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Abstract During indentation, it is often important to

determine the relationship between the average pressure

and the yield strength. This work uses slip-line theory to

determine this relationship for the case of a rigid sphere

indenting a frictionless perfectly plastic half-space (i.e., no

hardening). The results show that the ratio between the

average contact pressure and the yield strength decreases as

the depth of indentation is increased. Note that the slip-line

analysis does not include the effects of pileup or sink-in

deformations. However, the slip-line theory has also been

compared to data generated using the finite element method

(FEM). The theory and the FEM results appear to agree

well.

Keywords Hardness � Contact mechanics � Asperity �
Indentation � Slip-line theory

1 Introduction

The indentation of solids by a harder or effectively rigid

object is of great importance to material property mea-

surements via the surface. It is also an integral part of

friction, wear, and contact resistance predictive models. In

most cases, the load is large enough to cause significant

plastic deformation and even cause the entire surface in

contact to deform plastically. Indentation hardness tests are

aimed at achieving this range of deformation.

In the elastic regime, and at relatively small displace-

ments, the contact of an elastic–plastic sphere against a

rigid flat (i.e., flattening) and the contact of a rigid sphere

against an elastic–plastic surface (i.e., indentation) are

practically equivalent. However, as the displacements in-

crease, the two cases begin to diverge [1]. This work fo-

cuses on the case of indentation between a rigid sphere and

a deformable surface.

Ishlinskii [2] performed a slip-line analysis of a sphe-

rical contact and found that the contact pressure for a

perfectly plastic contact without hardening (i.e., Brinell

hardness) was between 2.61 and 2.84 and did not vary

significantly with the indentation depth. As will be shown

later, this is in contradiction to the current work.

Hardness is the average pressure in a contact when the

deformation is fully plastic. In this work, the average

pressure, �p; is defined by the contact force divided by the

projected area of the contact in the direction of the in-

dentation, not the total surface area. This is often defined as

the Meyer’s hardness, and its equation form is: �p ¼ F
p�a2 ;

where a is the contact radius and F is the contact force.

Alternatively, Brinell suggested that the hardness be cal-

culated by the dividing the force by the total surface area of

the spherical cap in contact.

Jackson and Green [3] performed a finite element ana-

lysis of an elastic–plastic deformable sphere against a rigid

flat surface (referred to as flattening). They found that as

the deformation increased, the average pressure reduced

from approximately 2.84 times the yield strength (i.e., the

hardness found by Tabor [4] and Ishlinskii [2] for a sphe-

rical contact). This is due to the spherical geometry

changing to that of a compressed cylinder (see Fig. 1). This

was taken even farther by Wadwalkar et al. [5] who

showed that under heavy deformation, the average pressure
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on a flattened sphere approaches the yield strength. Note

that in these cases of severe deformation, the sphere ac-

tually begins to behave similar to a ‘barreling’ cylinder in

compression. The deformation in these works is described

by the ratio between the contact radius, a, and the radius of

the sphere, R, as shown in Fig. 2. These previous works

found an equation that captures the effect that large de-

formations of the sphere have on the average contact

pressure, �p; in relation to the yield strength, Sy [6]:

�p

Sy
¼ 2:84� 0:92 1� cos p

a

R

� �� �
ð1Þ

Again, note that Eq. (1) was based on the flattening case,

where the flat surface is rigid and the sphere deforms.

However, it could serve as a benchmark to the case of

indentation.

Mesarovic and Fleck [7] studied the indentation of a

rigid sphere into an elastic–plastic deformable surface both

with and without hardening. They observed that at larger

deformations, the average pressure-to-yield strength ratio

appeared to decrease from Tabor’s value of 2.8, similar to

the trend noted above. They also showed that hardening

could nullify this effect in some cases. They were probably

the first to observe this trend in indentation, but they did

not provide an analytical description of the phenomenon.

Later, Kogut and Komvopoulos [8] investigated elastic–

plastic indentation and found that the fully plastic pressure

behaved similar to that of the flattening case investigated

by Jackson and Green [3]. This case is important when

using indentation tests for the measurement of material

properties, especially the Brinell hardness test. Building

from the work of Ye and Komvopoulos [9], Kogut and

Komvopoulos [8] found that the pressure during elastic–

plastic indentation reached a maximum value that is less

than the popular value of 2.84 Sy. They suggested that the

pressure varied as a function of E
0
/Sy (the effective elastic

modulus divided by the yield strength):

�p

Sy
¼ 0:201ln

E0

Sy

� �
þ 1:685 ð2Þ

which is analogous to Eq. (1) for spherical indentation,

rather than flattening, although in terms of the material

properties rather than the deformed geometry. However,

the current authors believe that the ratio is directly de-

pendent on the geometry rather than the material proper-

ties, as will be shown for indentation in the current work.

Also, the results of the current work cannot be compared to

Eq. 2 because the current work assumes a perfectly plastic

material that does not have a finite elastic modulus. Ad-

ditional equations are provided in [8] relating contact area

and pressure to the penetration depth, and the reader is

advised to obtain the paper for additional information.

Later, Alcalá and Esqué-de los Ojos [10] also thor-

oughly analyzed the spherical indentation of strain-hard-

ening metallic surfaces. Nonetheless, they found a similar

empirical relation for the case of indentation without

hardening or pileup or sink-in:

�p

Sy
¼ 3:044� 1:885

a

R
ð3Þ

Yu and Blanchard [11] also presented a thorough ana-

lysis and summary of many various cases of indentation,

including wedge, conical, spherical and flat-ended inden-

ters against elastic, perfectly plastic, and elastic–plastic

materials. However, their perfectly plastic analysis was a

curve fit to previous tabulated results in the literature. They

then provided the following fit equation:

�p

Sy
¼ 2ffiffiffi

3
p 2:845� 0:4921

a

R

� �
ð4Þ

The contact radius, a, could be difficult to determine.

There are several models that may be employed to make an

approximate prediction, or it could simply be measured.

There are many models that have been devised to ac-

count for the plastic deformation in the sphere (i.e., flat-

tening). Most models also assume that the deformation is

elastic–perfectly plastic, meaning there is no hardening in

the material. However, there is no known analytical solu-

tion to this problem; therefore, many previous models did

not give the correct quantitative predictions, such as the

groundbreaking model by Chang, Etsion, and Bogy (CEB)

[12] and the work by Zhao et al. [13], which attempted to

F    F       F F F

Increasing 
Force

Increasing 
Force

Fig. 1 Schematic showing how the pressure changes with the

deformation of the sphere during fully plastic contact

2a

Diameter of 
Contact Area

F, Contact Force

Fig. 2 Schematic of the contact area between a sphere and a flat

surface
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improve on the CEB model by using a continuous template

to connect the elastic and plastic regimes of deformation.

Later, for the flattening case, Kogut and Etsion [14] and

Jackson and Green [3] improved upon these models by

using the finite element method. Jackson and Green [3]

found the following equations for the prediction of initial

yielding in the sphere according to the von Mises yield

criterion, which in theory could also be used for

indentation:

xc ¼
p � C � Sy

2E0

� �2

R ð5aÞ

C ¼ 1:295 expð0:736vÞ ð5bÞ

Ac ¼ p3
CSyR

2E0

� �2

ð6Þ

Fc ¼
4

3

R

E0

� �2
C

2
p � Sy

� �3

ð7Þ

In Eqs. (5a–7), xc is the indentation depth, Ac is the

critical contact area, and Fc is the critical contact force, all

at the initiation of plastic deformation. For flattening,

Kogut and Etsion [14] and Jackson and Green [3] also

found that fully plastic deformation begins at ap-

proximately 68–110 times the critical interference given by

Eq. (5). It is plausible that this is also approximately true

for indentation. There are also many other models and

studies of spherical elastic–plastic indentation, in addition

to those described above [15–19]. However, none of these

appear to capture the decreasing average pressure-to-yield

strength ratio trend.

Although much information exists in the literature for

indentation and hardness tests, little information exists on

how the average pressure during fully plastic contact may

change during indentation due to the change in the ge-

ometry of the interface, as it does for the flattening case.

The current work derives a simple equation to account for

this effect based on slip-line theory. However, the current

theoretical slip-line work does not include the effects of

pileup or sink-in directly. A finite element model is also

constructed that does include these effects and is compared

to the slip-line result.

2 Methodology

The current work uses the concept of slip lines to find the

relationship between the average pressure and the yield

strength as a function of the magnitude of the deformation.

The slip-line theory and derivation are not thoroughly de-

scribed here, but additional details can be found in the book

by Tabor [4]. For the theory to be applicable, the following

assumptions are made: The loading is quasi-static; there are

no body forces; and the material yields according to the

von Mises criterion as a rigid–perfectly plastic material. No

elasticity is considered. Here, the contact will be consid-

ered to be well lubricated, so no friction is considered,

although this effect is often important. The effects of pileup

and sink-in due to elasticity and volume conservation are

also neglected.

Slip lines are defined as curved lines which are tan-

gential along their length to directions of maximum shear

stress. Slip lines in a material are made up of two curvi-

linear and orthogonal lines (a and b) described by the

following equations:

hþ 2kDu ¼ C1along the a line ð8Þ
h� 2kDu ¼ C2 along the b line ð9Þ

where h is the hydrostatic stress and k is the shear yield

strength of the material. According to the von Mises yield

criterion, h does not cause yielding or plastic deformation

of the material. Note that only the a line needs to be

considered. k is also related to the yield strength, Sy, by

k ¼ SYffiffiffi
3

p ð10Þ

The case considered in the current work is schematically

depicted in Fig. 3. On the labeled free surface, there is no

normal or shear traction. Therefore, the shear stress tan-

gential to the surface is zero there. On the indenter surface,

there is an applied pressure, p, but no shear stress tangential

to the surface, since the surface is frictionless. By consid-

ering these surface boundary conditions, the following

equation is obtained (although some details are omitted

here, this equation is identical to that found in Tabor [4]):

p ¼ 2k þ 2kDu ð11Þ

where Du is the change in the angle of the slip line from

the free surface to the pressurized indenter surface. Du is

F

Rigid Sphere Indenter 

C

Free Surface             R         y            a 

Slip-lines are not shown here 
but would mirror the opposite side 
and extend into the half-space.

Rigid Perfectly-
Plastic Half-Space   

θ     x 

Fig. 3 Schematic of a spherical rigid indenter penetrating a rigid–

perfectly plastic half-space
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equal to the h shown in the schematic in Fig. 3 and de-

creases from p/2 rad at the point of maximum indentation

depth at the tip of the sphere to zero rad if the hemisphere

is pressed into the half-space so that half of it is indented

into the surface and the free half-space surface is perpen-

dicular to the sphere.

Equation (11) can then be integrated over the contacting

surface of the indenter to find the required normal force,

F. Since the contact pressure on the indenter is always

normal to it, we must consider that only the vertical portion

contributes to F:

pv ¼ p sin h ð12Þ

The resulting integration to calculate the force is then:

F ¼ 2p
Z a

0

x � p � sin hdx ð13Þ

Noting that:

x ¼ R cos h; ð14Þ

the integral can be rearranged as:

F ¼ 2pR2

Z h1

p=2
p � sin2 h cos h � dh ð15Þ

where h1 is the angle, h, at x = a. Next Eq. 11 is substi-

tuted in for p:

F ¼ 2pR2

Z h1

p=2
2k þ 2khð Þ � sin2 h cos h � dh ð16Þ

This integration solves analytically to be:

F ¼ 4kpR2 sin3 h
3

þ 1

36
12h sin3 hþ 9 cos h� cos 3h
� �	 
h1

p=2

ð17Þ

Then, normalizing the force by the contact area, substi-

tuting in Eq. 10, and simplifying further results in:

�p

Sy
¼ F

pa2Sy
¼ 4ffiffiffi

3
p cos h1ð Þ�2

	
1

3
þ p

6

� �
� 1þ h1ð Þ sin

3 h1
3

� cos h1
4

þ cos 3h1
36



ð18Þ

In addition, noting that a
R
¼ cos h, Eq. 18 can be written

as a function of a/R as:

�p

Sy
¼ 4ffiffiffi

3
p a

R

� ��2
	

1

3
þ p

6

� �
� 1

3
1þ cos�1 a

R

� �� �

� 1� a

R

� �2
� �3=2

� a

4R
þ 1

36
4

a

R

� �3

�3
a

R

� �� �


ð19Þ

which can be moderately simplified to:

�p

Sy
¼ 4

3
ffiffiffi
3

p a

R

� ��2
	
1

3

a

R

� �3

� 1þ cos�1 a

R

� �� �

� 1� a

R

� �2
� �3=2

� a

R
þ p

2
þ 1


 ð20Þ

3 Finite Element Analysis

In order to verify the analytical results, an axisymmetric

finite element model has been developed. The model

simulates the indentation of a half-space with a sphere.

Modeling the perfectly plastic behavior of the materials

using the finite element method is difficult. Therefore,

elastic–plastic material properties close to the perfectly

plastic case have been used (i.e., a low yield strength and

high elastic modulus). According to Tabor’s experiments

[4], if the yield strength of the indenting sphere is 2.5 times

larger than the flat, the deformation of the sphere can be

neglected. Therefore, for the sphere, a yield strength of

1000 MPa is used, and for the flat, a yield strength of

100 MPa has been chosen. The modulus of elasticity and

the Poisson’s ratio for both the flat and the sphere are

considered to be 300 GPa and 0.3, respectively. Yield

strength values smaller than this and elastic moduli larger

than this tend to cause convergence problems in the finite

element algorithm.

A fine mesh around the contact point has been applied

on both the flat surface and the sphere. Mesh convergence

for both the small and the large deformations has been

verified, and a mesh with a total of 9784 elements has been

chosen (see Fig. 4). To apply the boundary conditions, the

following constraints have been applied: The bottom edge

of the flat has been fixed for displacements in both direc-

tions, and the left edges of the sphere and the flat have been

fixed for displacements in the horizontal direction. A uni-

form displacement downward on the top edge of the sphere

has been applied to load the sphere against the flat surface.

Different displacements have been applied on the

sphere, and the radius of contact and the reaction forces

have been analyzed. Because of the complexity of the

problem, the finite element analysis could not converge to a

reliable result for larger deformations (a/R[ 0.5).

4 Results

Now the predictions of Eq. 20 are shown in Fig. 5,

alongside the finite element model predictions and those of

Eq. (3) [10] and Eq. (4) [11]. Again, note that Eq. (2) from

[8] is not compared to the other results in this work because

it is dependent on the ratio of the elastic modulus to the

47 Page 4 of 7 Tribol Lett (2015) 58:47
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yield strength. Since there is no elastic modulus present in

Eq. 20, but the same decrease in average contact pressure

is present, it suggests that Eq. 2 captured a secondary

correlation that is actually sourced from the change in

geometry. The current formulation appears to agree fairly

well with the finite element results, even though the slip-

line theory does not include sink-in or pileup and is for a

perfectly plastic material, while the finite element model is

for an elastic–plastic material with a relatively low yield

strength to ensure that plastic deformation dominates. Note

that the predictions of Eq. 4 [11] seem to over-predict the

pressure, perhaps due to a factor in their paper meant to

account for von Mises plasticity. The predictions of Eq. 20

appear to be very reasonable and show how the ratio of the

average pressure to the yield strength can change dra-

matically as the geometry of the contact changes. By

solving the above equation for h1 = p/2 (i.e., a/R = 1), a

lower limit of the pressure-to-yield strength ratio is also

found to be 1.465, which differs from the limit of unity for

the flattening case. The upper limit is also different be-

tween the flattening and indentation cases. From Eq. 20,

the maximum average pressure-to-yield strength ratio �p
Sy

� �

at a/R approaching zero is approximately 2.97, but there is

a singularity at a/R = 0. This differs from the flattening

value of 2.84, but is similar to the value of 2.96 provided

by Ishlinskii [2], although, as Johnson [20] stated, in Ish-

linskii’s work, this was for a/R = 0.376. In contrast, at a/

R = 0.376, Eq. 20 predicts that �p
Sy
¼ 2:589: Equation 20

might also be adapted to pileup [19] and sink-in, by

adapting a/R and the slope at the edge of contact in the

derivation.

The solution given by Eq. 20 is for the indentation of a

perfectly plastic surface by a rigid sphere, but it is useful

for considering single asperity contact between rough

Fig. 4 Finite element model. A

finer mesh around the contact

point both on the flat and the

sphere is applied

Fig. 5 A comparison of the current fully plastic analytical model and

previous equations
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surfaces within the framework of a statistical [21–28] or

multiscale model [29–31]. For this equation to be appli-

cable to any case, the case should first be in the fully plastic

regime. In the fully plastic regime, the entire surface in

contact, or the material supporting it, has been yielded.

Although the initiation of this regime varies with the ge-

ometry and material properties, several researchers found

that it initiates approximately between x/xc = 68 and 80

[3, 14], although there may still be a significant influence of

the elastic deformation until x/xc reaches approximately

110.

In addition, for Eq. 20 to be applicable, the contact

should be categorized by indentation rather than flattening

(i.e., the plastic deformation should mostly occur in the flat

surface [1]). From a finite element analysis of elastic

plastic contact, the authors believe that this transition is

dictated mostly by the ratio between the yield strengths of

the two contacting materials. When the yield strength of

the sphere is lower, most of the plastic deformation will

take place in the sphere. Equation 20 is probably not very

applicable for this case (defined as flattening), and Eq. 1 is

more applicable. When the yield strength of the flat surface

is lower, most of the plastic deformation will occur in the

flat surface, and Eq. 20 is most applicable (this case is

indentation). To include both elastic and plastic deforma-

tions in such a contact, one might also replace Eq. 1 in the

model by Jackson and Green [3] with Eq. 20. However,

this is a crude approximation, and additional work is re-

quired to completely characterize elastic–plastic contact

across the flattening and indentation regimes.

In addition and as mentioned previously, Eq. 20 could

be used to approximate the yield strength from the average

pressure (i.e., hardness) in spherical indentation measure-

ments, such as in Brinell Hardness measurements. This

model would probably need to be integrated with other

models that account for phenomena such as hardening,

pileup, and sink-in. Even then, this should be done

carefully.

5 Conclusion

This work presents a new closed-form equation for the

relation between the average contact pressure and yield

strength as a function of a geometrical parameter for a rigid

sphere indenting a fully plastic surface. This formulation is

derived by using slip-line theory. The ratio of the average

contact pressure-to-yield strength ratio has been shown to

decrease with increasing deformation before, but no

analytically derived relationship had been provided. As the

deformation increases, the ratio decreases from 2.97 to

1.465, when the contact radius equals the radius of the

sphere. The predictions have also been shown to compare

well with finite element results, although the FEM results

included some elastic deformation. This equation will be

very useful in augmenting existing methodologies in rough

surface contact modeling and indentation testing to account

for this effect.
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