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Abstract The potential for using an empirical expression

to predict the piezoviscous response of a fluid from its

pressure–volume behavior is explored. This approach is

particularly promising since the variation of volume with

pressure can be obtained relatively easily using atomistic

simulations that are based on the molecular structure of the

fluid. The accuracy of predictions made using the proposed

method is evaluated, and its limitations are discussed in

terms of sources of error and potential means of mini-

mizing that error going forward.

Keywords Viscosity correlation � Pressure–viscosity

response � Pressure–viscosity coefficient � Molecular

dynamics simulation � Lubrication

1 Introduction

Viscosity, a fluid property that describes resistance to

shear, is an important characteristic in lubrication. Viscous

fluids present between two contacting surfaces, in nature

and machines, reduce friction, and increase durability [1].

In hydrodynamic lubrication, viscosity drives the formation

of a protective layer of sufficient thickness that separates

the roughness of two contacting surfaces [2]. The forma-

tion and effectiveness of this layer are highly dependent on

the effects of pressure, temperature, and shear rate within

the interface on viscosity [3–5]. The increase of viscosity

with pressure can significantly affect interface perfor-

mance, particularly at the high pressures of elastohydro-

dynamically lubricated interfaces [6] and even in plain

bearings. The rate at which a lubricant’s viscosity increases

with pressure is usually characterized by a pressure–vis-

cosity coefficient, a material-specific constant derived from

experimental viscosity data.

The pressure–viscosity response (PVR) of a fluid is a

function of its chemical structure and composition [5], so

obtaining pressure–viscosity coefficients for real lubricants

usually requires highly accurate experiments to be per-

formed for each fluid composition. To address this issue, it

is desirable to be able to predict PVR efficiently using

models. Such models can be divided into two categories,

atomistic and empirical. Atomistic models, such as

Molecular Dynamics (MD) simulation, provide explicit

representation of molecular structure as well as chemistry

and can be used to predict PVR for nanoscale volumes of

fluid. Empirical models, on the other hand, are mathe-

matical equations developed from experimental observa-

tions that relate PVR to other material-specific properties.

As discussed next, there are advantages and disadvantages

to each of these approaches and neither approach has been

thoroughly validated.

MD simulations explicitly describe the molecular

structures of fluids and predict the evolution of those

structures over time. The high level of detail available from

these simulations provides a means of leveraging the

relationship between molecular structure and material

properties. Viscosity (and so PVR) can be calculated

directly from such simulations using either equilibrium
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(EMD) or non-equilibrium (NEMD) methods; however,

there are limitations with both approaches. Viscosity pre-

dictions through EMD are estimated at zero shear rate from

either the Einstein relation or the Green–Kubo equation,

both of which require the computation of time correlation

functions. The accuracy of these functions depends on the

size of the system used [7, 8] as well as the length of the

relaxation time [9]. Since size and relaxation time are

influenced by structure, computing viscosity using EMD

can be prohibitively time intensive [7], particularly for

complex lubricants. NEMD viscosity predictions are based

on stress–strain relationships and are computed for systems

subject to nonzero shear rates. While viscosity converges

rapidly at large shear rates, simulations at low shear rates

require a much longer simulation time. Due to the time

scale limitation of MD in general and long relaxation time

of complex molecules [10], NEMD of very large mole-

cules may need to be run at unrealistically large shear rates.

There may then be issues with extrapolating these results to

lower shear rates since shear thinning can occur at the large

shear rates accessible to MD simulations [11] that are not

reflected in typical lower shear rate experimental

measurements.

The alternative to MD-based approaches for predicting

PVR is the use of empirical correlations [12–15]. These

correlations are usually derived from experimental obser-

vations and enable PVR to be estimated from other mate-

rial properties such as temperature–viscosity relationships,

temperature–density relationships [12], and pressure–den-

sity relationships [12, 14, 15]. While these equations are a

simpler option, they do not explicitly capture the depen-

dence of PVR on molecular structure. Predictions from

some of these models also have large errors [14], particu-

larly if the fluid for which PVR is being predicted is very

different from the fluids to which the models were fit. More

importantly, these equations rely on experimental material

property data, which limits their application for new

lubricant mixtures unless prior experimental information is

available.

Based on our evaluation of currently available methods,

it is clear that there are pros and cons to estimating PVR

using either MD simulations or empirical equations. MD

simulations have structural precision that capture specific

features of fluid molecules, but direct viscosity predictions

demand large simulation sizes and long computational

time, especially for complex fluids. Empirical models, on

the other hand, are usually simple and straightforward

mathematical equations, but they rely on experimental data

and do not provide any insight on the dependence of

molecular structure to pressure–viscosity behavior. To

capitalize on the advantages of both methods, it would be

beneficial to predict PVR from empirical models using

MD-predicted material properties, eliminating the need for

experimental data.

This is the approach explored here. Specifically, we use

a recently proposed empirical viscosity correlation to pre-

dict piezoviscous behavior from ambient viscosity and

pressure–volume data [16]. A key feature of this approach

is that the pressure–volume data can be relatively easily

obtained from MD simulations, therefore obviating the

need for any high-pressure experimental data to predict

viscosity. The new method is evaluated in two stages. First,

we evaluate the accuracy of the proposed viscosity corre-

lation in terms of its ability to predict piezoviscosity from

experimentally measured pressure–volume data. Second,

pressure–volume data from MD simulation is used as input

into the viscosity correlation to predict pressure–viscosity

behavior. The ability of the model to make accurate pre-

dictions is found to vary from fluid to fluid. The limitations

of the model are analyzed in terms of sources of error, and

potential means of minimizing the error are discussed.

2 Methods

2.1 Empirical Model

Recently, a new empirical correlation was proposed that

provides a bridge between two very different regimes of

pressure–temperature–viscosity behavior for non-associat-

ing liquids [16]. These are the low-viscosity regime where

the temperature dependence is Arrhenius and the pressure

dependence is roughly linear and the high-viscosity regime

where the temperature dependence is super-Arrhenius and

the pressure dependence is roughly exponential. This cor-

relation is given by [16]

g ¼ A exp ðBbq
V þ CbQ

V Þ; 0\q\1; 1\Q ð1Þ

where g is viscosity, A, B, C, are various constants, q, Q are

power law exponents, and bV is the normalized Ashurst–

Hoover scaling parameter

bV ¼
1

T

� �
Vmolec

V

� �c

ð2Þ

where T is temperature, Vmolec is the specific volume of a

single molecule, V is volume, and c is the thermodynamic

interaction parameter. A, B, C, q, Q and c are material-

specific constants.

Vmolec is the mass-specific volume of a single molecule

which can be obtained either empirically or computation-

ally [16]. Empirical models, such as the Doolittle equation,

have been used to derive Vmolec from fitting to experi-

mental data. This approach is outlined in Ref. [15] where

Vmolec is equivalent to the occupied volume (Vocc in Ref.

11 Page 2 of 7 Tribol Lett (2015) 57:11

123



[15]). From atomistic modeling, Vmolec can be estimated by

dividing the van der Waals volume of one molecule,

Vmolec, by its mass.

Equation 1 represents a complete range of compressed

fluid response and creates a master Stickel plot in which the

points represent the location of the data rather than a fitted

model. In addition, it also has an added advantage of not

having singularities, a long standing problem for free-

volume formulations in numerical simulations of elasto-

hydrodynamic lubrication regimes [16]. Viscosity predic-

tions made using Eq. 1 have been shown to be very

accurate for several different liquids, from a refrigerant to a

viscous diester [16]. However, the applicability of this

method requires prior knowledge of material-specific

parameters, thus limiting this approach to fluids with

accessible or readily available B, C, q, and Q values.

In this work, we extend the potential utility of the

method by assuming that B, C, q, and Q are universal

constants for lubricant-like species. We identify values of

B, C, q, and Q by fitting Eqs. 1 and 2 to experimentally

measured data for squalane and diisodecyl phthalate, two

commonly used reference fluids [16]. The parameters

derived from fitting are B = 44.52, C = 2.36e7, q = 0.094,

Q = 2.18 such that Eq. 1 becomes

g ¼ A exp ð44:52b0:094
V þ 2:36e7b2:18

V Þ: ð3Þ

For a given fluid, we can fit values of the remaining con-

stants, A and c, using easily measured ambient viscosity

and volume. Then, Eq. 3 can be used to predict the pi-

ezoviscous response of that fluid from its pressure–volume

behavior.

Several different variables have been proposed to cap-

ture the PVR of a fluid, including the conventional pres-

sure–viscosity coefficient, a0, the secant pressure–viscosity

coefficient, aB, Blok’s reciprocal asymptotic isoviscous

pressure coefficient, a�, and the modified Blok’s coeffi-

cient, afilm [6, 15]. Here, we use Blok’s reciprocal

asymptotic isoviscous pressure coefficient, a� given by [15]

a� ¼
Z 1

0

gðP ¼ 0ÞdP

gðPÞ

� ��1

¼ g0

aNgN

þ
XN

i¼1

g0

ai

gi � gi�1

gigi�1

" #�1

ð4Þ

where gi is viscosity at pressure Pi and ai ¼ lnðgi=gi�1Þ
Pi�Pi�1

. aN

and gN are the pressure–viscosity coefficient and viscosity

at the N-th pressure, respectively.

2.2 MD Simulation

Pressure-dependent volume data can be obtained from MD

compressibility simulations. Compared to EMD and

NEMD simulations for predicting viscosity, compressibil-

ity simulations can be performed with relatively small

model systems and do not depend on relaxation time,

enabling them to be performed within relatively short

durations. Recently, we developed a simulation method

that successfully predicted the compressibility of several

model lubricants [17, 18]. We will employ a similar

approach here to estimate changes in density with pressure

for 9-N-octylheptadecane (TOM) and 1-cyclopentyl-4(3-

cyclopentylpropyl) dodecane (CPD).

The molecular structures of TOM and CPD, given in

Fig. 1a, and simulation system, Fig. 1b, are constructed

with Accelrys Materials Studio�. Subsequent simulations

are implemented using Large Atomic/Molecular Massively

Parallel Simulation (LAMMPS) software [19]. The system

has periodic boundary conditions with initial dimensions of

4.0 nm � 4.0 nm � 4.0 nm. The all-atom optimized

potentials for liquid simulations (OPLS-AA) force field

[20] with a global cutoff of 1.2 nm is used to describe bond,

angle, torsion, and non-bonded interactions between all

atoms. A Nośe–Hoover thermostat and barostat are used to

control temperature and pressure [21]. All simulations are

run with a time step of 0.25 fs and a 1–4 intramolecular van

der Waals scaling factor of 0.0. This scaling factor has been

shown to increase the accuracy of density predictions for

molecules with more than 12 carbon atoms [22].

The simulation cell is equilibrated under NVT (constant

number of atoms, volume, and temperature) conditions,

where temperature is set at 1,000 K, for approximately 125

ps, followed by NPT (constant number of atoms, pressure,

and temperature) conditions, where pressure is set to 1 atm

and temperature is kept constant at 300 K, for 5 ns. The

initial density of the system is averaged over the last 0.5 ns

of the NPT stage. Compression is then imposed on the

system, where the dimensions of the simulation box are

reduced at a constant engineering strain rate of 0.0001 ns�1

in all three dimensions, to a maximum pressure of

400 MPa. At this strain rate, the x-, y-, and z-dimensions of

the box are reduced to a maximum of 4.5 % of their initial

length. During this compression process, six different

simulation sizes are selected for further analysis. Each

compressed system is re-equilibrated under NVT condi-

tions at a temperature of 300 K for an additional 0.5 ns, and

average pressure estimations are taken over the last 0.25 ns.

Vmolec, the specific volume of a single molecule, can also

be estimated from the simulations. Here, Vmolec is estimated

using the Connolly Volume Computation method [23]

available in the Atom Volumes and Surfaces tool in

Materials Studio�. The Connolly Volume Computation

method is a geometric computation method that estimates

volume-based information using analytical partition cal-

culations [23]. A probe-like sphere scans the molecule to

provide volume estimations. Variations in the probe radius

provide different volume information, such as van der
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Waals volume, solvent-excluded volume, and interstitial

volume [23]. In this work, the probe radius is set to zero

and vmolec is estimated as the van der Waals volume of a

single molecule.

3 Results and Discussion

3.1 Accuracy of the General Correlation

The capability of the general viscosity correlation to

make accurate predictions is evaluated for five fluids: di-

(2ethylhexyl)-sebacate (DOS), 1-cyclohexyl-3(2-cyclohexyl-

ethyl)hendecane (CHH), 9-N-octylheptadecane (TOM), 1-

cyclopentyl-4(3-cyclopentylpropyl) dodecane (CPD), and

80W-90. For these molecules, A and c are estimated from

fitting to temperature–viscosity and temperature–volume

data (0–120 �CÞ at atmospheric pressure (P ¼ 0 MPa); data

for DOS, CHH, TOM, and CPD are available in the 1953

ASME Pressure–Viscosity Report [24] and for 80W-90 in

previous technical reports [25, 26] as well as in the

‘‘Appendix’’ of this paper. Vmolec is estimated from fitting

pressure–temperature–volume and pressure–temperature–

viscosity data [24–26] to the Doolittle equation [15]. Table

1 lists the parameters in Eqs. 2 and 3, and Table 2 reports

the predicted PVR at various temperatures. The predictions

for CHH have the largest error, � 20 % at 0 �C, while

predictions for 80W-90 have the smallest error, � 0.4 % at

50 �C. These results show that although the model pre-

dictions are reasonable, the accuracy of the method varies

from fluid to fluid and none of the predictions are perfect.

The observed error may be due to inaccuracies in the form

of Eq. 3, the fit universal constants in that equation, or the

value of Vmolec. These will be discussed further in the next

section.

3.2 Accuracy of the General Correlation with MD Data

Next, the general viscosity correlation, Eq. 3, is tested

using pressure–volume data obtained from MD compress-

ibility simulations of TOM and CPD at 20�C. When a

system is compressed, its volume decreases with increasing

pressures. Figure 2 shows these expected trends for TOM

and CPD predicted by both MD simulations and the

experimentally fit [24] Tait equation. Vmolec is calculated as

described in Sect. 2 using the Connolly Volume Compu-

tation. Then, using the simulation-predicted Vmolec and

ambient viscosity/volume data from experiment, we refit A

and c. Finally, we can predict PVR using Eq. 3 with the

simulation predictions shown in Fig. 2. The results are

summarized in Table 3.

The model predictions with the simulation data are less

accurate than those predicted by the viscosity correlation

with experimental volume data. To understand the

observed error, we consider its possible sources, the

empirical equation and MD simulations. The contribution

Fig. 1 a Fully atomistic

structure of TOM and CPD.

b Cross-sectional view of the

initial configuration of the

model where the black line

indicates the periodic boundary.

Colored spheres represent

individual atoms: orange—

carbon; green—hydrogen

(Color figure online)

Table 1 Vmolec, vmolec, A, and c values required to predict PVR for

DOS, CHH, TOM, CPD, and 80W-90

Molecule Vmolec (cc/g) vmolec ðnm3Þ A c

DOS 0.6602 0.468 8.257e�12 3.568

CHH 0.8756 0.507 1.257e�11 6.072

TOM 0.7673 0.449 8.257e�12 3.88

CPD 0.7646 0.443 7.471e�12 4.136

80W-90 0.699 - 1.190e�9 4.402

These values are derived from physical measurements of pressure–

temperature–volume and pressure–temperature–viscosity data. vmolec

is calculated by multiplying the fit value of Vmolec by molecule mass;

this is not available for 80W-90 since gear oils are composed of many

species of hydrocarbons
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of these to the overall error can be isolated by calculating

PVR with various combinations of input data. The results

are shown in Table 4.

The best predictions are made, as expected, using the

experimental data. As mentioned previously, the error that

is observed in these cases is attributable to Eq. 3 itself, the

universal constants, or the value of Vmolec obtained by fit-

ting experimental data to the Doolittle equation. The form

of the equation, which combines two exponential power

law terms, creates a viscosity master curve and is able to

capture the Stickel curve up to high compressions. Addi-

tionally, this equation also includes molecular volume

characteristics, Vmolec, which makes it robust and trans-

ferrable to specific molecules [16]. Therefore, this is not

expected to be a major source of error. The accuracy of the

constants may be improved slightly by fitting them to data

from more fluids. However, we have found that the best-fit

values of B, C, q, and Q are relatively constant for the

different fluids we considered here. Lastly, the molecular

volume obtained from a fit to the Doolittle equation. The

Doolittle equation is known to be limited in its ability to

reproduce experimental accuracy [27]. Therefore, we

expect this to be the primary source of error associated with

correlating experimental pressure–volume data to PVR.

Introducing MD simulation into the method increases

the error in the predicted PVR. This error is attributable to

two factors, the molecular volume and pressure–volume

data. We compare the pressure–viscosity coefficient pre-

dictions made using Vmolec from MD and P–V from

experiment to those made using Vmolec from experiment

and P–V from MD. The results shown in Table 4 indicate

that the error in the pressure–volume data is greater for

TOM, while the error in the molecular volume is greater

for CPD. In both cases, the error associated with the Vmolec

is reasonable in the sense that this value is well known to

significantly depend on the details of its calculation, and

there is no standard method. In fact, it was shown that

molecular volume predictions from several different com-

monly used software packages (Materials Studio, PcModel,

and TSAR) are inconsistent, primarily because of different

atomic radii used in the volume computation method [28].

In general, there may be issues with the limited ability of

Vmolec to capture the role of molecular size in resisting

intermolecular motion; e.g., the molecular volume of a

Table 2 Predicted a� for DOS,

CHH, TOM, CPD, and 80W-90

are compared to reported

literature values [24, 25]

(literature values in parenthesis)

Temperature (�C) DOS ðGPa�1Þ CHH ðGPa�1Þ TOM ðGPa�1Þ CPD ðGPa�1Þ 80W-90 ðGPa�1Þ

0 13.94 (17.15) 33.77 (27.97) 15.25 (13.93) 18.88 (19.29) –

20 – 27.57 (23.80) 12.69 (13.11) 15.93 (16.96) –

25 11.50 (14.21) – – – –

30 – – – – 23.82 (23.61)

38 11.26 (12.68) 24.79 (21.21) 11.78 (11.93) 14.48 (15.13) –

50 – – – – 20.80 (20.88)

80 – – – – 17.48 (17.27)

99 8.48 (8.96) 14.02 (14.48) 9.29 (8.66) 10.33 (10.56) –

120 – – – – 14.58 (13.98)

Fig. 2 Normalized volume (normalized by ambient volume) versus

pressure plots for TOM and CPD. Symbols represent MD data, and the

dashed lines represent the Tait equation fit to experimental data [24]

Table 3 vmolec, Vmolec, A, c, and a� values predicted by MD for TOM and CPD at 20 �C. a� predictions are compared to the reported literature

values [24]

Molecule vmolec ðnm3Þ Vmolec (cc/g) A c a�MD (GPa�1) a�Lit: (GPa�1)

TOM 0.440 0.7520 7.471e�12 3.690 11.44 13.11

CPD 0.417 0.7203 5.425e�12 3.530 12.71 16.96

Tribol Lett (2015) 57:11 Page 5 of 7 11

123



ringed structure may exclude the volume in the center of

the ring, but that volume is not available for neighboring

molecules to occupy.

This error associated with the pressure–volume predic-

tions may be due to limitations of the empirical potential

that describes the atomic interactions and behavior of

bonds. The empirical model used here, OPLS, is parame-

terized (fit to experimental data or first principles calcula-

tions) under ambient conditions [20]. This can limit its

ability to accurately predict the conformation of molecules

under high pressures. Going forward, this may be addres-

sed by identifying alternative empirical models tuned for

pressurized systems or fitting such a model specifically for

this purpose.

4 Conclusions

This paper presented a method to predict PVR from

empirical models using MD-predicted material properties.

Specifically, we used a recently proposed empirical vis-

cosity correlation to predict pressure–viscosity behavior

from ambient viscosity and pressure–volume data. The

method takes advantage of the molecular-scale features of

MD simulation and the ability of empirical models to relate

PVR to properties easily accessible using MD. The accu-

racy of the proposed method was evaluated with experi-

mentally-measured and MD-derived volume data. The

errors observed as well as the limitations of the method

were then discussed.

It is clear that further work is necessary to enable this

method to be used in practice. Further, since the analysis

reported here was performed for simple fluids, additional

challenges may arise if the method is applied to more

complex lubricant molecules (e.g., those with polar inter-

actions). Regardless, the approach presented in this study,

which combines MD simulation with empirical models,

holds significant promise. If the method can accurately

predict PVR and pressure–viscosity coefficients for known

lubricants, it could then be applied to make predictions for

molecules with new or novel chemical structures, therefore

enabling molecular-scale lubricant design. Further, the

proposed approach suggests a means of fundamentally

understanding the relationship between a fluid’s molecular

structure and its pressure–viscosity behavior.
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Appendix

See Tables 5 and 6.

Table 4 Predicted a� and the resulting error in those predictions for

TOM and CPD using P–V (20 �C) and Vmolec from either experiment

or MD simulation

Molecule Vmolec P–V a�

(GPa�1)

a�Lit: (GPa�1)

[24]

Error (%)

TOM Exp Exp 12.69 13.11 3.2

MD Exp 12.2 6.9

Exp MD 11.92 9.1

MD MD 11.44 12.7

CPD Exp Exp 15.93 16.96 6.1

Exp MD 14.63 13.7

MD Exp 13.75 19

MD MD 12.71 25.1

Table 5 Viscosity (mPa s) for 80W-90 [25]

Pressure (MPa) Temperature ð�CÞ

30 50 80 120

0 232 73.7 20.08 6.98

50 797 224 52.6 15.51

100 2,372 594 117.2 30.2

150 6,838 1,417 240 55.2

250 48,661 7,520 928 158.1

500 375,318 22,072 1,839

750 Solid 407,406 14,792

1,000 8,283,860 123,772

1,200 678,516

Table 6 Calculated relative volume for 80W-90 [26]

Pressure (MPa) Temperature ð�CÞ

30 50 80 120

0 0.9856 1 1.0216 1.0503

50 0.9600 0.9718 0.9890 1.0110

100 0.9404 0.9506 0.9652 0.9836

150 0.9245 0.9336 0.9466 0.9627

250 0.8996 0.9073 0.9182 0.9315

500 0.8578 0.8637 0.8720 0.8819

750 0.8300 0.8350 0.8419 0.8501

1,000 0.8091 0.8135 0.8196 0.8267

1,200 0.7954 0.7995 0.8051 0.8115
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