FÞ3=2 ð28Þ

where b is a constant given by [41]:

b ¼ F�ð Þ3=2
keffa2

8
þ F�a

p

� � ð29Þ

Equations 27 to 29 provide the necessary definitions of

DE(F) and F* required to predict the relationship between

sliding velocity, temperature and friction force for an

elastically constrained AFM tip using Prandtl’s thermal

activation model, as described in Sect. 4.2.1 below.

4.2.2 Force-Dependent Energy Barrier for Constant Force

Sliding

Eyring, Schallamach and Bell all assume that the shape of

the surface potential is not influenced by the external force

and that the energy barrier is reduced by an amount equal
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to the external work F 9 d as the contact moves through a

distance d under a constant applied force, F. If d is equal to

the distance from the initial minimum in the potential to its

maximum (the transition state) d* (identical Prandtl’s a),

then the activation barrier reduces to zero at F* so that

Eo � F� � d� ¼ 0 where Eo is the barrier height. At some

intermediate force F, DE(F) = E0 - Fd*, which is the

basic model adopted in the above theories.

Clearly, this constant force approach is not really ap-

propriate for analysing AFM motion, where the cantilever

is always elastic, but it is relevant to some forms of

macroscopic sliding. However, if we assume a constant

force AFM cantilever, we can derive asymptotic solutions

for the variation in barrier height DE(F) as a function of a

constant force F in a similar fashion to the elastic force

case outlined above.

In the following, this model is explored using a com-

bined sliding potential given by:

Vðx;FÞ ¼ E0

2
1� cos

2px
a

� �� �
� Fx ð30Þ

where E0 is the height of the periodic potential with peri-

odicity a, similar to that used in Eq. 24. Equation (30) is

similarly analysed by calculating the height of the barrier

as a function of the external force, F. Increasing F reduces

the height of the barrier, where the maxima and minima

occur at turning points of Eq. 30 are given by:

oV

ox

����
F

¼ pE0

a
sin

2px
a

� �
� F ¼ 0 ð31Þ

The values of x at the maxima and minima are given by

the solutions of sin 2px
a

� �
¼ Fa

pE0
, which cannot be solved

analytically; asymptotic solutions must be sought and will

be derived for two force regimes. In the first, it is assumed

that the barrier height is such that E0=kBT is relatively

small, so that small values of F cause a relatively large

change in rate. This clearly applies well to the analysis of

viscosity by Eyring since the molecules can thermally

diffuse in the liquid. This force should also be much lower

than the maximum force F* at which spontaneous sliding

occurs. This is given when the combined potential in

Eq. 30 has a point of inflection o2V
ox2

���
F
¼ 2p2Eo

a2
cos 2px

a

� �
¼ 0 to

yield x� ¼ a
4
, and F� ¼ pE0

a
.We now calculate DE(F) for

F � F�. At F = 0, Eq. 30 reduces to a simple cosine

function where the initial potential minimum is at xmin = 0

with Emin = 0, and a maximum at xmax = p with

Emax = E0. As the force increases, xmin increases from zero

and is given by the solution to Eq. 31. Expanding the sine

function in Eq. 31 as a Taylor series for small values of

F, and therefore small values of xmin, gives to first

order: sin 2pxmin

a

� �
ffi 2pxmin

a
¼ Fa

pE0
and yields xmin ¼ Fa2

2p2E0
.

Substituting into Eq. (30) gives the energy of the minimum

in the potential as a function of F as:

Emin ¼ �E0

4

F

F�

� �2

ð32Þ

A similar analysis for the decrease in xmax from its initial

value of p using a Taylor expansion of the sine function for

small forces yields: Emax ¼ E0 � Fa
2
þ E0

4
F
F�

� �2
. The height

of the energy barrier as a function of force DE(F) is the

difference between the maximum and minimum energies:

DE Fð Þ ¼ E0 �
Fa

2
þ E0

2

F

F�

� �2

ð33Þ

Equation 33 is shown plotted in Fig. 4 and is close to

linear up values of F/F* * 0.4, so that to a good ap-

proximation, EaðFÞ ¼ E0 � Fa
2
. This is identical to Eyring’s

assumption. It is interesting to note that the constant force

model applies reasonably well even for relatively high

forces, at least in the case of a simple sinusoidal potential,

and provides some justification for its use by Schallamach.

Equation 33 includes a quadratic term, and a similar

quadratic correction to the rigid-potential model has been

proposed for mechanochemically induced reactions, to give

what known as the extended Bell model [42]. In this case,

the quadratic force term is: vTS�vIS

2
F2, where v is the

compliance (the inverse of the force constant) at the tran-

sition and initial states, respectively. In the case of a si-

nusoidal surface potential, the values of vTS and vIS are

identical, a2

2p2E0

� �
, but with opposite signs. Substituting into

the above equation and scaling F to F* gives E0

2
F
F�

� �2
for the

quadratic term, identical to Eq. 33.
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Fig. 4 Plot of the relative height of the barrier under the influence of

an external force F, scaled to F*
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A general prediction of the Prandtl model is that the

height of the energy barrier DE(F) should vary as DE /
F� � Fð Þ3=2 as the external force F approaches F*. This

asymptote is explored for constant force sliding (with a

combined potential given by Eq. 30). Spontaneous sliding

occurs at a lateral force F� ¼ pE0

a
at a distance x� ¼ a

4
. The

value of the potential energy at the inflection point can be

calculated by substituting these values into Eq. (30) to

give: V x�;F�ð Þ ¼ E0

2
� pE0

4
. This is now expanded about x*

and F*; F is allowed to change from F* to F� � dF so that

dF ¼ F� � F. The variable x is rewritten as x� þ dx so that

V x;Fð Þ ¼ V x�;F�ð Þ þ dV dxð Þ. Substituting into Eq. (30)

and substituting for F*, x* and Vðx�;F�Þ and writing

cos p
2
þ 2p

a
dx

� �
¼ � sin 2p

a
dx

� �
give:

dVðdxÞ ¼ E0

2
sin

2p
a
dx

� �
� pE0

a
dxþ a

4
dF þ dFdx ð34Þ

Expanding the sinusoidal potential as a Taylor series

simplifies the equation to:

dVðdxÞ ¼ � 2pð Þ3E0

12a3
ðdxÞ3 þ a

4
dF þ dFdx ð35Þ

This is a third-order polynomial in dx about the inflec-

tion point, as expected. The difference between the max-

imum and minimum energies of Eq. 35 gives the height of

the barrier DE(F) as the force approaches F*. The max-

imum and minimum energies Emax and Emin are found by

differentiating Eq. 35, and the difference between these

values equals DE(F):

DEðFÞ ¼ 1

b
F� � Fð Þ3=2 ð36Þ

where

b ¼ 3

2
ffiffiffi
2

p
ffiffiffiffiffiffi
F�

p
p

a
: ð37Þ

Thus, the asymptotic force dependence predicted by

Prandtl is a general feature of force-activated sliding for

both compliant and constant force external potentials,

merely differing in the values of F* and b.

4.3 Velocity and Temperature Dependence

of Sliding Force

This section discusses how the asymptotic solutions for

DE(F) are used to describe the velocity and temperature

dependences of the friction force for both compliant and

constant force sliding by applying the thermal activation

principle developed by Prandtl and Eyring. In both cases,

the external force leads to a reduction in the remaining

energy barrier, thereby increasing the transition rate. The

characteristic time s during which this can occur depends

on the sliding speed v and periodicity a of the surface

potential (in Eqs. 24, 30) where s
 a
v
. The force F then

adjusts so that the transition over the barrier occurs during

the time s. Since DE(F) decreases with increasing F, the

force must increase as s becomes smaller so that higher

velocities result in larger friction forces.

All sliding friction models assume an Arrhenius tem-

perature dependence of the rate; higher temperatures result

in higher transition rates. Thus, as the temperature in-

creases, the transition can occur for larger values of DE(F),
resulting in a reduction in friction force with increasing

temperature. These general concepts apply to both a

compliant contact (e.g. in an AFM) and constant force

sliding where the constraining force is usually applied in-

ternally. For a compliant contact, the force increases as

sliding occurs to produce a force that increases with time

until the system transits the barrier, resulting in stick–slip

motion that is characteristic of AFM friction experiments.

4.3.1 Velocity and Temperature Dependence

for a Compliant Contact

The solution of the thermally activated, modified Prandtl

model for AFM friction has been discussed in detail else-

where [9, 21, 39, 41, 43–46] and is briefly summarised

here. The probability p(t) that the tip surmounts the barrier

is calculated following Prandtl for a forward jump from:

dpðtÞ
dt

¼ �f0 exp �DEðtÞ
kBT

� �
pðtÞa ð38Þ

where the attempt time s used by Prandtl (Eq. 1) is re-

placed by an attempt frequency f0. (Note that unlike

Prandtl’s l, probability p(t) is not the fraction of particles

that undergo transition at time t, but the probability that the

tip has not jumped by time t in its approach to the energy

barrier.) Since the lateral force F is measured in the AFM

experiment, it is most convenient to cast this equation as a

function of F rather than t to give:

dpðFÞ
dF

¼ �f0 exp �DEðFÞ
kBT

� �
dF

dt

� ��1

pðFÞ ð39Þ

Writing dF

dt
¼ dF

dx
dx

dt
� keffv gives a simple first-order differ-

ential equation:

dpðFÞ
dF

¼ � f0

keffv
exp �DEðFÞ

kBT

� �
pðFÞ ð40Þ

The variation in barrier height with force DE(F) is

usually taken to be the asymptotic form suggested by

Prandtl, DE Fð Þ / F� � Fð Þ3=2 (see Sect. 4.2.1). Rather

than integrating the equation as attempted by Prandtl (in

approximate form), it is recognised that the peak force for

the stick–slip motion seen in AFM experiments occurs
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when the transition rate is maximum and is calculated from
d2p

dF2
¼ 0. For c[ 4.603, this yields a solution for the tem-

perature and velocity dependence of the friction force as:

1

bkBT
F� � Fð Þ3=2 ¼ ln

v

v0

� �
� 1

2
ln 1� F

F�

� �
ð41Þ

where v0 ¼ 2f0bkBT
3keff

ffiffiffiffi
F�

p . This equation predicts essentially

identical temperature and velocity dependences as found

by Prandtl. As expected, it results in a logarithmic velocity

dependence and a decrease in friction force with increasing

temperature, and the velocity and temperature dependences

predicted by Eq. 41 have been confirmed experimentally

[10, 47].

4.3.2 Velocity- and Temperature-Dependent Friction

for a Constant Force Contact

As noted above, at a sliding velocity v the force F adjusts to

lower the activation barrier such that the increased transi-

tion rate R allows the system to overcome the barrier. If the

periodicity along the sliding direction is a, then:

v ¼ Ra ð42Þ

If the barrier height under the influence of the external

force is DEðFÞ, which decreases as F increases, at some

temperature T, the rate is given by:

R ¼ A exp �DE Fð Þ
kBT

� �
l ð43Þ

where we use Prandtl’s notation for the occupancy l of the

initial state and A is a pre-exponential factor (equivalent to

f0 in Eq. 39). For the shear of a contacting liquid interface,

all the minima are occupied, so that l * 1 as used by

Eyring. In case of a nanoscale contact, where an atom

slides from one minimum to the next, l then depends on

time and the full rate equation must be solved. With the

assumption of l * 1, substituting Eq. (43) into Eq. (42)

gives: v ¼ aA exp � DEðFÞ
kBT

� �
.

Note that, if the activation energy without the external

force Ea is small (a few times kBT) as in the Eyring model,

the system can diffuse in both directions to the next site in

the absence of an external force, but here the net motion is

zero. To take account of the reverse jumps, Eq. (42) is

modified to: v ¼ Rf � Rbð Þa where Rf and Rb are the for-

ward and backward rates, and is used in the Eyring model

(Sect. 2.2). Assuming for simplicity that sliding only ac-

celerates the forward rate gives:

DEðFÞ ¼ kBT ln
vC

v

� �
ð44Þ

where vc ¼ Aa, and significant velocity dependences will

only be seen for v\ vC. Explicit solutions depend on the

form of DE Fð Þ: If we take the low-force limit where

DE Fð Þ ¼ E0 � Fa
2
, then:

Fðv; TÞ ¼ 2E0

a
� 2kBT

a
ln

vC

v

� �
ð45Þ

However, if the barrier is larger, then higher forces are

required to decrease the barrier such that

DE Fð Þ ¼ 1
b F� � Fð Þ3=2, so that:

F v; Tð Þ ¼ F� � bkBTð Þ2=3 ln
vC

v

� �� �2=3

ð46Þ

Again, both models predict a logarithmic dependence of

friction force on velocity and an approximately linear de-

crease with increasing temperature.

5 Conclusions

It is clear that a remarkable range of tribological phe-

nomena can be described by models in which the rate of a

thermally activated process is accelerated by the applica-

tion of an external force so that mechanical energy directly

couples into the process to effectively lower the activation

barrier. Such models in various forms have been used to

describe viscosity, solid sliding, tribochemical reaction

rates and even nanoscale wear. All of these models appear

to derive inspiration from two original sources, a paper on

crystal plasticity in 1928 by Prandtl and one on liquid

viscosity in 1936 by Eyring.

There is, however, some confusion in the literature as

to the origins of the thermal activation concept. This is

probably because Prandtl essentially developed two

separate models in his 1928 paper [1]. One explains ir-

reversible flow and sliding in terms of instabilities in the

forces experienced by elastically constrained particles in a

surface as they move past a periodically varying potential.

In the following year, a very similar concept was devel-

oped by Tomlinson [2] and their combined efforts are

now generally called the Prandtl–Tomlinson model.

Prandtl’s second development was to couple the effects of

applied force and temperature on particle motion with the

concept of ‘‘thermal activation’’. This enables prediction

of the dependence of flow and sliding on applied force

and the effects on both of changes in temperature. Un-

fortunately, this development is also sometimes, incor-

rectly, included under the umbrella of ‘‘Prandtl–

Tomlinson’’. In 1936, Eyring, arriving from a very dif-

ferent scientific direction, independently developed the

thermal activation approach to produce a model of liquid

viscosity, and until recently, it has been Eyring’s work

rather than Prandtl’s that has been most widely applied in

subsequent tribology research. Perhaps the general
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principle of thermally activated, stress-induced processes

in tribology might be best described as Prandtl–Eyring.

In many cases, thermally activated models are difficult

to test experimentally since all the rate equations depend

on the temperature of the system. The latter is, in general,

extremely difficult to measure at a tribological interface so

that the models tend to work best under relatively mild

conditions where any increase in surface temperature due

to frictional heating is negligible. Measuring the tem-

perature dependences of the rates predicted for various

processes by these models by making Arrhenius plots, as is

commonly done for chemical reaction kinetics, is similarly

hampered by difficulties in measuring interfacial

temperatures.

Another, more subtle issue is that the rate laws used to

describe the phenomena invariably assume that the system

is in thermal equilibrium so that the energy distribution is

described by a Boltzmann function (i.e. * exp(-E/kBT)).

Molecular dynamics simulations have suggested that sig-

nificant deviations from thermal equilibrium can occur at

sliding interfaces [48]. The models also all inherently as-

sume that all of the energy is rapidly dissipated after

transiting the energy barrier, which may not always be the

case.

Nevertheless, models that describe the direct coupling of

mechanical energy into an activated process have been

remarkably successful at describing a wide range of tri-

bological phenomena and, we believe, will provide a

powerful strategy for obtaining a molecular-level under-

standing of energy dissipation, tribochemistry and wear in

the future.
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21. Müser, M.: Velocity dependence of kinetic friction in the

Prandtl–Tomlinson model. Phys. Rev. B 84(12), 125419 (2011)

22. Schallamach, A.: The velocity and temperature dependence of

rubber friction. Proc. Phys. Soc. Lond. Sect. B 66(5), 386 (1953)

23. Schallamach, A.: A theory of dynamic rubber friction. Wear 6(5),
375–382 (1963)

24. Drummond, C., Israelachvili, J., Richetti, P.: Friction between

two weakly adhering boundary lubricated surfaces in water. Phys.

Rev. E 67(6), 066110 (2003)

25. Mazuyer, D., Cayer-Barrioz, J., Tonck, A., Jarnias, F.: Friction

dynamics of confined weakly adhering boundary layers. Lang-

muir 24(8), 3857–3866 (2008)

26. Tobolsky, A., Eyring, H.: Mechanical properties of polymeric

materials. J. Chem. Phys. 11(3), 125–134 (1943)

27. Coleman, B.D.: Application of the theory of absolute reaction

rates to the creep failure of polymeric filaments. J. Polym. Sci.

20(96), 447–455 (1956)

28. Zhurkov, S.N.: Kinetic concept of the strength of solids. Int.

J. Fract. Mech. 1, 11 (1965)

29. Henderson, C.B., Graham, P.H., Robinson, C.N.: A comparison

of reaction rate models for the fracture of solids. Int. J. Fract.

Mech. 6(1), 33–40 (1970)

30. Pollet, J.C., Burns, S.J.: Thermally activated crack propagation—

theory. Int. J. Fract. 13(5), 667–679 (1977)

31. Bell, G.: Models for the specific adhesion of cells to cells. Sci-

ence 200(4342), 618–627 (1978)

Tribol Lett (2015) 59:21 Page 13 of 14 21

123



32. Sohma, J.: Mechanochemistry of polymers. Prog. Polym. Sci.

14(4), 451–596 (1989)

33. Wiggins, K.M., Brantley, J.N., Bielawski, C.W.: Polymer

mechanochemistry: force enabled transformations. ACS Macro

Lett. 1(5), 623–626 (2012)

34. Dickinson, J.T., Park, N.S., Kim, M.W., Langford, S.C.: A

scanning force microscope study of a tribochemicalsystem:

stress-enhanced dissolution. Tribol. Lett. 3(1), 69–80 (1997)

35. Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-as-

sisted chemical reaction. Nat. Nanotechnol. 8(2), 108–112 (2013)

36. Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity

sliding contact. Phys. Rev. Lett. 101(12), 125501 (2008)

37. Jacobs, T.B., Gotsmann, B., Lantz, M., Carpick, R.: On the ap-

plication of transition state theory to atomic-scale wear. Tribol.

Lett. 39(3), 257–271 (2010)

38. Kopta, S., Salmeron, M.: The atomic scale origin of wear on mica

and its contribution to friction. J. Chem. Phys. 113(18),
8249–8252 (2000)

39. Popov, V.L., Gray, J.A.T.: Prandtl–Tomlinson model: history and

applications in friction, plasticity, and nanotechnologies. ZAMM

92(9), 683–708 (2012)

40. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition

from stick–slip to continuous sliding in atomic friction: entering a

new regime of ultralow friction. Phys. Rev. Lett. 92(13), 134301
(2004)

41. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe,

W.T.: Kinetic Monte Carlo theory of sliding friction. Phys. Rev.

B 80(15) (2009)
42. Konda, S.S.M., Brantley, J.N., Bielawski, C.W., Makarov, D.E.:

Chemical reactions modulated by mechanical stress: extended

Bell theory. J. Chem. Phys. 135(16), 164103–164108 (2011)

43. Sasaki, N., Tsukada, M., Fujisawa, S., Sugawara, Y., Morita, S.:

Theoretical analysis of atomic-scale friction in frictional-force

microscopy. Tribol. Lett. 4(2), 125–128 (1998)

44. Porto, M., Zaloj, V., Urbakh, M., Klafter, J.: Macroscopic versus

microscopic description of friction: from Tomlinson model to

shearons. Tribol. Lett. 9(1), 45–54 (2000)

45. Fusco, C., Fasolino, A.: Velocity dependence of atomic-scale

friction: a comparative study of the one- and two-dimensional

Tomlinson model. Phys. Rev. B 71(4), 045413 (2005)

46. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe,

W.T.: Monte Carlo simulations for Tomlinson sliding models for

non-sinusoidal periodic potentials. Tribol. Lett. 39(2), 177–180
(2010)

47. Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bam-

merlin, M., Meyer, E., Güntherodt, H.J.: Velocity dependence of

atomic friction. Phys. Rev. Lett. 84(6), 1172–1175 (2000)

48. Mazyar, O.A., Xie, H., Hase, W.L.: Nonequilibrium energy dis-

sipation at the interface of sliding model hydroxylated alpha-

alumina surfaces. J. Chem. Phys. 122(9), 094712–094713 (2005)

21 Page 14 of 14 Tribol Lett (2015) 59:21

123


	On the Commonality Between Theoretical Models for Fluid and Solid Friction, Wear and Tribochemistry
	Abstract
	Introduction
	Degenerate Initial and Final States: Friction Forces
	Prandtl--Tomlinson Model for Sliding Friction
	Eyring Model for Viscosity and Shear Thinning of Liquids
	Schallamach Model

	Non-degenerated Initial and Final States: Fracture, Tribochemical Reactions and Wear
	Fracture Models
	Tribochemical Reactions and the Bell Model
	Nanoscale Wear

	Discussion
	Comparison of Prandtl and Eyring Models
	Dependence of Activation Energy on Force
	Force-Dependent Energy Barrier for a Compliant Contact: A Modern Description of the Prandtl--Tomlinson Model
	Force-Dependent Energy Barrier for Constant Force Sliding

	Velocity and Temperature Dependence of Sliding Force
	Velocity and Temperature Dependence for a Compliant Contact
	Velocity- and Temperature-Dependent Friction for a Constant Force Contact


	Conclusions
	Acknowledgments
	References




