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Abstract When a rubber block is squeezed against a nom-

inal flat but rough surface, the rubber bottom surface will

penetrate into the substrate roughness profile. The relation

between penetration depth w (or the average interfacial sep-

aration �u) and the applied squeezing pressure p determines the

(perpendicular) contact stiffness K ¼ dp=dw ¼ �dp=d�u,

which is important for many applications. We have measured

the relation between p and �u for a rubber block squeezed

against 28 different concrete and asphalt road surfaces. We

find a linear relation between logp and �u, in agreement with

theory predictions. The measured stiffness values correlate

rather well with the theory prediction.

Keyword Contact stiffness � Surface roughness �
Interfacial separation � Rubber block

1 Introduction

The stiffness of mechanical contacts is important for a large

number of applications. For example, the tangential stiffness

Kk of a mechanical contact will influence the damping and

wear (e.g., fretting wear) properties of the structure. The

perpendicular stiffness K? is important in tire applications

where it will effect the tire noise (e.g., via the air-pumping

mechanism) and fluid squeeze-out at the tire–road interface

for wet road surfaces. In addition, for elastic contact, it has

been shown by Barber [1] (see also Ref. [2, 3]) that the

perpendicular contact stiffness of a junction is proportional

to the contact heat transfer coefficient and (for conducting

materials) the electric contact conductance. We also note

that the tangential contact stiffness is proportional to the

perpendicular stiffness (Kk � K?ð2� 2mÞ=ð2� mÞ, where m
is the Poisson ratio) (see Ref. [3]) so any theory or mea-

surement of the perpendicular stiffness is relevant also for

the tangential contact stiffness.

In this paper, we will report on an extensive study of the

perpendicular stiffness between a rubber block and different

road surfaces [4]. We have measured the contact stiffness

for 28 road surfaces. The surface topography of the road

surfaces was studied using an optical technique and the

surface roughness power spectra obtained for all the sur-

faces. According to theory [3, 5–11, 15], the elastic contact

stiffness of a junction is determined by the surface rough-

ness power spectrum of the surfaces involved, and using this

theory, we obtain good correlation between measured and

calculated stiffness values. The influence of surface rough-

ness on the contact stiffness has been studied before for

silicon rubber [7, 8] and tire tread rubber [12–14], but here

we present a much more extensive study to test the theory.

2 Theory

We present a very short summary of the theory used to

analyze the experimental data [5–7]. Assume that an elastic

block with a flat surface is squeezed against a rigid, ran-

domly rough surface, see Fig. 1. We assume for simplicity

frictionless contact so the rubber block can slip parallel to

the surfaces. When the external load F (or pressure

p ¼ F=A0) vanish, the block touches the substrate only at
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the top of the highest substrate asperity which has a height

hmax above the average substrate surface plane. Let us now

increase the force F. The average plane of the bottom

surface of the block will move downwards by a distance

w ¼ hmax � �u; ð1Þ

where �u denotes the average interfacial separation. In the

experiment, w is not measured directly but rather the dis-

placement s of the upper surface of the rubber block which

is related to w as

s ¼ wþ dp=E; ð2Þ

where E is the Young’s modulus of the elastic solid and d

the thickness of the block. In (2), the term dp=E results

from the compression of the rubber block. For frictional

contact (assuming no slip), one may still use (1) but the

Young’s modulus must be replaced by an effective mod-

ulus Eeff [ E which depends on the ratio d=D between the

thickness d and diameter D of the elastic block [16].

In Refs. [5, 6], one of us has shown that for a wide range

in the pressure p the following relation between p and the

average interfacial separation �u is obeyed:

p ¼ bE�e��u=u0 ; ð3Þ

where the dimensionless number b and the length u0

depend only on the surface roughness power spectrum. The

reduced modulus E� ¼ E=ð1� m2Þ. For surfaces with

fractal dimension close to 2 (as is typical for road surfaces)

u0 � chrms where c � 0:4, where hrms is the root-mean-

square roughness parameter [5]. Note that hrms is mainly

determined by the long-wavelength roughness which is

also the case for the parameters b and u0 in (3). Using (3),

we get the normal contact stiffness

K ¼ dp

dw
¼ � dp

d�u
¼ p

u0

: ð4Þ

We note that (3) and (4) are not valid for very small or

large nominal contact pressures p. For very small contact

pressure, the contact will only involve the highest substrate

asperities and in this limit (which we refer to as finite size

pressure region), the contact will be Hertzian-like [7, 10,

17–19]. For very large pressures p nearly complete contact

will occur and �u � 0. However, in the applications below,

we are in the pressure region where (3) should be valid.

In this work, we focus mainly on the length parameter u0

which determines the contact stiffness. In Ref. [5, 6] it was

shown that

u0 ¼
p

pc
Z q1

q0

dq q2CðqÞWðqÞ; ð5Þ

where

WðqÞ ¼ p
Z q

q0

dq0 q03Cðq0Þ
� ��1=2

;

where the surface roughness power spectrum [20]

CðqÞ ¼ 1

ð2pÞ2
Z

d2x hhðxÞhð0Þie�iq�x; ð6Þ

where hðxÞ ¼ hðx; yÞ is the height of the surface profile

relative to the average plane. In (6) h::i stands for ensemble

averaging so that hhðxÞi ¼ 0. Finally, we note that the

surface mean-square roughness is given by

h2
rms ¼ hh2ðxÞi ¼ 2p

Z q1

q0

dq qCðqÞ ð7Þ

3 Experimental

We have measured the relation between the displacement s

and the applied nominal contact pressure p when a

F
d rubber

s

w

Fig. 1 A rubber block in contact with a rigid, randomly rough

substrate. Left: no applied load. Right: the rubber block is squeezed

against the substrate with the force F. The upper and (the average

position of) the lower surface of the rubber block moves downwards

by the distances s and w, respectively. We assume perfect interfacial

slip (no friction)
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Fig. 2 The logarithm of the surface roughness power spectrum of a

concrete road surface as a function of the logarithm of the

wavevector. The topography was measured over a surface area

10 cm� 10 cm. The surface has the root-mean-square (rms) rough-

ness amplitude hrms ¼ 0:54 mm and (including the roughness over the

measured length scales) the rms slope 0.68. The highest and the

lowest point on the studied surface area are hmax ¼ 1:49 mm and

hmin ¼ �1:73 mm relative to the mean surface plane. The dashed line

has the slope �4 corresponding to a self-affine fractal surface with the

Hurst exponent H ¼ 1 or fractal dimension Df ¼ 2
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rectangular rubber block with thickness d ¼ 1 cm and side

L ¼ 10 cm is squeezed against 12 different asphalt road

surfaces and 16 different concrete road surfaces. The asphalt

road surfaces were drilled from road surfaces while the

concrete specimens, with different roughness, grain sizes

and gradation, were made in the laboratory. The surface

roughness profiles of all the surfaces were obtained using an

optical method which uses a chromatic white light sensor.

The length parameter u0 is mainly determined by the long-

wavelength roughness components, and the surfaces were

therefore studied over a large area (10 cm� 10 cm) with

relatively low lateral resolution (0:1 mm). In Fig. 2, we show

the surface roughness power spectrum of one of the studied

concrete surfaces. The dashed line has the slope �4 corre-

sponding to a self-affine fractal surface with the Hurst

exponent H ¼ 1 or fractal dimension Df ¼ 2. Road surfaces

usually have fractal dimension between 2.0 and 2.2 [21].

The surfaces we use have root-mean-square roughness

hrms from 0.087 to 0:74 mm. Figure 3 shows the height

(above the average plane) of the highest asperity as a

function of the rms roughness for all the studied surfaces.

The solid line is the theory prediction [22]:

hmax

hrms

� 2log
hrms

hmax

A0

n2

1pð2pÞ

� �� �1=2

where A0 ¼ L2 and we have assumed that the surface

roughness has a correlation length n � 10hrms (see

Appendix A in Ref. [22]).

The rubber penetration depth as a function of the applied

load has been measured using a device (see Fig. 4)

developed at the Institute of Road and Traffic Engineering

in Aachen. The nominal contact pressure is increased lin-

early with time from zero to the final value 0:5 MPa in

20 s, while the vertical displacement s is registered. The

force is applied to a steel plate (see Fig. 4) through a ball

bearing, so the loading will result in a uniform nominal

contact pressure at the rubber–road interface. The rubber

block was supplied by Continental and is made from a

rubber compound very similar to a tire tread compound.

The accuracy of the measurement of the nominal contact

pressure is�5 kPa and for the displacement�5 lm. A larger

inaccuracy may prevail in the optical measurements of the

surface topography, and hence in the surface roughness

power spectra. One way to gain information about the

accuracy of the topography data would be to perform

topography measurements with other instruments, e.g.,

engineering stylus instrument. Optical method is usually

inaccurate for the short wavelength components of the

roughness profile where the surface slope may be large. This

often results in a large fraction of undefined height points

(about �10 % in the present case). However, the contact

stiffness, in the region where it is proportional to the pres-

sure, is dominated by the long-wavelength roughness.

In order for the theory to be valid in the simple form

described in Sect. 2, it is necessary that the thickness of the

rubber block is larger than the diameter of the macroas-

perity contact regions1. This condition is satisfied even for

the course-grained road surface used in Fig. 4. This is

illustrated in Fig. 5 which shows pictures (system size

10 cm� 10 cm) of the contact between a rubber block and

two road surfaces using pressure sensitive paper (Fujifilm

super low pressure LLW, pressure range between 0.5 and

2:5 MPa). The nominal contact pressure p ¼ 0:5 MPa. The

fine-grained road surface (a) exhibits small (diameter

� 1 mm or less), closely spaced, macroasperity contact

regions, while the course-grained surface (b) (the same
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Fig. 3 The height of the highest point (measured from the average

surface plane), hmax, as a function of the rms roughness amplitude hrms

Fig. 4 Experimental configuration for measuring the relation

between the displacement s and the applied force F (or nominal

contact pressure p ¼ F=A0)

1 Contact mechanics for layered materials (in this case rubber slab

and rigid (steel) plate) can also be studied within the same formalism

as used in deriving Eq. (3)–(5), see [23–25]
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surface as in Fig. 4) exhibits much larger (diameter

� 5 mm or less) macroasperity contact regions with larger

average separations. But even in the latter case, the

diameter of the contact regions is smaller than the rubber

block thickness which is 10 mm.

4 Comparing Experimental Data with Theory

We now compare the measured results with the theory pre-

dictions for 28 different road surfaces. Figure 6 shows the

relation between the natural logarithm of the nominal

squeezing pressure, logp (in MPa), and the penetration w (in

mm) obtained from experiment (green data points) and from

the theory (red line), for a rubber block in contact with a

concrete road surface. In the calculation, we used the mea-

sured surface roughness power spectrum shown in Fig. 2,

and hmax ¼ 1:49 mm and the effective Young’s modulus2

Eeff ¼ 50 MPa and Poisson ratio m ¼ 0:5. In this case, very

good agreement prevails both for the slope of the linear

Fig. 5 Picture of the contact between a rubber block and two road

surfaces using pressure sensitive paper (system size 10 cm� 10 cm).

The nominal contact pressure p ¼ 0:5 MPa. The fine-grained road

surface (a) exhibit small (diameter � 1 mm or less), closely spaced,

macroasperity contact regions, while the course-grained surface (b)

(the same surface as in Fig. 4) exhibit much larger (diameter � 5

mm or less) macroasperity contact regions with larger average

separations
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Fig. 6 The relation between the natural logarithm of the nominal

squeezing pressure, logp, (in MPa) and the penetration w (in mm)

obtained from experiment (green data points) for a rubber block in

contact with a concrete road surface, and from the theory (red line). In

the calculation, we used the measured hmax ¼ 1:49 mm, the effective

Young’s modulus Eeff ¼ 50 MPa, and Poisson ratio m ¼ 0:5
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Fig. 7 The relation between the natural logarithm of the nominal

squeezing pressure, logp, (in MPa) and the penetration w (in mm)

obtained from experiment (square data points) for a rubber block in

contact with three road surfaces, and from the theory (solid lines)

2 The filled rubber compound we use exhibits strain softening with an

elastic modulus which decreases from � 12 MPa to � 4 MPa as the

strain increases from 0.1 to 10 %. The rubber strain in the asperity

contact regions is approximately independent of the nominal contact

pressure and relative large so the large strain E-module is most

relevant and we take E � 4 MPa. The effective modulus for the

confined rubber disk is approximately given by the equation derived

by Gent and Lindley (see Ref. [16]): Eeff � Eð1þ 2S2Þ where S ¼
D=4d � 2:5 (where D � 10 cm is the diameter of the disk and d ¼
1 cm the thickness of the disk). Thus, we get Eeff � 13:5E � 54 MPa.
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relation between logp and w and the location of the line. In

most other cases, there are some differences both for the

slope and the position. Here, we will mainly focus on the

slope of the line which determines the contact stiffness.

Figure 7 shows the same as in Fig. 6 but for three other

road surfaces with very different rms roughness. It is

interesting to note that for w ¼ 0 the strait lines converges

to logp � �3 or p � 0:05 MPa.

Figure 8 shows the calculated slope (equal to 1=u0) of

the relation between logp and ��u as a function of the

corresponding measured slope for all 28 substrate surfaces.

The theoretical slopes where calculated using (5) with the

measured surface roughness power spectrum as input.

Figure 9 shows the theoretical calculated ratio u0=hrms

as a function of the root-mean-square roughness hrms of the

road surfaces. Note that this ratio is close to 0.5, but

decreases slightly with increasing hrms. This does not just

reflect the increase in hrms because one can show from (5)

and (7) that scaling the power spectrum with a factor k

changes both u0 and hrms by a factor k1=2 so that the ratio is

unchanged. Thus, the trend must reflect some (small)

change in the shape of the surface roughness power spec-

trum CðqÞ as hrms increases.

Figure 10 shows the same as in Fig. 9 but now with u0

deduced from the experiments. It appears that also in this

case, there may be a small reduction in u0=hrms with

increasing hrms. The average of u0=hrms for all measured

surfaces is 0:56� 0:13 which is close to the average of the

theoretical calculated data in Fig. 9 which is 0:53� 0:02

(where �0.02 is � the standard deviation).

5 Summary and Conclusion

We have studied the relation between the nominal contact

pressure p and the penetration w as an elastic solid (rubber

block) is squeezed against randomly rough surfaces

(asphalt and concrete road surfaces). In agreement with

theory, in a large pressure range, the penetration is linearly

related to logp. The contact stiffness can be written as

K ¼ p=u0 where u0 is a length of order the rms roughness

amplitude. For 28 different road surfaces, we have com-

pared the theory prediction for u0 (which according to the

theory is determined by the surface roughness power

spectrum) with the values deduced from the measured

relation between logp and w. We find a good correlation

between measured and calculated results. The presented

results are relevant for several related problems such as

heat transfer, contact resistance, damping of vibrations in

mechanical contacts and some type of wear.
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Fig. 8 The calculated slope (equal to 1=u0) (y-axis) of the relation

between logp and ��u as a function of the corresponding measured

slope (x-axis). The blue line is given by y ¼ x
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Fig. 9 The ratio (theory) u0=hrms as a function of the root-mean-

square roughness hrms of the road surface
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Fig. 10 The ratio (experiment) u0=hrms as a function of the root-

mean-square roughness hrms of the road surface
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normal interfacial stiffness of solids with randomly rough sur-

faces. J. Phys. Condens. Matter 23, 085001 (2011)

4. The data analyzed in this paper were presented before in: Wang,

D., Ueckermann, A., Schacht, A., Oeser, M., Steinauer, B.:

Relationship between the tire penetration depth and the road

surface texture: a theoretical model and the practical application.

In: Proceeding of International Conference GeoHubei 2014.

However, the power spectra used in this reference was not

accurate, and the results and conclusions obtained in the paper

cited above are not accurate

5. Persson, B.N.J.: Relation between interfacial separation and load:

a general theory of contact mechanics. Phys. Rev. Lett. 99,

125502 (2007)

6. Yang, C., Persson, B.N.J.: Contact mechanics: contact area and

interfacial separation from small contact to full contact. J. Phys.

Condens. Matter 20, 215214 (2008)

7. Lorenz, B., Persson, B.N.J.: Interfacial separation between elastic

solids with randomly rough surfaces: comparison of experiment

with theory. J. Phys. Condens. Matter 21, 015003 (2009)

8. Lorenz, B., Carbone, G., Schulze, C.: Average separation

between a rough surface and a rubber block: comparison between

theories and experiments. Wear 268, 984 (2010)

9. Almqvist, A., Campana, C., Prodanov, N., Persson, B.N.J.:

Interfacial separation between elastic solids with randomly rough

surfaces: comparison between theory and numerical techniques.

J. Mech. Phys. Solids 59, 2355 (2011)

10. Pastewka, L., Prodanov, N., Lorenz, B., Mser, M.H., Robbins,

M.O., Persson, B.N.J.: Finite-size effect in the interfacial stiffness

of rough elastic contacts. Phys. Rev. E 87, 062809 (2013)

11. Akarapu, S., Sharp, T., Robbins, M.O.: Stiffness of contacts

between rough surfaces. Phys. Rev. Lett. 106, 204301 (2011)
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14. Gäbel, G.: Beobachtung und Modellierung lokaler Phänomene im

Reifen-Fahrbahn-Kontakt. PhD thesis, University of Hannover

(2009)

15. Dapp, W.B., Prodanov, N., Müser, M.H.: Systematic analysis of

perssons contact mechanics theory of randomly rough elastic

surfaces. J. Phys. Condens. Matter 26, 355002 (2014)

16. Anderson, M.L., Mott, P.H., Roland, C.M.: The compression of

bonded rubber disks. Rubber Chem. Technol. 77, 293 (2004)

17. Lyashenko, I.A., Pastewka, L., Persson, B.N.J.: On the validity of

the method of reduction of dimensionality: area of contact,

average interfacial separation and contact stiffness. Tribol. Lett.

52, 223 (2013)

18. Pohrt, R., Popov, V.L., Filippov, A.E.: Normal contact stiffness

of elastic solids with fractal rough surfaces for one- and three-

dimensional systems. Phys. Rev. E 86, 026710 (2012)

19. Barber, J.R.: Incremental stiffness and electrical contact con-

ductance in the contact of rough finite bodies. Phys. Rev. E 87,

013203 (2013)

20. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I.,

Tosatti, E.: On the nature of surface roughness with application to

contact mechanics, sealing, rubber friction and adhesion. J. Phys.

Condens. Matter 17, R1 (2005)

21. Persson, B.N.J.: On the fractal dimension of rough surfaces.

Tribol. Lett. 54, 99 (2014)

22. Persson, B.N.J.: Contact mechanics for randomly rough surfaces.

Surf. Sci. Rep. 61, 201 (2006)

23. Carbone, G., Mangialardi, L.: Analysis of the adhesive contact of

confined layers by using a Green’s function approach. J. Mech.

Phys. Solids 56, 684 (2008)

24. Carbone, G., Lorenz, B., Persson, B.N.J., Wohlers, A.: Contact

mechanics and rubber friction for randomly rough surfaces with

anisotropic statistical properties. Eur. Phys. J. E 29, 275 (2009)

25. Persson, B.N.J.: J. Phys.: Contact mechanics for layered materials

with randomly rough surfaces. Condens. Matter 24, 095008

(2012)

402 Tribol Lett (2014) 56:397–402

123


	Tire--Road Contact Stiffness
	Abstract
	Introduction
	Theory
	Experimental
	Comparing Experimental Data with Theory
	Summary and Conclusion
	Acknowledgments
	References


