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Abstract Hydrodynamic lubrication is present in the

majority of machinery where load is transmitted between

two contacting surfaces in relative motion. Cavitation in

liquid lubricating films is common and directly affects the

pressure distribution and subsequently the load-carrying

capacity and friction force transmitted across the contact.

By reformulating the Elrod–Adams implementation of the

Jakobsson–Floberg–Olsson cavitation conditions, we de-

veloped an efficient algorithm, called Fischer-Burmeister-

Newton-Schur (FBNS), for calculating the pressure distri-

bution that combines two attractive properties. First, the

system of discretized equations arising from the reformu-

lation is continuously differentiable and unconstrained,

thus allowing for the use of gradient-based methods to

solve it. Second, the computational cost of solving the

system is similar to that when cavitation is not considered.

With the new algorithm, the transient analysis and opti-

misation of contacts with complex shapes becomes com-

putationally feasible. A comparison of the FBNS with the

established algorithms and an application to the transient

analysis of a hydrodynamic contact with surface texturing

are reported. The results show that the FBNS yields

roughly two orders of magnitude reduction in computa-

tional time when compared against other algorithms.

Keywords Hydrodynamic lubrication � Cavitation �
Elrod–Adams � Jakobsson–Floberg–Olsson � Texturing

1 Introduction

Hydrodynamic lubrication is fundamental to the operation

of journal and thrust bearings (axles, hydroelectric rotors,

ship propellers), sliders (cylinder liner and piston ring

interface, hydrodynamic seals) and squeeze-film dampers

(high-speed compressors, turbines). The operating princi-

ple is based on the generation of pressure in a lubricant by

squeezing it or by dragging it towards a converging sec-

tion of the contact between the surfaces through the vis-

cous forces. The lubricant can then effectively separate

the surfaces and form a thin film of roughly 1–100 lm in

thickness [1]. However, diverging sections and rapid un-

loading of the contact can generate large tensional forces

in the lubricant, leading to sudden pressure drops and, in

the case of liquid lubricants, to cavitation [2]. The latter

causes a disruption of the film which directly affects the

pressure distribution and subsequently the load-carrying

capacity and friction force—two important performance

characteristics.

In this paper, we solve a long-standing problem of an

efficient calculation of the contact pressure distribution in

the presence of cavitation. Our starting point is the

Jakobsson, Floberg and Olsson (JFO) [3, 4] cavitation

model that couples to the Reynolds equation (RE) for thin

film lubrication. Although a number of cavitation models

that couple to the Navier–Stokes equations (NSE) or the

RE have been proposed over the last several decades, the

JFO and its implementation by Elrod and Adams (EA) [5]

have withstood the majority of experimental verification

and are widely regarded as the best trade-off between ac-

curacy and practicality [2]. In the following, we develop an

efficient algorithm for solving the non-dimensional p - h
formulation of the RE arising from the EA implementation

of the JFO model:
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where l and q denote the viscosity and density of the lu-

bricant, respectively, p is the pressure distribution, h is the

film thickness, U is the relative sliding speed of the contact

surfaces, B and L denote the contact width and length, href

and pref are the reference film thickness and pressure, and h
is the cavity fraction (defined later). The formulation in

Eq. (1) can be derived from the NSE under the assumptions

that there is no inertial flow, no slip on the boundaries be-

tween the lubricant and the surfaces, and no pressure change

across the film (that is, in the z direction perpendicular to

one of the surfaces chosen as a reference). Boundary con-

ditions applied to the formulation are typically of Dirichlet

type and enforce ambient pressure on the contact edges.

According to the JFO model, cavitation is taken into ac-

count by: (1) satisfying mass-conserving conditions on the

boundaries between full-film and cavitation regions, loca-

tions of which are unknown a priori, and (2) thresholding

the film pressure from below by the lubricant cavitation

pressure pcav (that is, vapour or saturation pressure). The

conditions and the thresholding can be encapsulated in the

form of a complementarity constraint ðp� pcavÞh ¼ 0 be-

tween the relative pressure p� pcav� 0 and the cavity

fraction h ¼ 1� qavg

�
q� 0 [6, 7], where qavg is the aver-

age density of the lubricant and cavitation pockets across

the film [5]. Specifically, if there is no cavitation then the

fraction is zero (h = 0) and the pressure is greater than the

cavitation pressure ðp [ pcavÞ. When cavitation is present,

the fraction is positive (h[ 0) and the pressure is assumed

to be equal to the cavitation pressure ðp ¼ pcavÞ.
The p - h formulation of the RE is solved subject to the

complementarity constraint for the unknown relative

pressure and cavity fraction. Since analytical/semi-analy-

tical solutions are not available, except for a few simple

contact shapes [5, 6], the formulation and the constraint are

discretized in time (t) and space (x, y) for given boundary

conditions, sliding speed and (possibly pressure-dependent)

film thickness, density and viscosity, and then solved nu-

merically. The discretization results in a system of N al-

gebraic equations G ¼ Gðp; hÞ ¼ 0; where the relative

pressure p� pcav� 0 and the cavity fraction h C 0 are

approximated by N-element column vectors p� 0 and

h� 0, respectively. We reasonably assume that G is well-

defined and is a continuously differentiable function of p

and h. The task of finding the pressure distribution and the

cavity fraction is therefore formulated as a problem of

solving the system G under the complementarity constraint

pTh ¼ 0, p; h� 0 [7].

Current approaches decompose the problem into a series

of subproblems and alternate between solving the system

G for p while keeping h fixed and then adjusting h to

satisfy the constraint [8–10]. Iterative methods (Gauss–

Seidel, Newton) are typically used for the solution, while

pivoting algorithms (Murty, Lemke) or if-else switching

are employed for the adjustment. To date, however, there is

no approach that allows for an efficient and stable search of

the pressure distribution and the cavity fraction. This is an

important requirement for solving large-scale problems

that arise in the transient analysis and optimisation of

contacts, especially with complex shapes.

2 FBNS Algorithm

We propose a two-step algorithm, called Fischer-

Burmeister-Newton-Schur (FBNS), for solving the con-

strained system G.

2.1 Reformulation of the Complementarity Constraint

In the first step, the constraint pTh ¼ 0, p; h� 0 is replaced

by a system F ¼ Fðp; hÞ ¼ 0 of N Fischer-Burmeister

(FB) equations defined as Fj ¼ Fjðpj; hjÞ ¼ pj þ hj �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

j þ h2
j

q
¼ 0; j = 1, …, N where pj and hj are the j-th

elements of the relative pressure and cavity fraction vec-

tors, respectively. The replacement does not introduce ap-

proximation error since Fj(pj, hj) = 0 if and only if

pjhj = 0 and pj, hj C 0 [11]. The FB equations have pre-

viously been used to reformulate problems with comple-

mentarity constraints into unconstrained problems of

solving systems of equations or unconstrained optimisation

[11, 12]. The reformulation has so far been applied to

complementarity problems with an explicit relationship

a ¼ HðbÞ between complementarity variables a and b,

whereas the lubrication problem is generally given by an

implicit relationship Gðp; hÞ ¼ 0. For the latter, the refor-

mulation results in an unconstrained system of 2N equa-

tions consisting of two systems Fðp; hÞ ¼ 0 and

Gðp; hÞ ¼ 0.

2.2 Solution to the Unconstrained System

The second step is an efficient solution of the uncon-

strained system. Since the system is continuously differ-

entiable (except at pj = hj = 0, this case is discussed later),

the Newton method can be applied to find the solution

iteratively, that is pðkþ1Þ ¼ pðkÞ þ dpðkÞ and hðkþ1Þ ¼ hðkÞ þ
dhðkÞ; where dpðkÞ and dhðkÞ are the solution updates at the
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k-th iteration. The updates would normally be calculated by

solving the following system of linear algebraic equations:

J
dpðkÞ

dhðkÞ

" #
¼

JF;p JF;h

JG;p JG;h

� �
dpðkÞ

dhðkÞ

" #
¼ �

F

G

� �
at ðp; hÞ

¼ ðpðkÞ; hðkÞÞ; ð2Þ

where JF;p ¼ oF=op, JF;h ¼ oF=oh, JG;p ¼ oG=op and

JG;h ¼ oG=oh. However, the difficulties of solving the

system in this form are that its size is twice the size of the

original system G and that J will typically be worse con-

ditioned than JG;p and JG;h. These difficulties are addressed

as follows.

First, note that the Jacobian matrices JF;p and JF;h are

diagonal with the elements given by J
ðjÞ
F;p ¼ 1�

pj

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

j þ h2
j

q
and J

ðjÞ
F;h ¼ 1� hj

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

j þ h2
j

q
, respectively.

It can be shown that maxðJðjÞF;p; J
ðjÞ
F;hÞ 2 ½1�

ffiffiffi
2
p

=2; 2� for all

pj and hj except when both are zero (Appendix, Lemma 1).

By swapping the j-th and (j ? N)-th columns of J when

J
ðjÞ
F;p\J

ðjÞ
F;h, it is thus possible to construct a reordered ma-

trix Jr whose the top-left N-by-N submatrix (AF in Eq. (3))

is diagonal, has positive elements and its condition number

is at most 4þ 2
ffiffiffi
2
p

(Appendix, Theorem 1). After re-

ordering, the system in Eq. (2) can be rewritten as:

Jr
da
db

� �
¼ AF BF

AG BG

� �
da
db

� �
¼ � F

G

� �
; ð3Þ

where da and db denote the reordered solution updates and

AF, BF, AG, and BG are the reordered Jacobian matrices.

The above procedure fails when pj = hj = 0, in which case

J
ðjÞ
F;p and J

ðjÞ
F;h are undefined. This can occur on the contact

boundaries when the ambient and cavitation pressures are

equal. To rectify this, pj or hj can be set to a small positive

number (e.g. machine epsilon, *2.22 9 10-16 for double

precision) so that J
ðjÞ
F;p and J

ðjÞ
F;h become well-defined with

virtually no compromise to the solution accuracy.

Second, we exploit the properties of AF and solve the

system in Eq. (3) using the Schur complement of Jr with

respect to AF. This produces the following two linear

systems of size N each that need to be solved sequentially:

ðBG � AGA�1
F BFÞdb ¼ �Gþ AGA�1

F F;

AFda ¼ �F� BFdb:
ð4Þ

Under reasonable assumptions, the matrix BG � AGA�1
F BF

is nonsingular at the solution (Appendix, Theorem 2)

which ensures superlinear convergence of the Newton

method if the initial cavity fraction hð1Þ and relative pres-

sure pð1Þ are sufficiently close to that solution [13]. A proof

showing that the matrix BG � AGA�1
F BF is well-condi-

tioned has not yet been obtained. In practice, however, we

found that its condition number was always lower than that

of J. An argument for the better conditioning of BG �
AGA�1

F BF as compared to J is that both are constructed

from discretization matrices but the former is four times

smaller than the latter. Typically, as the size of dis-

cretization matrix increases, its condition number also in-

creases [14]. Considering the fact that BG � AGA�1
F BF has

the same size and similar sparsity structure to the differ-

ence between BG and AG (and hence between JG;p and

JG;h), the existing computer code used so far for the cal-

culation of the pressure p from the system G would require

only minor adaptations to solve the top system in Eq. (4).

Once db is solved for, the calculation of da from the

Table 1 Dimensional

parameters used for the

numerical simulations of

hydrodynamic contacts with

surface texturing

*, ** Minimum film thickness

with and without the squeeze

and misalignment effects,

respectively

Common

U Sliding speed ðm/sÞ 5

href Reference film thickness (lm) 15

hdimple Dimple depth (lm) 12

pref Reference pressure (Pa) 106

pcav Cavitation pressure (Pa) 30 9 103

pamb Ambient pressure (Pa) 100 9 103

Simulation 1 (comparison of algorithms)

hmin Minimum film thickness (lm) 15

l Lubricant viscosity (Pa s) 0.03

B Contact width (mm) 80

L Contact length (mm) 80

Simulation 2 (transient analysis)

hmin Minimum film thickness (lm) 7.6*, 15**

l Lubricant viscosity (Pa s) 0:01 expð1:12� 10�8 � prefpÞ
B Contact width (mm) 20

L Contact length (mm) 20
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bottom system in Eq. (4) is straightforward considering the

diagonal structure and the condition number of AF. The

solution updates dpðkÞ and dhðkÞ can then be recovered by

reverse reordering da and db.

The following example demonstrates the use of the

FBNS algorithm in solving the discretized Reynolds

equation with constant density and viscosity of the

lubricant

Gðp; hÞ ¼ Apþ Bhþ c ¼ 0; ð5Þ

where A and B are constant matrices that approximate the

Poiseuille and Couette (cavity fraction term) flow compo-

nents, and c is a constant vector that approximates the

Couette flow component (full-film term) and collects the

boundary conditions. First, by solving Eq. (5) for zero

cavity fraction, the initial value of the relative pressure pð1Þ

is obtained. The Jacobian matrices calculated from Eq. (5)

are JG;p ¼ A and JG;h ¼ B. For low-order discretization

schemes, the matrices are sparse and can often be stored in

computer memory. Next, the iterative procedure of finding

p and h starts by calculating the Jacobian matrices JF;p and

JF;h for pð1Þ and zero cavity fraction and constructing the

combined Jacobian matrix J in Eq. (2). The indices rj,

j = 1, …, 2 N used for the reordering of J are given by:

rj = j and rj?N = j ? N for JF,p
(j) C JF,h

(j) , and rj = j ? N

and rj?N = j otherwise. The reordered Jacobian matrix Jr

is decomposed as shown in Eq. (4), and the updates of the

reordered solution vectors da and db are calculated. The

updates are then reverse reordered to obtain dp and dh,

and added to the current values of the relative pressure

and cavity fraction vectors. The updated vectors are used

to again calculate the Jacobian matrices JF;p and JF;h, and

the above iterative procedure is repeated until stopping

criteria are satisfied, typically until the norms of the up-

dates and the nonlinear residual are below chosen

thresholds.

3 Numerical Simulations and Results

The results obtained using the FBNS algorithm were first

validated against those reported in previous studies. The

performance of the algorithm was then evaluated by car-

rying out numerical simulations on hydrodynamic contacts

with surface texturing. The contacts are of high practical

importance in automotive, marine and power generation

industries as they can exhibit higher load-carrying capacity

and lower friction force than those without texturing [15,

16]. Simulation of the contacts considering cavitation is

computationally challenging due to the complexity of their

shape and the nonlinearity of the pressure distribution [17,

18]. The values of the dimensional parameters used in the

simulations are listed in Table 1.

3.1 Validation Against Numerical and Semi-Analytical

Results

We validated the FBNS algorithm against numerical and

semi-analytical methods in three cases: a steady 1-D

Reynolds equation with compressible or piezoviscous lu-

bricant and a transient 2-D Reynolds equation of pure

squeeze motion. For the steady 1-D case with compressible

lubricant, our results were compared against those obtained

by the complementarity method developed in [6] for the

double parabolic slider bearing described in [19].

Specifically, the bearing length is 76.2 mm and the mini-

mum and maximum film thickness values are 25.4 lm and

50.2 lm, respectively. The sliding speed is U = 4.57 m/s,

the lubricant viscosity is l = 0.039 Pa s, and boundary

pressure values are 3.36414 9 105 Pa (inlet) and 0 Pa

(outlet). The dependence of the lubricant density on pres-

sure is approximated using the Dowson and Higginson

model with the constants C1 = 2.22 9 109 and C2 = 1.66.

Figure 1 shows an excellent agreement between the pres-

sure distributions calculated using the FBNS algorithm and

the complementarity method.

For the steady 1-D case with piezoviscous lubricant, we

used the complementarity method [6] for the journal

bearing described in [20]. The bearing has 0.04 mm radial

clearance, and the eccentricity ratios are e = 0.93 and

e = 0.95. The bearing and journal radii are 31.29 and

31.25 mm, respectively, the angular speed is 250 rad/s, and

the boundary pressure is 0 Pa. The Roelands model for the

viscosity-pressure dependence was employed with the

following parameters: l0 = 5.7 mPa s, a = 1.12 9 10-8,
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Fig. 1 a Film thickness of a double parabolic slider bearing and

b comparison of the corresponding pressure distributions calculated

using the FBNS algorithm and the complementarity method [6] for

compressible lubricant (Dowson and Higginson model)
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lR = 6.315 9 10-5, pR = 1.98 9 108, z = apR/log(l0/

lR) [21]. The pressure distributions were calculated for

e = 0.93 and e = 0.95 using the FBNS algorithm and the

complementarity method (both implemented using the

Roelands model). As can be seen in Fig. 2, results obtained

by these methods are identical.

For the transient case, we use the Reynolds equation

taken from [6] that is based on the analytical formulas

derived in [22]. The problem is to find the time-dependent

radius of cavitation area in a pure squeeze motion between

two circular plates of radius 5 mm each and separated by

a lubricant with constant viscosity l = 5 mPa s. The

squeeze motion is given by the sinusoidal formula hðtÞ ¼
hmin þ hhalfð1� cosðxtÞÞ with hmin ¼ 9:14 lm, hhalf ¼
320:8 lm and x = 99.74 rad/s. For this particular case, the

time evolution of the radius can be found by solving three

equations [6]: an algebraic equation for determining the

time of cavitation onset, and two ordinary differential
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Fig. 2 Comparison of pressure distributions calculated using the

FBNS algorithm and the complementarity method [6] for journal

bearings with the eccentricity ratios e = 0.93 and e = 0.95, and

piezoviscous lubricant (Roelands model)
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Fig. 3 Comparison of time evolution of the radius of cavitation area

in a pure squeeze motion between two circular plates calculated using

the FBNS algorithm and the semi-analytical method [6, 22]

Fig. 4 Numerical simulation of hydrodynamic contact with surface

texturing. a Contact geometry with sliding flat and stationary textured

surfaces, the latter containing an array of 10 9 10 texture cells with a

trapezoidal dimple in the centre of each cell. b Non-dimensional film

thickness h=href that represents the contact geometry in the Reynolds

equation. c Non-dimensional pressure distribution p=pref calculated

for the film thickness
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equations describing the growth and collapse of the

cavitation area. Since the equations are solved numerically

(root-finding and Runge–Kutta methods were employed in

this work), the results obtained are semi-analytical. The

results are plotted in Fig. 3 and compared against those

calculated using the FBNS algorithm. A very good agree-

ment between the algorithm and the semi-analytical for-

mulation was achieved. The step character of the numerical

result is due to discretization and could be made smoother

by increasing the numbers of time steps and the points used

for the discretization of the radius of cavitation area.

3.2 Comparison Against Other Algorithms

We compared the FBNS against currently the most effi-

cient and robust algorithms in the calculation of the pres-

sure distribution, namely the augmented iterative Elrod-

Adams p - h (EA-PTHETA) [23], the exact linear com-

plementarity p - h based on pivoting (LC-PTHETA) [6],

and the modified switch function u - g (MOD-PHIG)

[24]. For the EA-PTHETA, LC-PTHETA and FBNS al-

gorithms, the RE was discretized using the finite volume

(FV) method. Since the equation is elliptic with respect to p

in the full-film region, the partial derivatives of the pres-

sure were approximated by a second-order central differ-

ence formula. In the cavitation region, the equation is

hyperbolic with respect to h and a first-order upwind

formula was employed. For the MOD-PHIG algorithm, the

finite difference (FD) method was used to discretize the RE

as required [24]. The partial derivatives of the pressure and

cavity fraction were approximated by central and backward

difference formulae, respectively. The switch modification

parameter gFactor ¼ 0:8 was used as recommended in

[24]. The meshes/grids were generated for the FV and FD

methods in such a way that the number of degrees of

freedom was the same for all algorithms. We used the

direct Lemke method for the linear complementarity

problem in the LC-PTHETA algorithm and direct solvers

for the linear systems arising in the MOD-PHIG and FNBS

algorithms. The EA-PTHETA algorithm cannot take ad-

vantage of a direct method since it is iterative by design. To

solve the linear systems arising in the algorithm, the

Gauss–Seidel method with over-relaxation was employed.

The relaxation parameters for pressure xp = 1.8 and cavity

fraction xh = 0.5 were found using an empirical optimi-

sation. The values are in agreement with those found in

other studies [18]. Boundary conditions for all the

simulations were of Dirichlet type and enforced the non-

dimensional normalised pressure ðpamb � pcavÞ=pref on the

contact edges. Two stopping criteria were defined for

solving the constrained system G: (1) the maximum ab-

solute residual of each equation in G had to be less than

10-3 and (2) the maximum relative residual of G had to be

less than 10-6. The simulations were run in MATLAB on a

Table 2 Number of iterations

and computational times

(seconds) required by different

algorithms to calculate the

pressure distribution for

increasing number of dimples

and degrees of freedom

* Iteration at which algorithm

stalled

– Algorithm did not converge

within 15 hours

Dimples Degrees of

freedom

Algorithm

EA-PTHETA LC-PTHETA MOD-PHIG FBNS

1 900 683 1.7 208 1.4 134 3.7 10 0.1

4 3,600 1,167 11.1 836 107.7 162 18.2 12 0.3

9 8,100 1,713 36.3 1,812 1,078.0 155 39.2 12 0.7

16 14,400 2,238 86.1 3,100 5,836.1 153* 106.4 13 1.3

25 22,500 2,709 205.2 4,690 22,790.2 149 105.1 14 2.2

36 32,400 3,143 274.2 – 145 148.7 15 3.4

49 44,100 3,457 448.1 – 179 301.4 13 4.3

64 57,600 3,799 704.0 – 179 404.3 12 5.7

81 72,900 4,125 921.7 – 175 435.5 14 7.7

100 90,000 4,449 1,276.0 – 184 615.6 13 11.3

121 108,900 4,832 1,755.2 – 193 888.2 14 12.2

144 129,600 5,265 2,146.4 – 209 1,010.8 15 17.8

169 152,100 5,722 2,739.8 – 196 1,115.4 15 19.3

196 176,400 5,895 3,261.0 – 186 1,193.2 15 23.9

225 202,500 6,274 3,569.4 – 195 1,329.5 15 24.1

256 230,400 6,475 4,333.5 – 175 1,338.4 14 27.3

289 260,100 6,772 4,912.4 – 171 1,475.3 14 30.1

324 291,600 7,109 5,863.4 – 172 1,712.5 14 33.9

361 324,900 7,552 6,995.4 – 165* 1,805.4 16 45.3

400 360,000 7,971 8,184.2 – 167* 2,041.5 14 47.1
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workstation with 32 GB RAM and Intel Xeon 3.3 GHz

processor.

The pressure distribution was calculated for a fully

textured sliding hydrodynamic contact under constant

density and viscosity of the lubricant. The contact shape

was flat with an array of K 9 K evenly distributed texture

cells on the stationary surface; the centre of each cell had a

recess in the shape of a trapezoidal dimple that covered

53 % of the cell area. The number of cells was varied from

1 9 1 to 20 9 20 which corresponded to the range of the

number of degrees of freedom (that is, the number N of

elements in the relative pressure vector p) from 900 to

360,000. Example of a contact with 10 9 10 array of

texture cells together with the corresponding film thickness

and pressure distribution is shown in Fig. 4. The criteria

used for comparing the algorithms are the number of it-

erations and computational time. Only iterations at which

the cavity fraction could change for at least two dis-

cretization points were considered. Specifically, we mea-

sured the numbers of: (1) outer iterations (EA-PTHETA),

(2) pivoting operations (LC-PTHETA), (3) switch function

adjustments (MOD-PHIG), and (4) Newton iterations

(FBNS). The results are listed in Table 2 and demonstrate

that the FBNS is substantially faster than the established

algorithms, yielding roughly two orders of magnitude re-

duction in computational time. Furthermore, the number of

iterations in the FBNS remained relatively constant re-

gardless of the problem size and was several times lower

than those measured for other algorithms.

3.3 Transient Simulation for Piezoviscous Lubricant

The FBNS was also evaluated in the transient simulation

under constant density and pressure-dependent viscosity of

the lubricant. Such analyses are particularly difficult to

conduct due to the combination of the cavitation constraint

and the nonlinear and transient effects. The following

simulation serves as an illustrative example of the effi-

ciency of our algorithm and shows what can be achieved in

computational hydrodynamics by using it. The simulation

was carried out for a partially textured hydrodynamic slider

contact (Fig. 5) with a parabolic film thickness function

given by h ¼ href ½1þ 5:2ðx=B� 0:5Þ2�. The stationary

surface contained an array of 2 9 5 texture cells with an

Fig. 5 Transient numerical simulation of hydrodynamic contact with

surface texturing. a Contact geometry with sliding parabolic and

stationary textured surfaces, the latter containing an array of 2 9 5

texture cells with an elliptical dimple in the centre of each cell. b

Non-dimensional film thickness h=href that represents the contact

geometry in the Reynolds equation. Illustration of c misalignment and

d squeeze effects simulated

Tribol Lett (2015) 58:18 Page 7 of 11 18

123



18 Page 8 of 11 Tribol Lett (2015) 58:18

123



elliptical dimple in the centre of each cell that covered

28 % of the cell area. The cells occupied two-thirds of the

contact width and the entire contact length. The dimple

shape was defined by the function hdimple½1� ððx� xcÞ=
ð0:01BÞÞ2 � ððy� ycÞ=ð0:06LÞÞ2�, where xc and yc denote

the dimple centre. The shape was added to h whenever the

term inside the square brackets was non-negative. The

transient effects included a combination of the sliding,

squeeze-film motion and misalignment sway. The combi-

nation was chosen to highlight the ability of the FBNS

algorithm in the simulation of various dynamics that can

occur in lubricated contacts. The squeeze and misalign-

ment effects were simulated by adding the terms

-0.15[1 - cos (2p(t - t0)/(t1 - t0))] and 0.7(y/L -

0.5) sin (2p(t - t0)/(t1 - t0))b, respectively to h, where t0
and t1 denote the start and end time of the effect, respec-

tively. The factor b = 4(t - t0)(t1 - t)/(t1 - t0)2 was used

to smooth out the changes in the film thickness near t0 and

t1. The dependence of viscosity on pressure was modelled

by the Barus law lref expðaBarusprefp � 10�8Þ with the pa-

rameters lref ¼ 0:01 and aBarus ¼ 1:12. The implicit Euler

method with the step of Dt ¼ 5:6 � 10�5s was used for time

discretization. The movie with the transient simulation is

attached to this paper (Online Resource). Non-dimensional

film thickness and pressure distribution at the time points

that correspond to pure sliding, misalignment, squeeze,

misalignment and squeeze are shown in Fig. 6. There were

21,904 degrees of freedom per time step and the total

number of 500 steps. The FBNS calculated the transient

solution in 8,361 s, averaging at 16.7 s per time step.

Consequently, the FBNS proves to be an efficient tool for

the analysis of hydrodynamic lubrication problems where

cavitation is of importance.

4 Conclusions

In conclusion, by reformulating the discretized cavitating

flow, we developed an efficient algorithm for calculating

the pressure distribution in a contact between two surfaces

under thin film lubrication. The algorithm accounts for

cavitation by introducing additional nonlinearity to the

discretized RE which allows for including cavitation to-

gether with other effects (pressure-dependent density, vis-

cosity, and film thickness) in an unconstrained system of

nonlinear algebraic equations. Subsequently, solving the

system requires a computational effort similar to that when

cavitation is not considered. Also, since in the derivation of

the FBNS we did not make assumptions specifically tai-

lored to the cavitating flow, the algorithm is readily ap-

plicable to other physical problems where discretized

differential equations are solved subject to complemen-

tarity constraints.
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Appendix

We prove a lemma and two theorems on the properties of

AF and BG � AGA�1
F BF. In the following, we assume that

pj and hj cannot be both equal to zero.

Lemma 1 The maximum of the partial derivatives of the

Fischer-Burmeister (FB) function M ¼

max 1� p
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ h2
p

; 1� h
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ h2
p� 	

lies in the in-

terval 1�
ffiffiffi
2
p �

2; 2

 �

.

Proof We can assume without loss of generality that

h = ap for some a 2 R: The partial derivatives can thus be

written as 1� p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ apð Þ2

q
¼ 1� 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

and

1� ap

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ apð Þ2

q
¼ 1� a

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

. We can deter-

mine the interval of M by considering the following two

cases:

1. 1� 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

� 1� a
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

when a C 1

For this case, we need to consider only the function

1� 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

. Its derivative is given by a(1 ? a2)-3/2

and it is positive for a C 1. The function is therefore

increasing and attains the minimum value 1�
ffiffiffi
2
p �

2 at

a = 1 and the maximum value 1 at the limit as a ? ?.

The function values lie in the interval 1�
ffiffiffi
2
p �

2; 1

 �

.

2. 1� 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

\1� a
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

when a\ 1

Here, we need to consider only the function

1� a
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p

. Its derivative equals to -(1 ? a2)-1/2 ?

a2(1 ? a2)-3/2 and it is negative for a\ 1. Thus, the

function is decreasing and has the minimum value 1�ffiffiffi
2
p �

2 at a = 1 and the maximum value 2 at the limit as

b Fig. 6 Transient numerical simulation of hydrodynamic contact with

surface texturing. (left) Non-dimensional film thickness h=href and

(right) non-dimensional pressure distribution p=pref at the time points

that correspond to: (top to bottom) pure sliding, misalignment,

squeeze, misalignment and squeeze. Movie with the transient

simulation is attached to this paper (Online Resource). Movie.

Transient numerical simulation of hydrodynamic contact with surface

texturing. The plots represent non-dimensional: (top left) film

thickness (top right) minimum film thickness and load-carrying

capacity (that is, the integral of the pressure over the contact area)

(bottom left) pressure distribution, and (bottom right) cavitation area.

Annotations (top left) mark the start and end time of squeeze and

misalignment effects
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a ? -?. The interval of the function values is therefore

1�
ffiffiffi
2
p �

2; 2

 �

.

Combining the two intervals gives

M 2 1�
ffiffiffi
2
p �

2; 2

 �

: h

Theorem 1 The condition number of the matrix AF is at

most 4þ 2
ffiffiffi
2
p

.

Proof The matrix AF is diagonal with each element given

by maxðJðjÞF;p; J
ðjÞ
F;hÞ which is the maximum of the partial

derivatives of the FB function. Since the condition number

of a diagonal matrix is equal to the ratio of the absolute

maximum and minimum values of the diagonal elements, it

follows from Lemma 1 that the condition number of AF is

at most 2
�

1�
ffiffiffi
2
p �

2

 �

¼ 4þ 2
ffiffiffi
2
p

. h

Theorem 2 Assuming that the matrix BG is nonsingular

at the solution of the constrained system G, then the matrix

BG � AGA�1
F BF is also nonsingular.

Proof We prove the theorem by showing that BG �
AGA�1

F BF ¼ BG at the solution. Under the assumption that

pj = hj = 0 does not occur, it follows from the comple-

mentarity constraint that either pj = 0 and hj [ 0 or pj [ 0

and hj = 0. Assume without loss of generality that pj = 0

and hj [ 0. The elements of the diagonal Jacobian matrices

of the system F are then given by J
ðjÞ
F;p ¼ 1

�pj

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

j þ h2
j

q
¼ 1 and J

ðjÞ
F;h ¼ 1� hj

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

j þ h2
j

q
¼ 0.

Since AF is well-conditioned (Theorem 1), thus nonsin-

gular, and the elements of the diagonal matrix BF can be

defined as minðJðjÞF;p; J
ðjÞ
F;hÞ, it follows that BF is a zero matrix

and hence BG � AGA�1
F BF ¼ BG. h

The rationale for the assumption that the matrix BG is

nonsingular follows from the so-called u - g switch

function formulation of the RE derived in [8].

Specifically, the Reynolds equation (RE) can be refor-

mulated by substituting p = gu and h = (1 - g)u,

where the switch function g equals to one in the full-film

and to zero in the cavitation regions. The meaning of u
depends on g, particularly it is the relative pressure when

g = 1 and the cavity fraction when g = 0. The dis-

cretization of the reformulated RE produces the system

Hðu; gÞ ¼ 0. At the solution, where g is fixed with the

correct values and BF is a zero matrix, the Jacobian

matrix JH;u ¼ oH=ou is equal to BG. This is because BG

is constructed from the columns of JG;p when pj [ 0 and

hj = 0 (full-film region, g = 1), and from those of JG;h

when pj = 0 and hj [ 0 (cavitation region, g = 0). In

other study, the Newton method was successfully used to

solve H for u while keeping g fixed [9], thus providing

empirical evidence that JH;u and consequently BG are

indeed nonsingular.
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