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Abstract A finite element model is used to simulate

sliding inception of a rigid flat on a deformable sphere

under combined normal and tangential loading. Sliding

inception is treated as the loss of tangential contact stiff-

ness under combined effects of plasticity, crack propaga-

tion and interfacial slip. Energy dissipation distribution is

used to quantify the relative contribution of these mecha-

nisms on the increased compliance during tangential

loading. Materials with different strength and toughness

properties, and varying local interface conditions ranging

from fully adhered to finite friction, are studied to relate

variations in plastic deformations, crack and slip to the

sliding inception. For fully adhered contact condition,

crack and fracture toughness have no effect on sliding

inception, with plasticity, the dominant failure mechanism.

A measure of recoverable strain (yield strength to Young’s

modulus ratio) is found to be the most influential parameter

in sliding inception. Interfacial slip is expectedly the

dominant mechanism for sliding inception for lower coef-

ficient of friction, modeling lubricated contacts. Interplay

of plasticity and interfacial slip is found to govern the onset

of sliding for higher local friction coefficients. Further-

more, the single asperity results are incorporated in a sta-

tistical model for nominally flat contacting rough surfaces

under combined normal and tangential loading to investi-

gate the stochastic effects due to surface roughness and

material property uncertainties. The results show that the

static coefficient of friction strongly depends on the normal

load, material properties, local interfacial strength and

roughness parameters.

Keywords Static friction � Interfacial strength � Spherical

contact � Rough surfaces � Uncertainties in frictional

contacts

1 Introduction

Understanding the onset of sliding and thereby accurately

predicting static coefficient of friction would have benefits

for a wide range of applications. Cattaneo [1] and Mindlin

[2] pioneered in addressing the problem of elastic spheres

under combined normal and tangential loading. Under fully

adhered contact conditions, their formulations led to

interfacial shear traction with singularities at the contact

edges. Since no material can withstand infinite shear trac-

tions, they suggested local interfacial slip as the stress

relaxation mechanism and concluded that the accumulation

and coalescence of local interfacial slip would lead to

global sliding. Many studies including and following the

Cattaneo–Mindlin approach assumed local Coulomb fric-

tion governing the interfacial slip. This assumption com-

bined with fully elastic material response, however,

resulted in the classical Coulomb friction law, where the

onset of sliding occurred at tangential loads directly pro-

portional to the normal loads with a proportionality con-

stant known as friction coefficient. In other words, by

choosing a local friction coefficient to govern the interfa-

cial slip, one automatically sets the overall frictional

strength of the contact to the same value. See Ref. [3] for a

critical review of these assumptions.

An alternative to Cattaneo–Mindlin approach was

devised by others [4, 5], where sliding inception was linked
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to various interfacial strength properties. Among these

properties were the type and strength of bonds formed at

the contact and their rupture, and the strength of contacting

materials against shearing. Following this approach, vari-

ous researchers have carried out experimental and numer-

ical studies and showed that material yielding was

prominent in onset of sliding [6–11]. Recently, Fineberg

and his group focused on interfacial rupture to explain the

onset of sliding [12–15]. They conducted experimental

studies and observed that the waves of rupture events

triggered the onset of sliding. These waves could be

attributed to the rupture of asperity-scale contacts. Eriten

et al. [16] developed a physics-based model to explain

partial slip for a spherical contact. This model integrated

the Cattaneo–Mindlin approach with friction coefficient

values based on material yielding rather than using local

Coulomb friction coefficient. Wu et al. [17] based the onset

of sliding on maximum frictional shear stress criterion.

According to this model, the shear strength of the weaker

material was set as the critical frictional shear stress, and

once the frictional shear stress in the contact area reaches

the limiting shear strength, local sliding occurs at that

point. A recent paper by Mulvihill et al. [18] looked at

interface adhesion shear strength and plasticity to explain

the sliding friction coefficient. They conclude that the

sliding friction coefficient arises from both plasticity and

tangential interface adhesion.

The onset of sliding at the asperity scale depends on

material strength and toughness as well as interfacial slip.

However, in practice, surfaces are rough. The statistical

summation approach by Greenwood and Williamson [19]

has been one of the frequently used methods to extend the

asperity-scale contact formulations to rough surface scale

in the above studies. Kogut and Etsion [20] extended their

work in Ref. [7] to predict the static coefficient of friction

at rough surface. Cohen et al. [21] proposed a model for

static friction based on the full stick asperity-scale model

by Brizmer et al. [6]. This study was extended further for

higher plasticity index [19] values by Li et al. [22]. Eriten

et al. [23] successfully implemented the asperity-scale

models in Ref. [16] at the rough surface scale to explain

fretting behavior in mechanical lap joints. These studies

show that roughness parameters such as plasticity index

and asperity height distribution [24] influence the static

friction coefficient at macroscale contacts. Asperity height

distribution is shown to influence the energy dissipation in

cyclic tangential loading of an elastic contact [25] and

affect the real contact area and contact load during normal

loading [22, 26].

The current model differs from the previous works by

studying the interlink among the major mechanisms viz

interfacial slip, material yielding and crack on the onset of

sliding at the asperity scale using finite element

simulations. Further, the results from the asperity-scale

model are extended to the rough surface scale using the

Greenwood–Williamson [19] statistical summation

approach to include the stochastic effects of roughness

parameters (plasticity index and asperity height distribu-

tions) on the static coefficient of friction. Section 2

describes both the asperity-scale model and the rough

surface model and gives theoretical background of the

work presented. Section 3 gives the details of the finite

element model (FEM) employed for the asperity-scale

formulations. The results obtained are discussed in Sect. 4

followed by conclusions in Sect. 5.

2 Methodology

2.1 Asperity Scale

The asperity-scale contact is modeled as a rigid flat firstly

pressed on a deformable sphere by a constant normal load,

P, and then sheared tangentially by a tangential force, Q.

The application of the normal load causes an initial inter-

ference of xo, and the subsequent tangential force leads to

tangential displacement of ux. Loading rates are assumed to

be low to ensure static conditions hold. Cattaneo–Mindlin’s

approach to this problem yields the following solution,

Q ¼ lP 1� 1� 16auxG

3lPð2� mÞ

� �3=2
( )

ð1Þ

where G is the shear modulus, m is the Poisson’s ratio, a is

contact radius and l is local friction coefficient. Taking the

partial derivative of Eq. (1) with respect to ux, the tan-

gential contact stiffness, oQ=oux is given by Eq. (2),

oQ

oux

¼ 8aG

2� m
1� 1� 1� Q

lP

� �2=3
 !( )1

2

ð2Þ

The tangential stiffness decreases with increasing tan-

gential load due to interfacial slip. At a limiting tangential

load (Q = lP), the tangential stiffness reaches zero, where

the contacting bodies slide against each other [see Eq. (2)].

Approximating oQ=oux for small tangential loads gives the

initial tangential contact stiffness as,

K0
t ¼

8aG

2� mð Þ ð3Þ

Interfacial slip is not possible for a fully adhered con-

tact, and hence, material failure (plasticity and fracture) is

expected to weaken the contact in tangential response [6,

27]. The ratio of the limiting tangential load and normal

load, Q/P is now considered as the static coefficient of

friction [6]. In this work, the evolution of tangential

load versus tangential displacement will be studied in
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elastic–plastic materials with fracture option via an

extended finite element model (XFEM) described in

Sect. 3. Relative contribution of each failure mechanism to

interface weakening and static friction coefficient is

quantified with corresponding energy dissipations at the

onset of sliding. Since there is no body force and kinetic

energy in our XFEM, by the conservation of energy, the

rate of change of internal energy is equal to the rate of

work done by surface loads,

d

dt

Z
V

ðqUÞdV ¼
Z

S

v:tdS ð4Þ

Here, q is the mass density, v is the velocity field vector, U is

the internal energy per unit mass and t is the surface traction

vector. Integrating Eq. (4) in time, using Cauchy’s equation of

motion and the relation, t = r�n, where, n is the normal vector

on surface S, we can rewrite the above equation as,

Z t

o

Z
V

r : _edVdt ¼
Z t

0

Z
S

v:tdSdt ð5Þ

Using strain decomposition and splitting the traction

vector into frictional traction and traction due to external

load, the final expression for the energy balance is given as

[28],

Z t

0

Z
S

v:tldSdt �
Z t

o

Z
V

1� dt

1� d

� �
r : _eeldVdt

¼
Z t

o

Z
V

dt � d

1� d

� �
r : _eeldVdt þ

Z t

o

Z
V

r : _epldVdt

þ �
Z t

0

Z
S

v:tf dSdt

0
@

1
A

ð6Þ

Here, tl is the surface distributed load and tf is the

frictional traction, r is the stress tensor, _eel and _epl are

elastic and plastic strain rate tensors, respectively, and d is

the damage parameter. The damage parameter d = 0 rep-

resents an undamaged material and d = 1 represents fully

damaged material; and dt is the constant value attained by d

at time t upon unloading. The damage parameter d is given

by Eq. (7),

d ¼
Zdf

m

do
m

Teffdd
Gc � Go

ð7Þ

Here, Teff and d are the effective traction and displace-

ment at the crack interface, respectively, do
m is the effective

displacement at initiation of damage and df
m is the effective

displacement at complete failure, Go is the elastic strain

energy at damage initiation and Gc is the input fracture

energy. The effective traction is computed as the square

root of summation of the squares of the components in the

normal direction and the two shear directions. The energy

balance [Eq. (6)] shows that the total work done by

external loads (EW) minus the recoverable elastic strain

energy (EE) equals to the energy dissipated due to damage

(ED), plasticity (EP) and friction (EF), i.e., EW - EE ?

constant = ED ? EP ? EF. XFEM is used to obtain both

the evolution of tangential load–displacement and the

internal strain–stress fields to evaluate the energy dissipa-

tion distribution at the asperity scale.

2.2 Rough Surface Scale

At macroscale, most engineering surfaces are rough and

consist of numerous asperities forming the real load-bear-

ing area. One of the methods to extend asperity-scale

contact formulations to macroscale is the statistical sum-

mation approach proposed in the pioneering work of

Greenwood and Williamson (GW) [19]. Statistical sum-

mation uses distribution of asperity heights over the nom-

inal contact area, An to add the contributions of individual

asperities. The GW model assumes the rough surface to be

isotropic, and the asperities to have spherical shape with

identical radius, R. There is no interaction between the

asperities, i.e., they are distributed sufficiently far apart.

McCool [29] showed that there is no appreciable loss of

generality by relaxing some of the assumptions of GW

model. However, GW model cannot completely describe

the load-interference relations with bulk deformation and

asperity interactions [30]. In this study, the asperity inter-

actions and bulk deformation are ignored and could result

in deviations from the standard GW model predictions. The

reader is referred to Ref. [29–31] for the applicability of the

GW model. McCool [29] also proposed a method to

combine the roughness of the two nominally flat rough

surfaces into an equivalent rough surface and a rigid flat.

The contact of such an equivalent surface with a rigid flat

will be used in our rough surface scale formulations (see

Fig. 1).

Fig. 1 Schematic representation of an equivalent rough surface and a

rigid flat contact [23]
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In this formulation, the distance between the rigid flat

and the reference plane defined by the mean of asperity

heights is denoted by d, and the distance between the mean

of surface heights and the rigid flat is denoted as h. The

distance between the mean of surface heights and the mean

of asperity heights is represented as ys. The interference, x,

is defined as z-d, where z is the height of the asperity. The

load is carried by an asperity when the interference, x, is

positive, i.e., z-d greater than zero. Our model initially

assumes normal distribution for the asperity heights (this

assumption will be revisited in the results Sect. 4.2.4 to

include other types of distribution). The normal distribution

is commonly observed in engineering surfaces manufac-

tured by abrasive and/or generic cumulative removal pro-

cesses [26, 32–34]. For the asperity heights with standard

deviation, rs, the probability density function for a normal

distribution is given by,

/ zð Þ ¼ 1ffiffiffiffiffiffi
2p
p

rs

exp �0:5
z

rs

� �2
 !

ð8Þ

The probability density function is normalized to the

standard deviation of the surface heights r and is written in

dimensionless form as,

/� z�ð Þ ¼ 1ffiffiffiffiffiffi
2p
p r

rs

exp �0:5
r
rs

� �2

z�ð Þ2
 !

ð9Þ

where z� ¼ z
r; r

rs
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3:717�10�4

b2

q
and b ¼ gRr, where

g = the area density of the asperities. The separations d, h

and ys are also normalized to r and can be related using the

roughness parameter b as [20],

y�s ¼ h� � d� ¼ 1ffiffiffiffiffi
48
p

pb
ð10Þ

The interference, x, can be written in dimensionless

form as x� ¼ z� � d�. If no asperity interactions occur, the

total normal load on the rigid flat is given by the summa-

tion of the normal load carried by each individual asperity,

P, with a positive dimensionless interference, x�, for a

given separation, d�,

Pflat ¼ gAn

Z1

d�

P z� � d�ð Þ/� z�ð Þdz� ð11Þ

The load carried by an individual asperity will fall into

elastic regime or elastic–plastic regime depending on the

asperity height and the interference. Local interfacial

conditions change the asperity-scale load formulation

slightly. Eriten et al. [16] compared the normal load for-

mulations under fully adhered and frictionless contacts and

concluded that friction’s effect on the load-penetration

response of the spherical contact is negligible. In

accordance with this observation, the normal load formu-

lation of frictionless contacts is used in this study irre-

spective of the contact conditions. Thus, in the elastic

regime Hertz’s [35], and in the elastic–plastic regime Ko-

gut and Etsion’s [36], formulations are used;

Pel ¼ Pc

x
xc

� �
for x�xc ð12Þ

P1
pl ¼ 1:03Pc

x
xc

� �1:425

for xc�x� 6xc ð13Þ

P2
pl ¼ 1:4Pc

x
xc

� �1:263

for 6xc�x� 110xc ð14Þ

where Pc and xc are the critical load and critical interfer-

ence at yielding inception under frictionless condition. The

von Mises criterion with the Hertzian stress field gives the

critical load and critical interference at yield inception as,

Pc ¼
p3

6K3
m

Y R 1� m2
� � Y

E

� �2

ð15Þ

xc ¼
1

Km

p 1� m2ð Þ
2

Y

E

� �2

R ð16Þ

where Y is the virgin yield strength of the material, E is the

Young’s modulus, m is the Poisson’s ratio and Km is given

by,

Km ¼
3

2
1þ z2

a2

� ��1

� 1þ mð Þ 1� z

a
tan�1 a

z

� �� �� �( )

ð17Þ

where z/a can be approximated as z=a ¼ 0:381þ m=3 [37].

From Eqs. (15) and (16), the critical load can be

expressed in terms of the critical interference as,

Pc ¼
2p
3Km

RYxc ð18Þ

The plasticity index w, a measure of the ratio of the

plastically yielded areas to the total contact area for the

contact of nominally flat rough surfaces, was introduced by

Greenwood and Williamson [19]. The critical interference,

xc, can be expressed in terms of plasticity index, w as,

w ¼ E

H

ffiffiffiffiffi
rS

R

r
¼ x�c

r
rs

� ��0:5

ð19Þ

Substituting Eq. (19) into Eq. (18) and further into

Eqs. (12–14), and finally in the integral of Eq. (11), the

total dimensionless normal load carried by the rigid flat is

given by Eq. (30) (see ‘‘Appendix’’).

Similar to the total normal load formulation given in

Eq. (11), the maximum tangential load supported by the

rigid flat is given by,
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Qmax�flat ¼ gAn

Z1

d�

Qmax z� � d�ð Þ/� z�ð Þdz� ð20Þ

The maximum tangential load an individual asperity can

sustain is given by,

Qmax ¼ l x;E=Y ; llocalð ÞP ð21Þ

where P takes the form in Eqs. (12)–(14) and l is the

friction coefficient for each asperity and is a function of the

interference, material properties and the local contact

friction (local interfacial strength). Physically, the local

friction coefficient values indicate the adhesion shear

strength of the interface. The friction coefficients at the

asperity level will be computed by a XFEM.

3 FE Model

A 3D FEM of a rigid flat on a deformable sphere is

developed in ABAQUS 6.12 as shown in Fig. 2.

The FEM consists of 22729 ten-node tetrahedral ele-

ments with 35566 nodes for the deformable sphere. The flat

is modeled as a rigid body. The mesh is finest nearby the

contact and gradually coarsens away from the contact (see

Fig. 2). Surface-to-surface contact formulation with pen-

alty method is used to model the contact between the flat

and the sphere. The default penalty stiffness set to 10 times

the representative underlying element stiffness is chosen to

enforce the ‘‘Hard’’ contact in ABAQUS [38–41]. Mini-

mum 16 nodes through the radius are in contact for the

lowest normal load applied, and a maximum of 48 nodes

are in contact for the largest normal load. The FEM is

verified with analytical Hertz solution for normal loading

and Mindlin’s solution for tangential loading under elastic

conditions. The results from frictionless normal loading for

load–displacement, contact pressure–contact radius and

maximum principal stress at symmetry plane through depth

are all within 5 % of Hertz analytical solution. The initial

tangential stiffness results for shear loading are within 8 %

of Mindlin’s analytical solution [see Eq. (3)]. The energy

balance [see Eq. (6)] is verified by a similar model in

Fig. 2, albeit with a finer mesh in the annular slip region.

The model is subjected to a low cyclic tangential load

under elastic conditions [essentially suppressing the first

two terms on the right-hand side of Eq. (6)]; the energy

dissipated by interfacial slip is within 10 % of Mindlin’s

analytical solution for energy loss during cyclic tangential

loading of the sphere.

The contact between the flat and sphere is considered to

be fully adhered initially to give an upper bound on the

onset of sliding for the contacting bodies. The contact

between the bodies is also set to coefficient of friction 0.2

through 1 later to evaluate the effect of interfacial slip on

sliding inception. The lower friction coefficient value of

0.2 is the representative of lubricated contacts, whereas the

higher value of 1 models the surfaces with high interfacial

strength. The ratio of stick radius to contact radius is given

by c=a ¼ 1� Q=lPð Þ1=3 [42]. If the ratio of tangential

load to normal load is held constant, choosing a friction

coefficient of 1 compared to 0.2 increases the percentage of

stick region from 88 to 98 %, giving a good variation to

study the influence of slip. The deformable sphere is

modeled after four different materials, and the details of the

Fig. 2 a Finite element model

of a rigid flat on a deformable

sphere and b close-up of mesh

near contact

Table 1 Material properties

Material E/Y Elastic

modulus,

E (GPa)

Yield

strength,

Y (MPa)

Poisson’s

ratio, m
Fracture

toughness,

Kc (MPa m1/2)

A 85 450 5,200 0.22 3

B 140 116 830 0.3 95

C 250 69 280 0.33 29

D 400 205 515 0.29 50
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material properties are listed in Table 1 [43–46]. These

material properties cover a wide range of yield strength and

fracture toughness values and thus enable us to investigate

the effects of material strength on the onset of sliding.

The materials are assumed to be linear isotropic elastic

and perfect plastic. Von Mises yielding criterion with

associated flow is used to model plasticity. The constant

normal load is applied to the reference point of the rigid flat

at the topmost node of the spherical contact. After the

completion of normal loading phase, a gradually increasing

tangential load is applied to the rigid flat. The rotation of

the flat is disallowed to ensure perfect tangential motion.

Each simulation terminates when tangential stiffness of the

contacting bodies is less than 10 % of initial tangential

stiffness. A typical simulation takes around 2–4 h on a

computer with a 3.4 GHz Intel i7-3770 processor and

16 GB of memory.

The FEM also has an XFEM module incorporated in it.

This module is turned ON and employed only when sim-

ulating the initiation and propagation of cracks during the

combined normal and tangential loading of the sphere (for

a selected few results described in Sect. 4). The XFEM

utilizes local enrichment of nodes through partition of

unity. A fracture event is initiated when the chosen damage

initiation criterion is satisfied, and the subsequent changes

in material response are modeled with a displacement

function that is discontinuous across the crack surface [47].

No explicit representation or seeding of cracks is needed.

Crack surfaces and tips are entirely described by the nodal

data, and special functions accounting for stress intensifi-

cation at the crack tips. This enables accurate modeling of

the crack without the need of remeshing [47]. XFEM is

being implemented widely in many studies, particularly for

fatigue crack growth simulations [48–50]. While imple-

menting the XFEM in ABAQUS 6.12, cohesive zone

model is used. The crack initiation is assumed to occur

when maximum principal stress reaches the maximum

tensile stress at the end of normal loading (radial stresses

close to surface at the contact circumference). The fracture

toughness values of the materials listed in Table 1 are

converted to energy release rates based on plane stress

criterion [see Eq. (22)] and are used to govern the damage

evolution [see Eq. (7)].

Gc ¼
K2

c

E
ð22Þ

where Gc is the energy release rate, Kc is the fracture

toughness in mode I and E is the Young’s modulus. Ana-

lytical finite plate solution for stress intensity factor for a

through central crack of total length 1 m in a 4 9 4 9 5 m

block under tensile loading (mode I) is compared with this

XFEM for all four materials. The stress intensity factors

fall within 10 % of the analytical solution.

4 Results and Discussion

4.1 Asperity Scale

In the following results, normal loads applied are normal-

ized to the critical load required to cause yielding inception

for a Hertzian contact [35], i.e., for a given applied normal

load, P, the normalized normal load, P*, is given as

P� ¼ P
Pc

. The tangential load, Q, is normalized to the nor-

mal load applied, P, and the tangential displacement is

normalized to the interference after the normal loading, xo.

The simulations are carried out for dimensionless normal

loads, P*, ranging from 0.1 to 30. The sliding inception is

investigated for this range of P* values as it covers both

elastic as well as plastic region and encompasses most real-

life scenarios and applications [51, 52]. At rough surface

scale, bulk material yielding will be initiated at AnY. The

critical load for yielding inception for a spherical asperity

is *1.1 ArY, where Ar is the real contact area [42]. The real

area of contact is few percent (typically 2–3 %) of the

nominal contact area [53–57]. Thus, taking the ratio of the

two loads and substituting Ar in terms of An, we estimate

the P* value of *30. The ratio of An/Ar will determine the

extent of load carried by an asperity. If the entire load

applied at the rough surface is carried by a few sharper

protruding asperities, then the dimensionless normal load,

P*, will be higher than 30 [6, 36, 58]. We account for the

higher dimensionless normal loads by integrating theoret-

ical predictions with our FEM results (see discussion for

Fig. 8). In addition, the energy dissipation distribution at a

given loading instance is given in terms of percentages

among plasticity, cracks and interfacial slip, that is, the

right-hand side of Eq. (6) equals 100 %. Bar plots are used

to present the energy dissipation partitioning.

4.1.1 Effect of Cracks

The first set of results presented covers the fully adhered

local contact condition for material A and includes the

effects of crack propagation, i.e., the XFEM module is

turned on. Figure 3 shows the results for dimensionless

tangential load, Q/P, versus dimensionless tangential dis-

placement, ux/xo, for P* = 0.1; the corresponding %

energy dissipation at different stages of tangential loading

and the snapshots of evolution of the crack surface in

XFEM at these stages. As observed from Fig. 3a, the curve

starts with a straight line; however, as the tangential load

increases, the instantaneous tangential stiffness gradually

decreases and ultimately reaches zero at the onset of slid-

ing. To reduce the computation times, sliding inception is

said to occur when the tangential stiffness is below 10 % of

its initial stiffness. The normalized tangential force, Q/P at

360 Tribol Lett (2014) 56:355–374
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the onset of sliding is considered as the global static

coefficient of friction, i.e., it is the average friction coef-

ficient at the interface. Energy dissipation evolution

throughout the tangential loading provides valuable

insights into the relative contribution of each mechanism

on the tangential compliance.

As evident from Fig. 3b, initially when the tangential

loading is applied, the energy is dissipated by crack only.

The crack initiates in the tensile zone at the specified

limiting maximum principal stress and starts propagating at

stage 1 as seen in the snapshot of crack in Fig. 3c. As the

crack initiates, it is also surrounded by the plastic zone

since the cohesive zone approach is used for modeling the

crack. However, the energy dissipated by this plasticity

near the crack tip is negligible compared with the energy

loss due to crack surface formation. As expected, there is

also no frictional loss due to interfacial slip, since the

contact is fully adhered and does not allow any relative

motion between contacting surfaces. The crack continues

to propagate along the periphery of the principal stress

contours. As the tangential load increases, plasticity comes

into effect and the energy is dissipated by both the plas-

ticity and crack. With increasing tangential load, the

compressive zone below the contact gradually transitions

to tensile zone and the crack starts to penetrate deeper.

Finally, the maximum crack propagation is observed at step

5 at the inception of sliding. However, at this time, the

material at the contact has substantially yielded due to

increasing shear loading and it overshadows the contribu-

tion of the crack. As a result, plasticity dominates the
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energy dissipation at sliding inception. This can also be

verified by studying the plastic equivalent strains at the

contact interface.

Figure 4 shows the plastic equivalent strains for dimen-

sionless normal load, P* = 0.1 and material A at stage 2 and

at stage 5 described in Fig. 3c. Stage 2 corresponds to the

initial phase of tangential loading, whereas stage 5 corre-

sponds to the maximum tangential load at sliding inception.

Cohesive zone approach is used for modeling crack, and

there is some accompanying plasticity with crack propaga-

tion, which makes it difficult to distinguish between the

plasticity associated with material yielding due to loading

and plasticity associated with crack propagation. At stage 2,

the % plasticity in the energy dissipation plot (see Fig. 3b) is

possibly associated with crack propagation, as seen from

Fig. 4a, whereas at stage 5, the % plasticity in the energy

dissipation plot (see Fig. 3b) is dominated by material

yielding at the contact due to the applied tangential load (see

Fig. 4b). This demonstrates that the energy dissipated by

plasticity is higher than the energy dissipated by crack at

sliding inception; thus, the presence of crack does not sig-

nificantly alter the static friction coefficient value.

With increasing dimensionless normal load (P* [ 1),

the effect of crack diminishes even further (not shown).

The extent of plastic deformations increases with increas-

ing P*, leading to a more uniform stress field, which in turn

prevents extensive crack propagation. It should be noted

that the fracture toughness value used for the simulation

corresponding to the material A (see Table 1) was the least

among the values listed. Similar results were obtained for

the remaining set of materials indicating that static friction

coefficients are independent of fracture toughness under

our definition of the onset of sliding. These observations

lead to an early remark, the minute flaws or underlying

cracks at the asperity scale do not substantially alter the

energy dissipation and friction coefficient. Based on this

remark, the XFEM module is turned off for subsequent

simulations, and thus, only the relative importance of

interfacial slip and plasticity is investigated further.

4.1.2 Effect of Local Friction (Interfacial Strength)

To investigate the effects of interfacial slip on sliding

inception, Coulomb friction coefficient values 0.2 through

1 are assigned to the contact and simulations are carried out

for the same set of dimensionless normal loads, P*.

Figure 5 shows the results for dimensionless tangential

load, Q/P, versus dimensionless tangential displacement,

ux/xo, for three different P* values for friction coefficient

0.2 for material A, and the corresponding % energy dissi-

pation plot at the sliding inception for each P* value. In all

loading cases, sliding inception occurs when the ratio Q/P

reaches a value of 0.2. In other words, the local and global

friction coefficients coincide, verifying load-independent

Coulomb friction and Cattaneo–Mindlin’s interfacial slip

approach. The % energy dissipation plot confirms that

interfacial slip is the major contributor to the inception of

sliding, with little to no contribution from plasticity for

lower dimensionless normal loads. It should be noted that

for normal loads that cause material yielding (P* [ 1), the

energy dissipated due to plasticity in normal loading is

subtracted to give the energy dissipated by plasticity during

tangential loading only. This helps provide a better com-

parison between different mechanisms during tangential

loading alone. At high dimensionless normal loads

(P* = 10), the material has yielded significantly and both

plasticity and interfacial slip play role. However, interfacial

slip still dominates, and the global friction coefficient is not

influenced much by plasticity.

To see the effect of decreasing interfacial slip, local

friction coefficient is set to 1, and simulations are carried

out for the same set of dimensionless normal load, P*.

Figure 6 shows the results for dimensionless tangential

load, Q/P, versus dimensionless tangential displacement,

ux/xo, for three different P* values for material A. As

observed from the figure for P* = 0.1, sliding inception

occurs when the ratio Q/P reaches the assigned value of

local coefficient of friction 1. However, dimensionless

normal load P* = 1 and, P* = 10 show an interesting

Fig. 4 Plastic equivalent strains

for dimensionless normal load

P* = 0.1 for material A a for

stage 2 in Fig. 3c and b for

stage 5 in Fig. 3c
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behavior at the onset of sliding. Although the contact has

been assigned a local friction coefficient of 1, sliding

inception occurs below this value. The corresponding %

energy dissipation plot gives more insight into the behavior

of the contact at higher dimensionless normal loads. As

Fig. 6b shows, frictional loss is the major contributing

mechanism for sliding inception at the low dimensionless

normal load, P* = 0.1. The energy dissipated by interfa-

cial slip, however, decreases with increasing dimensionless

normal load. For P* = 1 and 10, the contribution comes

from both plasticity and interfacial slip, but plasticity starts

to dominate interfacial slip. Thus, plasticity weakens the

contact and lowers the global coefficient of friction below

the locally assigned value at higher normal loads.

Re-emphasizing the definition of friction coefficient in

this paper, the contact conditions assigned (fully adhered,

0.2 to 1 Coulomb friction coefficient) are considered as the

local friction coefficients, i.e., it is the local interaction

between each node at the contact and signifies adhesion

shear strength of the interface. The global static coefficient

of friction is the value at which the onset of sliding is said

to occur when the instantaneous tangential stiffness in the

dimensionless tangential load (Q/P) versus dimensionless

tangential displacement (ux/xo) plot gradually diminishes

below 10 % of its initial stiffness. Figure 7 presents the

global static friction coefficients, lglobal, versus dimen-

sionless normal load, P*, for a contact with locally

assigned finite friction coefficient values ranging from 0.2

to 1 and adhered local contact for material A.

As observed from figure, all the global friction coeffi-

cient curves start at the locally assigned finite friction

coefficient at lower dimensionless normal load. For the

lower coefficient of friction 0.2, the local and global fric-

tion coefficients are essentially equal for all loading con-

ditions. However, for the higher finite friction coefficient

values, the local and global values differ substantially at
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higher dimensionless normal loads, which is consistent with

the energy distribution results suggesting the relative influ-

ence of plasticity exceeding the influence of interfacial slip

at higher normal loads. As expected, the locally adhered

contact displays the maximum strength at the interface with

higher global coefficient of friction values, since plasticity is

the only weakening mechanism with no influence of contact

slip. The global curve for local coefficient of friction 0.2

which is largely immune to the effects of plasticity continues

to exhibit the assigned local strength at the contact interface.

The results presented are for material A with E/Y ratio 85,

and the influence of E/Y on the interfacial strength is dis-

cussed in the following section.

4.1.3 Effect of E/Y

To illustrate the effect of E/Y, locally adhered contact

condition is considered initially as only plasticity influ-

ences the global coefficient of friction. Figure 8 shows the

global static coefficient of friction, lglobal, versus dimen-

sionless normal load, P*, for a fully adhered contact for

four different materials with varying E/Y ratios. The figure

also includes the results from the elastic–plastic regular

FEM documented in Brizmer et al. [6] for comparison.

The materials studied here have E/Y values ranging from

85 to 400. It should be noted that the static friction coef-

ficient values shown in Brizmer et al. [6] are reduced by

20 % in order to account for the difference in the E/Y ratio.

Approximately, 15–20 % drop in the static coefficient of

friction is documented in Brizmer et al. [6] when the E/Y

ratio is reduced from 1,000 to 500. This suggests E/Y ratio

might play an important role in sliding inception, and our

results corroborate this observation with similar reduction

in static coefficient of friction observed with decreasing

E/Y ratio. The curve fit to the coefficient of friction data

shown in Fig. 8 for all E/Y ratios takes the form of a power

law given as,

lglobal ¼ a P�ð Þk ð23Þ

The coefficients a and k for each material and Brizmer

et al. [6] are summarized in Table 2. The coefficient a
varies linearly with respect to the E/Y ratio on a log-linear

plot. The curve fit for a takes the following form,

a ¼ 0:7416e0:0003E
Y and k � �0:3 see Table 2ð Þ

Choosing the power law fit to the friction coefficient

data gives mathematical simplicity and enables closed-

form solutions at the rough surface scale (for uniform

height distribution, see Sect. 4.2.4). However, for very high

loads, the model predicts global coefficient of friction

asymptotically approaching zero. At very high normal

loads, the theoretical prediction for static coefficient of

friction for metallic contacts is the ratio of shear strength, s,

to the hardness, H, of the metal. The shear strengths of

common metals are approximately half of their yield

strengths, Y, and hardness can be approximated as,

H = 3Y, giving a ratio of *0.167 [3, 59]. Thus, Eq. (23) is

modified to incorporate a realistic friction coefficient at

extremely high loads and is rewritten as,
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Table 2 Coefficients a and k for adhered contact for four E/Y ratios

and Brizmer et al. [6]

Material E/Y a k

A 85 0.776 -0.2942

B 140 0.7705 -0.3172

C 250 0.8112 -0.294

D 400 0.8404 -0.2993

Brizmer et al. 20 % reduced 500 0.843 -0.3154

Brizmer et al. 1,000 1.0537 -0.3154
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lglobal ¼ max 0:167; a P�ð Þk
	 


ð24Þ

The exponent k for each material is nearly constant,

approximately around -0.3 (see Table 2). This can be

explained using known adhesive friction formulation.

Assuming a constant shear strength at the contact interface,

friction force at sliding inception then would simply be the

product of that shear strength and the contact area, i.e.,

Q * a2. The shear strengths at the interface for each E/Y

ratio are computed by the FEM as 0.5–0.6 times the yield

strength of the material. For all four ratios, only slight

variation in shear strength is observed (\10 %) for the

range of normal loads studied. Neglecting the effects of

junction growth upon tangential loading, Hertzian theory

suggests that the square of contact radius scales with the

normal load as a2 * P2/3. Our FEM results for fully

adhered contact exhibit marginally different relation as

a2 * P2.1/3. Therefore, Q * P2.1/3, and l = Q/P *
P-0.3. This is remarkably close to the observed exponents.

Based on the adhesive frictional formulation and dimen-

sionless analysis (see ‘‘Appendix’’), it can be shown that

increasing the yield strength and decreasing the Young’s

modulus increase the static coefficient of friction. A larger

Y/E ratio would imply a larger recoverable elastic strain,

suggesting smaller energy dissipation and lesser weakening

of the contact interface, giving a higher static coefficient of

friction for locally adhered contact. To investigate the

effect of E/Y on global static coefficient of friction for

contact conditions with finite local interfacial strength,

simulations were carried out for the remaining materials for

contact conditions with local Coulomb friction 0.2–1

(similar to Sect. 4.1.2).

The results for global static coefficient of friction,

lglobal, versus dimensionless normal load, P*, for different

materials for finite local contact friction are shown in

Fig. 9. As observed from figure, for higher local contact

friction, the global coefficient of friction showed minimal

dependency on the E/Y ratio for the range of values con-

sidered in this study. For lower local contact friction, the

global coefficient of friction was independent of the E/Y

ratio. The dotted lines in Fig. 9 (and in Fig. 7) are in form

of a power law. The coefficient a shows a power law

dependency on the local interfacial strength, and no

dependency on the E/Y ratio, whereas exponent k shows

linear relation with the local interfacial strength and min-

imal dependency on E/Y ratio. Thus, the equation for global

coefficient of friction can now be given as,

lglobal ¼ min llocal;max 0:167; a P�ð Þk
	 
	 


ð25Þ

where

a ¼ 0:6931l0:7153
local

k ¼ �0:223llocal þ �0:00002
E

Y
þ 0:0261

� �

For finite local friction contact, the E/Y term in k in

Eq. (25) can be neglected.

Figure 10 shows the static friction coefficient, lglobal,

versus the dimensionless normal load, P*, for a fully

adhered local contact, and comparisons with the experi-

mental data from Ovcharenko et al. [60] and predictions

from Brizmer et al. [6].

The experimental results were obtained by performing

static friction tests on a copper ball of 5 mm diameter and

E/Y ratio of 400 under adhered local conditions [60]. The

present model gives an improvement on the model in Ref.

[6] and compares better with the experimental data as it

incorporates the E/Y dependency. If locally adhered
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conditions are violated in the experiments, then including

the finite local friction would further improve the correla-

tion with the experimental data.

4.2 Rough Surface Scale

The friction coefficient in Eq. (21) takes the closed-form

expression given in Eq. (28) for adhered local friction and

Eq. (29) for finite local friction. The total dimensionless

maximum tangential load, Q0max carried by the rigid flat can

now be given by Eq. (31) (see ‘‘Appendix’’ for details).

The static friction coefficient at rough surface is the ratio of

maximum tangential load carried by the rigid flat at sliding

inception over the normal load supported by the flat,

�l ¼ Q0max

P0
ð26Þ

The plasticity index, w is varied from 0.2 to 8, as it spans

both the elastic and plastic contact regimes, and the surface

roughness parameter, b is set to 0.04 as in Cohen et al. [21].

The dimensionless normal load, P0 = Pflat/AnY is varied

between a lower limit of 0.0001 and an upper limit of 0.3.

The upper bound is set to 0.3 to be within the limits

encountered in practical applications [61, 62]. The asperity

distribution is assumed to be Gaussian (revisited in

Sect. 4.2.4), with the dimensionless asperity height varia-

tion z� between -3 and ?3. The static friction coefficient

[Eq. (26)] can now be plotted against the dimensionless

normal load (Eq. (30)] for a varying combination of

parameters, such as plasticity index, E/Y ratio and local

friction coefficient, giving valuable insights into the

strength of the contact interface.

Figure 11 shows the static friction coefficient at rough

surface, �l, versus the dimensionless normal load, P0, for

material A for different plasticity indices and local interfacial

strengths. As observed from the figure, the coefficient of

friction, �l, decreases with increasing plasticity index, w. At

higher plasticity index, the asperities are not able to sustain

larger tangential loads as the interface has substantial amount

of plasticity. The effect of plasticity index is more prominent

for higher local friction coefficient (see Fig. 11a, b) and less so

with decreasing local friction coefficient (see Fig. 11d). This

is because of the increase in interfacial slip with decreasing

local friction coefficient. It can also be observed that for the

same plasticity index, the coefficient of friction decreases with

increasing dimensionless normal load. A similar behavior was

observed at asperity scale (presented in the previous subsec-

tion), increasing normal load increases the material yielding

and plasticity and thereby weakens the contact interface.

However, for higher plasticity index, the static friction coef-

ficient is nearly constant. Constant static friction coefficient

independent of normal load at higher plasticity index was

observed by Gao et al. [63] for thin potassium chloride film

deposited on different substrates. For lower plasticity index,

static friction coefficients were load-dependent and decreased

with increasing normal load [63].

The parameters such as local contact friction, plasticity

index, E/Y ratio and surface height distribution are non-

deterministic as they vary with time and/or with running-in

of the surface, thus changing the contact conditions. As it is

extremely difficult to predict and control these parameters,

the stochastic effects due to surface roughness and material

property uncertainties and their influence on the static

coefficient of friction are discussed in the following

sections.

4.2.1 Effect of Local Friction (Interfacial Strength)

Re-emphasizing, the local friction coefficient values in our

study represent adhesion shear strength of the interface.

Figure 12 shows the significance of the local interfacial

strength; the coefficient of friction, �l is normalized with

respect to the coefficient of friction, �l, for an adhered local

contact, and is plotted against the dimensionless normal

load, P0, for different local contact conditions for plasticity

index, w = 0.5 and material A.

Assuming the contact to be fully adhered can lead to

erroneous results especially for lower dimensionless nor-

mal loads. Mechanisms other than plasticity such as

interfacial slip will have a role in sliding inception. Fully

adhered assumption will be invalid if the surfaces are

contaminated, as well as in the presence of humidity and

surface films. Ibrahim Dickey et al. [64] claim the presence

of oxide film formation on a tin surface invalidates the

perfect adhesion between the surfaces. Their experiments

show the static friction coefficients for tin surface with an

oxide layer to be approximately lower by 0.25 as compared

to fully adhered contact. Hence, it is essential to take local

interfacial strength into consideration. However, it is

noteworthy to discuss the difficulty in defining local fric-

tion coefficients at a particular contact problem especially

since it is a system-dependent property. At nanometer

scale, Zappone et al. [65] observed the static friction

coefficient of *2 for cross-linked stiff polymers with RMS

roughness value 0.5 nm; however, for RMS roughness

7.1 nm, the static friction coefficient decreased to 0.74. In

ideal situations, experiments and/or simulations at atom-

istic scales could yield the interfacial strength in a given

contact configuration. Alternatively, quasi-static fretting

tests covering gross-sliding regime at nano-/micro-length

scales could retrieve valuable information about the local

friction coefficient of a macroscale contact application. The

authors are currently working on it with various materials.

The above results were for low plasticity index, i.e.,

predominantly elastic contact. Next, we discuss the effect

of plasticity index, w.
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4.2.2 Effect of Plasticity Index, w

The coefficient of friction, �l is normalized with respect to

the coefficient of friction, �l for plasticity index w = 0.2

(fully elastic contact), and is plotted against the plasticity

index, w for different local contact conditions for dimen-

sionless normal load, P0 = 0.1 and material A in Fig. 13.

A rougher surface, sharper asperities, and softer material

will all increase the plasticity index [see Eq. (19)]. Plas-

ticity index can change depending upon the running-in of

the surface. The running-in process generates smooth sur-

faces with a lower plasticity index due to flattening of the

peaks, and work-hardening effect due to the repeated

deformation of asperities [66]. The variation in plasticity

index occurs in practical applications such as running-in of

bearings [67] and needs to be taken into account for the

correct estimation of static friction. The experiments in

Ref. [67] show the plasticity index value drop from 1.4 to

0.7 after 25 h of running-in period for roller bearings; this

approximately amounts to a 50 % increase in static friction

coefficient under locally adhered contact (see Fig. 13). A

more dramatic change was observed in Ref. [64] where the

formation of oxide layer on tin surfaces was found to

reduce the plasticity indices from 15 to 2–8. In calculation

of these indices, the authors in Ref. [64] assumed the

surface roughness to be constant before and after oxidation,

and incorporated only the change in the material properties

due to oxidation. This assumption will be valid only if the

thickness of the oxide layer is uniform throughout the

nominal contact area. Their friction experiments after

oxidation show that for a dimensionless normal load,

P0 * 0.001, the static friction coefficient is approximately

0.17. For this contact, our model predicts a static friction

coefficient of *0.21 under fully adhered contact
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conditions. If the oxide layer prevents full stick conditions,

our model would predict even lower values for friction

coefficient, down to the theoretical limit of 0.167

[Eq. (22)], yielding a range of friction coefficient values

reasonably close to the experimental observations.

4.2.3 Effect of E/Y

Figure 14 shows the static coefficient of friction, �l, versus

dimensionless normal load, P0, for plasticity index,

w = 0.5 and adhere to local contact for different E/Y ratios

and comparison with Cohen et al. [21]. The normalization

parameters used during normal loading at the asperity scale

in this paper are based on Hertzian frictionless contact,

whereas the normalization parameters in Cohen et al. [21]

are based on fully adhered contact. To ensure a better

comparison, the results from Cohen et al. [21] shown in

Fig. 14 are normalized with respect to Hertzian frictionless

contact. As observed from the figure, our results match

well with Cohen et al. [21] for E/Y ratio of 1,000, the ratio

used in their study. However, as the E/Y ratio decreases, so

does the static coefficient of friction: consistent with the

previous observations at the asperity scale. For finite local

friction coefficients, minimal dependency on E/Y ratio was

observed at the asperity scale, and similar behavior prevails

at rough surface scale as interfacial slip is expected to be

more influential than plasticity on the inception of sliding.

In practice, the yield strength for the same material can

change even during the surface treatment process; for

instance, the yield strength of the laser-peened steel

increased by a factor of two compared with the yield

strength of the virgin surface [68]. At lower dimensionless

normal loads and locally adhered contact with plasticity

index, w = 0.5, this increase in yield strength for steel will

amount to approximately 12 % variation in the static

friction coefficient and, hence, should be always accounted

for materials-related uncertainty in frictional response.

4.2.4 Surface Height Distribution Comparison

The results at the rough surface scale presented thus far are

based on symmetric normal distribution (rsk = 0) for the

surface heights. The running-in process can produce highly

asymmetric asperity height distribution with high skewness

and kurtosis values, which can influence the static coeffi-

cient of friction [24, 69, 70]. Lee et al. [24] show increasing

static friction coefficient with running-in; under dry con-

ditions, the coefficient of friction for steel increased by a

factor of 2 and by a factor of 5 after 10 min and 104 min of

running-in period, respectively. The running-in process

tends to create surfaces with negative skewness values

[24]. Yu et al. [69] show strong dependency of static

friction coefficient on the skewness value: negative skew-

ness increasing the static coefficient of friction. Common

manufacturing techniques such as grinding, honing, milling

and laser cutting produce surfaces with skewness values

approximately around -1 [71]. To demonstrate the

dependency of static friction coefficient on surface height

distributions, an example case of Weibull distribution with

skewness value, rsk = -1, is compared with the normal

distribution. Furthermore, to show the effects of kurtosis

(rku) and enable analytical solutions, a comparison for

triangular distribution and uniform distribution for surface

heights is also presented.

The four asperity height distributions are shown in

Fig. 15. Each asperity height distribution has the same

0 2 4 6 8
0

0.5

1

1.5

2

Plasticity Index, ψ

R
el

at
iv

e 
ef

fe
ct

 o
f P

la
st

ic
ity

 In
de

x,
 μ

--
/μ

- - ψ
=

0.
2

μ
local

 = Adhere

μ
local

 = 1

μ
local

 = 0.6

μ
local

 = 0.2

 Material A

 P' = 0.1

Fig. 13 Static coefficient of friction, �l normalized with respect to

static coefficient of friction, �l at plasticity index, w = 0.2 versus

plasticity index w for material A and dimensionless normal load,

P0 = 0.1 for different local contact conditions

10
-4

10
-3

10
-2

10
-1

10
0

0

0.5

1

1.5

2

2.5

3

Dimensionless Normal Load,  P'

C
oe

ffi
ci

en
t o

f F
ric

tio
n,

 
μ--

 Cohen et al (2007) - E/Y = 1000
 Present model with E/Y = 1000
 Material D (E/Y = 400)
 Material A (E/Y = 85)

μ
local

 = Adhere ψ = 0.5

Fig. 14 Static coefficient of friction, �l, versus dimensionless normal

load, P0, for plasticity index, w = 0.5 and adhere local contact for

different E/Y ratios and comparison with Cohen et al. [21]

368 Tribol Lett (2014) 56:355–374

123



standard deviation, rs, and is normalized with respect to the

standard deviation of the surface height, r. Nu and Nt in

Fig. 15 are the limits for asperity height for uniform dis-

tribution and triangular distribution, respectively, to obtain

the same standard deviation, rs. The details of the proba-

bility density function for each asperity height distribution

are given in the ‘‘Appendix.’’ Table 3 shows the skewness

and kurtosis values for the four distributions. Substituting

Eqs. (32)–(34) into Eqs. (30) and (31), and subsequently

into Eq. (26), the coefficient of friction, �l can be obtained

for uniform distribution, triangular distribution and Wei-

bull distribution, respectively.

Figure 16 shows the static friction coefficient, �l, versus

the dimensionless normal load, P0, for material A for

plasticity indices w = 0.5 and w = 8 and different local

friction coefficients, for the four surface height

distributions.

As observed from Fig. 15a, at higher dimensionless

normal loads, the difference between the coefficient of

friction for the four distributions is negligible. This is

because the asperities are deformed significantly and the

height distribution becomes insignificant. However, for

lower dimensionless normal loads and plasticity index,

w = 0.5, kurtosis influences the static coefficient of friction

-Nt -Nu 0 Nu Nt
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φ(
z. )

 Normal Distribution
 Weibull Distribution (σ

sk
 = -1)

 Uniform Distribution
 Triangular Distribution

Fig. 15 Different asperity height distributions

Table 3 Skewness and kurtosis values for different asperity height

distributions

Distribution Skewness (rsk) Kurtosis (rku)

Normal 0 3

Uniform 0 1.8

Triangular 0 2.4

Weibull [26] -1 *4.7
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significantly; for uniform distribution (rku = 1.8), the sta-

tic friction coefficient is around 80 % greater compared

with the normal distribution (rku = 3). For the same nor-

mal load, uniform distribution will have more asperities in

contact compared with normal distribution. As the normal

load is being supported by more asperities, the contact will

be damaged to a lesser extent and larger tangential load

will be required to cause sliding inception. Skewness

coupled with kurtosis also effects the static friction coef-

ficient; Weibull distribution (rsk = -1, rku = 4.7) shows

approximately 30 % increase in static coefficient of friction

compared with normal distribution for adhered local con-

tact at lower dimensionless normal load and plasticity

index, w = 0.5. For finite local friction coefficient, all four

distributions converge to the assigned local value at lower

dimensionless normal load and plasticity index, w = 0.5.

At higher normal load, similar behavior to the adhered

local contact is observed. With decreasing local friction

coefficient, the variation in the static friction coefficient for

the four distributions disappears, as the local interfacial slip

governs the sliding inception.

Choosing uniform distribution will enable closed-form

solutions for the integrals in Eqs. (30) and (31). Plugging

these equations in Eq (26), an analytical expression can be

derived for the coefficient of friction (see ‘‘Appendix’’). The

static coefficient of friction is a function of dimensionless

normal load, P0, plasticity index, w, and surface roughness

parameter, b, ratio of standard deviation of surface and

asperity heights, r/rs, Poisson’s ratio, m, E/Y ratio and the

local interfacial strength, llocal. All the parameters except for

the local friction coefficient are readily available (material

properties) or can be easily measured (roughness parame-

ters). Once a reliable measure for the local friction coeffi-

cients is obtained, Eq. (35) can be used to determine the

static friction coefficient at different loading conditions for

uniform surface height distributions.

5 Conclusion

Finite element simulations are carried out for a rigid flat on a

deformable sphere under combined normal and tangential

loading at the asperity scale. The sphere is subjected to

dimensionless normal load, P*, ranging from 0.1 to 30,

followed by a monotonic tangential loading until the onset of

sliding occurs. The onset of sliding is modeled after the

complete loss of tangential stiffness due to interplay among

three major mechanisms, namely interfacial slip, plasticity

and crack propagation. It is observed that cracks do not

influence the onset of sliding significantly. A discussion on

the material properties influencing the friction coefficients

suggests that increasing ratio of yield strength to Young’s

modulus, a measure of recoverable strain in a material

increases the friction coefficient in a fully adhered contact.

For the contact with the coefficient of local friction 0.6 and

higher, it is observed that at higher dimensionless normal

loads, weakening of contact is controlled by the interplay

between plasticity and interfacial slip, eventually lowering

the global friction coefficient below the assigned local value.

The single asperity results are incorporated in a statistical

model for nominally flat contacting rough surfaces under

combined normal and tangential loading to investigate the

stochastic effects due to the surface roughness and material

property uncertainties. The static friction coefficient shows

strong dependency on parameters, such as local interfacial

strength, plasticity index, material properties and surface

height distributions. It is very difficult to predict and control

these parameters due to running-in of the surface and

chemical processes, such as oxide film formations. Conse-

quently, a range of static friction coefficient values are given

which can be used as bounds to account for the uncertainties

in roughness and material property. A comparison of the

present results with those of a previously published elastic–

plastic model shows good correlation for static coefficient of

friction under locally fully adhered contact. Additionally,

the present model gives dependency on finite local interfa-

cial strength. The authors are currently developing set of

experiments to measure a representative local interfacial

strength. Furthermore, in situ imaging of the contact and

using techniques such as digital image correlation (DIC) at

nanoscale can give valuable insights into behavior of the

interface and reveal any interfacial slip and/or material flow.

Once a reliable measure of local interfacial strength is

obtained, the effectiveness of our model will be verified with

the experimental results for static friction coefficient at the

rough surface scale.

Appendix 1

Dimensionless Analysis for Dependence of lglobal on E/

Y for Adhered Local Contact

A dimensional analysis is needed for better understanding

of the effects of the parameters as Young’s Modulus, E,

yield strength, Y and the radius of the sphere, R on the

global static coefficient of friction for an adhered local

contact. When Eq. (15) is substituted in Eq. (23), and

exponential term is expanded for 0.0003E/Y \\ 1, leading

term O(2);

l ¼ 0:7416 1þ 0:0003ðE=YÞð Þ P

p3

6A3 Y R 1� m2ð Þ Y
E

� �2

 !k

ð27Þ
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The multiplying term 0:7416 1þ 0:0003ðE=YÞð Þ is on

the order of unity for the range of E/Y values considered in

this study, implying that the static coefficient of friction

scales inversely with the terms in the critical load for

yielding inception. Assuming k constant with a value of

-0.3, static coefficient of friction scales with Young’s

modulus as, l * E-2/3, and with yield strength as l * Y.

Thus, increasing the yield strength and decreasing the

Young’s modulus increase the static coefficient of friction.

Asperity Scale Static Friction Coefficient Formulations

in Terms of Interference

As the asperity scale friction coefficients are to be incor-

porated in the statistical model at the rough surface scale, it

is convenient to express Eq. (24) in terms of interference

rather than the normal load. This is achieved similarly by

fitting the FEM results for static friction data against the

interference, with the equation again taking the form of

power law and is given as,

lglobal ¼ max 0:167; a x�ð Þk
	 


ð28Þ

where a ¼ 0:7511e0:0003E
Y and k � �0:425; and the

dimensionless interference x� ¼ x=xc.

Similarly, Eq. (25) can be expressed in terms of inter-

ference for contact condition with finite local friction as,

lglobal ¼ min llocal;max 0:167; a x�ð Þk
	 
	 


ð29Þ

where

a ¼ 0:6925l0:7167
local

k ¼ �0:325llocal þ �0:00003
E

Y
þ 0:0409

� �

The coefficient a and exponent k for Eqs. (24) and (25),

and Eqs. (28) and (29) are summarized in Table 4.

Rough Surface Scale Load Formulations

The total dimensionless normal load carried by the rigid

flat is given as,

P0 ¼ Pflat

AnY
¼ 2pb

3Km

�

w
r
rS

� �0:5 Rd�þx�c

d�
z� � d�ð Þ

3
2/� z�ð Þdz�

þw�2 rs

r

	 
 Rd�þ6x�c

d�þx�c

z� � d�ð Þw
2r
rs

� �1:425

/� z�ð Þdz�

þw�2 rs

r

	 
 Rd�þ110x�c

d�þ6x�c

z� � d�ð Þw
2r
rs

� �1:263

/� z�ð Þdz�

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð30Þ

The total dimensionless maximum tangential load car-

ried by the rigid flat is given by substituting Eqs. (12)–(14)

in Eq. (21), and substituting the appropriate global friction

coefficient model in Eq. (21) and finally substituting

Eq. (21) in the integral of Eq. (20),

Q0max¼
Qmax�flat

AnY
¼ 2pba

3Km

�

w
r
rS

� �0:5 Rd�þx�c

d�
z� �d�ð Þ

3
2
þk w2r

rs

� �k

/� z�ð Þdz�

þw�2 rs

r

	 
 Rd�þ6x�c

d�þx�c

z� �d�ð Þw
2r
rs

� �1:425þk

/� z�ð Þdz�

þw�2 rs

r

	 
 Rd�þ110x�c

d�þ6x�c

z� �d�ð Þw
2r
rs

� �1:263þk

/� z�ð Þdz�

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð31Þ

where

a ¼ 0:6925l0:7167
local for local finite friction

0:7511e0:0003E
Y for local adhere friction

�

k ¼ �0:325llocal þ 0:0409 for local finite friction

�0:425 for local adhere friction

�

Probability Density Functions for Different Asperity

Height Distributions

For uniform height distribution, the asperities are distributed

uniformly between the range �Nurs to Nurs, where Nu =ffiffiffi
3
p

to obtain the correct standard deviation [25], and the

dimensionless probability density function can be given as,

Table 4 Coefficients a and k
for adhered and finite friction

contact

Contact condition P* x*

a k a k

Adhered 0:7416e0:0003E
Y -0.3 0:7511e0:0003E

Y -0.425

Finite Friction 0:6931l0:7153
local

�0:223llocal ? 0.261 0:6925l0:7167
local

�0:325llocal ? 0.0409
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/� z�ð Þ ¼ r

2
ffiffiffi
3
p

rs

for �
ffiffiffi
3
p

rs=r� z� �
ffiffiffi
3
p

rs=r ð32Þ

The triangular distribution for the asperity height

ranges between �Ntrs to Ntrs, where Nt =
ffiffiffi
6
p

[25].

The dimensionless probability density function takes the

form,

/� z�ð Þ ¼ rffiffiffi
6
p

rs

1� z�rffiffiffi
6
p

rs

� �
for 0� z� �

ffiffiffi
6
p

rs=r

/� z�ð Þ ¼ rffiffiffi
6
p

rs

1þ z�rffiffiffi
6
p

rs

� �
for�

ffiffiffi
6
p

rs=r� z� � 0

ð33Þ

For Weibull distribution using the approach detailed in

Ref. [26], and normalizing with respect to surface height

standard deviation, r, the probability density function in

dimensionless form is given by,

/� z�ð Þ ¼ bw B1 þ z�
r
rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � B2

1

q� �bW�1

r
rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � B2

1

q
e� B1þz� rrs

ffiffiffiffiffiffiffiffiffiffi
B2�B2

1

p
ð Þbw

ð34Þ

where Bn is defined in terms of the gamma function as

Bn ¼ Cð1� n=bwÞ and bw is the dimensionless shape

parameter which can be related to the skewness value; for

rsk = -1, bw = 40.7, from the table in Ref. [26]. Also,

z# ¼ z�gwB1

rs
¼ z�gwB1

gw

ffiffiffiffiffiffiffiffiffiffi
B2�B2

1

p , where gw is the dimensional scale

parameter [26]. Normalizing the asperity height, z with

respect to the standard deviation of the surface height, r,

we have, z� ¼ z�gwB1

r ¼ z�gwB1

gw

ffiffiffiffiffiffiffiffiffiffi
B2�B2

1

p
� �

rS

r .

Rough Surface Static Friction Coefficient Based

on Uniform Asperity Distribution

where

P01C ¼
2

15
ffiffiffi
3
p pb

Km
w

rs

r
1

w2

� �2:5

P02C ¼
2:06

14:55
ffiffiffi
3
p pb

Km
w0:85 rs

r
6

w2

� �2:425

P03C ¼
2:8

13:578
ffiffiffi
3
p pb

Km
w0:526 rs

r
110

w2

� �2:263

and,

a ¼ 0:6925l0:7167
local for finite friction

0:7511e0:0003E
Y for adhere friction

�

k ¼ �0:325llocal þ 0:0409 for finite friction

�0:425 for adhere friction

�

Thus, the static friction coefficient at rough surface is

given as,

�l ¼ min llocal;max 0:167; �lð Þð Þ
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