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Abstract There is currently considerable debate con-

cerning the most appropriate rheological model to describe

the behaviour of lubricant films in rolling–sliding, elasto-

hydrodynamic contacts. This is an important issue since an

accurate model is required to predict friction in such con-

tacts. This paper reviews the origins of this debate, which

primarily concerns a divergence of views between

researchers using high pressure, high shear rate viscometry

and those concerned with the measurement and analysis of

elastohydrodynamic friction; the former advocate a Car-

reau-based shear stress/strain rate model while the latter

generally favour an Eyring-based one. The crucial impor-

tance of accounting for shear heating effects in analysing

both viscometric and friction data is discussed. The main

criticisms levied by advocates of a Carreau-based model

against Eyring’s model are discussed in some detail.

Finally, the ability of both types of rheological model to fit

elastohydrodynamic friction measurements for a quite

simple, well-defined base fluid is tested, using previously

measured pressure–viscosity behaviour for the fluid. Both

models appear to fit the experimental data over a wide

temperature range quite well, though fit of the Eyring

model appears slightly closer than that of the Carreau–

Yasuda model. Friction data from a wider range of well-

defined fluid types are needed to identify categorically the

most appropriate model to describe elastohydrodynamic

friction.
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1 Introduction

An important challenge in mechanical engineering is to

increase the efficiency of machine components and thereby

reduce energy consumption and greenhouse gas emissions.

One way to achieve this is to reduce friction losses between

moving surfaces. In consequence, there is currently great

interest in understanding the origins of friction in both

lubricated and unlubricated components.

In lubricated machine components that are based on

elements that both roll and slide together, including

rolling bearings, gears, constant velocity joints and cam/

follower systems, much of the friction loss originates in

elastohydrodynamic (EHD) contacts. To roll, elements

must be non-conforming, and this means that the con-

tact region between them is very small and so at very

high pressure. Hydrodynamic lubricant films can only

form in such contacts because the pressure has two

beneficial effects—of elastically flattening the surfaces

to form a tiny, conforming contact region and of

increasing locally the effective viscosity of lubricants in

the inlet. The consequent regime of lubrication is

known as piezoviscous-elastic or elastohydrodynamic

lubrication [1].

Figure 1 shows optical interference images of EHD

lubricating films within a rolling point (ball on flat) and

part of a line (cylinder on flat) contact taken from [2]. The

shapes of the EHD contacts are evident. There is a flattened

region that corresponds closely to the Hertzian contact area

within which, under most conditions, the film thickness is

quite uniform except for a constriction, 20 to 40 % less

thick, at the rear and sides of the contact. In both images in

Fig. 1, the film thickness in the central region is about

400 nm, while the width of the contact is about 300 lm,

both typical values for EHD contacts.
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Figure 2 shows the film thickness profile across the

midline of the contact taken from the point contact image

in Fig. 1, displayed with identical vertical and horizontal

scales. This shows clearly two separate regions, the con-

verging inlet region to the left and the extremely thin

central region. It helps explain one of the characteristic

features of elastohydrodynamic lubrication, which is that

EHD film thickness and EHD friction are largely decou-

pled. The quantity of lubricant entrained and thus the film

thickness is determined primarily by the geometry and

properties of the lubricant in the immediate inlet region

that spans a zone from about distance b (the contact half-

width or radius) in front of the inlet edge of the flat region

to this inlet edge itself. In this region the pressure in the

lubricant rises progressively from atmospheric pressure to

about 150 MPa, while its viscosity increases correspond-

ingly, to reach a value about ten times its atmospheric

pressure value as the inlet edge is approached. The quantity

of lubricant entrained depends on a composite value of the

viscosity of the lubricant over this inlet region. The pre-

vailing strain rate in the inlet is determined by recirculation

of lubricant and is usually about 106 s-1, so a typical

lubricant reaches a shear stress (viscosity 9 strain rate) of

ca. 0.1 to 1 MPa on its approach to the inlet edge. Under

these relatively low shear stress conditions, most base

fluids are Newtonian (i.e, the shear stress is proportional to

the shear strain rate), so film thickness depends on the

piezoviscous but Newtonian properties of the lubricant.

The EHD film is so thin that once within the contact, the

lubricant has no option but to progress through to the exit

i.e, there is negligible side leakage. This means that the

film thickness does not depend on the properties of the

lubricant film within the flat, central region of the contact.

By contrast, in rolling–sliding contacts, EHD friction

depends almost entirely on the properties of the lubricant

film within the flat central contact region since this part of

the film is highly pressurised and thus has high shear stress.

The conditions in this region are extraordinarily severe; the

pressure is typically greater than 1 GPa; the shear rate is

typically 105–107 s-1; oil film temperature can rise by

more than 50 �C; the lubricant is pressurised and depres-

surised within a fraction of a millisecond. Under these

conditions even the simplest organic liquids behave in a

highly non-Newtonian fashion, exhibiting viscoelastic and

extensive shear thinning behaviour, and the EHD friction is

determined by this non-Newtonian response. Experimen-

tally it is found that EHD friction depends strongly on

molecular structure, in a fashion that indicates that prop-

erties such as bond flexibility and free volume are pre-

dominant. This suggests that friction depends on the ease

with which layers of molecules are forced to slide past one

another at very high pressure, in a fashion that is not

mirrored at low pressure.

Our understanding of and ability to predict EHD film

thickness are well developed. So long as inlet shear thin-

ning does not occur, the composite piezoviscous response

over the inlet region can be measured using high-pressure

rheometry [3] or estimated directly from measurements of

EHD film thickness [4, 5] and applied in regression-based

film thickness equations [6]. For polymer solutions and

some very high molecular weight base fluids, where inlet

shear thinning does occur, its effect can also be taken into

account [7, 8]. Unfortunately our understanding of EHD

friction is much less complete. Although we have a rea-

sonably clear overall picture of the general pattern of

behaviour, there is still considerable debate as to the most

appropriate rheological model to describe fluid behaviour

within EHD contacts. This debate has caused general

uncertainty in both academia and industry about how best

to calculate EHD friction.

This paper will review the origins and content of this

debate and, it is hoped, help clarify for the reader how to

predict friction in EHD contacts. The development of our

understanding of EHD friction will first be reviewed from

an historical perspective, considering in turn EHD friction

Fig. 1 Optical interference images of a point contact, b line contact

inlet

Fig. 2 EHD film thickness profile across centreline of point contact

from inlet to outlet
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measurements, high shear stress viscometry, models of

shear thinning and piezoviscosity. Then two important

factors that contribute to the problem, shear heating,

especially in high-stress rheometry, and the poorly defined

nature of most lubricating base oils, will be discussed. The

scene having been set, the main arguments for and against

the two main proposed models of EHD rheology will then

be considered and the predictions of the two models

compared with measured EHD friction data. Finally, two

possible developments that may help clarify our under-

standing of EHD friction in future are briefly outlined.

The paper will focus on experimental work since only

this can ultimately validate models of EHD behaviour. It

will examine EHD friction and not discuss the much more

tractable issue of EHD film thickness. It should be noted

that in the field of elastohydrodynamic lubrication, the term

‘‘EHD traction’’ is often used in place of ‘‘EHD friction.’’

In the current paper, the term ‘‘EHD friction’’ will be used

throughout.

2 Two Main Approaches to EHD Rheology

In order to be able to predict friction in an EHD contact, we

need a constitutive equation that describes the way that the

shear stress of a fluid film in an EHD contact depends on

pressure, temperature, strain rate and strain history. The

sliding friction is then simply the integral of the shear stress

over the contact area. Since EHD friction is known to

depend on molecular structure, from the scientific view-

point, it would also be desirable if this constitutive equa-

tion were based on a physically realistic model of

underlying molecular behaviour, rather than to originate

only from curve fitting.

There have been two main approaches to deriving such an

equation. One is analysis of friction measurements taken

from EHD contacts to extract the rheological expression that

best explains these measurements. The key advantage of this

approach is that the lubricant film is obviously subjected to

conditions that are wholly realistic of actual EHD contacts.

The key disadvantage is that the pressure, temperature and

contact time, and consequently the rheological properties of

the lubricant film, vary across the contact. The measured

friction represents a single, integrated value of this locally

varying shear stress, so rheological information has to be

extracted from this integrated value.

The second approach is high-stress viscometry, where a

pressurised sample of oil is sheared at high applied strain

rate in a well-defined geometry. The key advantage of this

method is, unlike the above, that it studies a sample of fluid

that is all subject to the same, well-defined set of condi-

tions, making direct connection of strain rate with shear

stress relatively straightforward. Its main disadvantage is

that it is very difficult to subject fluid samples in a vis-

cometer to the levels of stress and strain rate experienced in

EHD contacts, and, when this is achieved, it is impossible

at present to avoid large rises in temperature that impact

strongly on the rheological response.

The development of both of these approaches is outlined

below.

3 Rheology from EHD Friction Measurements

3.1 Early Work

Ertel’s seminal solution of the EHD lubrication problem

was first published in English in 1949 [9], and this led to a

rapid growth in research interest in the field. The initial

focus of experimental work was on film thickness [10–12],

but by the end of the 1950s, disc machines started to be

used to measure friction in controlled, mixed rolling–slid-

ing conditions. It was soon realised that when the effect of

the contact pressure on viscosity was taken into account,

the friction in EHD contacts was much lower than that

predicted based on Newtonian behaviour. This phenome-

non was explored via the measurement of ‘‘traction

curves’’ to show how friction varied with sliding speed at a

fixed mean rolling, or ‘‘entrainment’’ speed and thus at a

constant EHD film thickness [13, 14]. A typical example of

an early traction curve is shown in Fig. 3 [15]. Such trac-

tion curves have played a crucial role in deriving lubricant

rheology from friction measurements.

Fig. 3 EHD traction curves from a line contact form of friction per

unit length versus sliding speed; (applied load decreases from a to c);

from [15]
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In early work, most authors interpreted their friction

measurements in terms of a ‘‘mean effective viscosity,’’

calculated as the ratio of mean shear stress to strain rate

across the EHD contact, i.e.,

�ge ¼
�s
_c
¼ F=A

Du=h
ð1Þ

where s is the shear stress, _c; the strain rate, F the friction

force, A the contact area, Du the sliding speed and h the

central film thickness. The bars denote average values

across the contact area. Research then sought to explain

why this mean effective viscosity was lower than the mean

Newtonian viscosity. Using a line contact disc machine,

Crook found that at very low sliding speeds, the mean

effective viscosity matched the Newtonian value quite

closely but that it fell increasingly below it as the rolling

speed increased, even when the sliding speed remained

constant [15]. He concluded that the effective viscosity

depended on the time of passage of the fluid through the

contact and suggested that this represented a viscoelastic

response of the oil, with the elastic strain within the fluid

film accommodating a significant proportion of the total

displacement during short transit times [15]. An alternative

conjecture was that when the lubricant entered the contact,

its viscosity took a finite time to reach its equilibrium, high

pressure value [16]. At high sliding speeds, Crook found

that the effective mean viscosity fell greatly below the

Newtonian value, which he interpreted as being due to

shear heating of the oil film.

Smith studied the elliptical contact between cylindrical

and spherical rollers and obtained very small amounts of

controlled sliding by skewing the axes of the two [14].

Again he found lower-than-expected friction at very low

entrainment speeds, which he ascribed to elastic effects of

the rollers. Smith proposed that levelling-out of friction at

high sliding speeds resulted from the lubricant film yield-

ing at a critical shear stress, coupled with shear heating.

In 1964, Bell and co-workers studied the EHD friction

properties of a polyphenylether lubricant in a disc machine

at low sliding speeds and noted a similar pattern of variation

of friction with sliding speed to Crook [17]. The authors

showed that the overall form of their friction versus strain

rate curve could be explained if viscous shear thinning

according to the Eyring viscosity model was assumed. They

did not, however, provide a direct comparison between

experiment values and predictions from this model.

Throughout the 1960s and 1970s, a series of increasingly

accurate friction measurements were obtained using twin

disc machines, in particular by the research groups of

Johnson [18–25] and Hirst [26–31]. Traction curves were

obtained over a range of entrainment speeds, contact pres-

sures, temperatures, lubricant viscosities and lubricant

types. By the mid-1970s, there was also a trend away from

interpreting traction curves in terms of mean effective vis-

cosity versus sliding speed, or slide–roll ratio (the ratio of

sliding speed to mean rolling speed) and instead considering

them in terms of mean shear stress, �s versus strain rate, _c.

In 1967, Johnson and co-workers measured EHD fric-

tion in a power-circulating twin disc machine that enabled

very accurate control of sliding speed over a wide range of

conditions [18, 19]. They deduced that it was not possible

to explain the observed friction behaviour at high sliding

speeds solely in terms of either shear heating, as suggested

by Crook [15], or a shear rate-independent limiting shear

stress, as proposed by other researchers [14, 32, 33]. In

1974, Hirst and Moore showed that the Eyring viscosity

model originally proposed by Bell et al. fitted experimen-

tally measured friction data accurately [27]. They also

suggested that the friction at low sliding speeds could

originate alternatively from a Newtonian response (at low

pressure) or a viscoelastic one (at high pressure).

In an important study in 1974, Johnson and Roberts

studied the impact on friction of skewing and tilting of one

disc against the other in a crowned twin-disc machine so as

deliberately to introduce spin and cross slip into the EHD

film [20]. The friction behaviour they observed strongly

supported the presence of a viscoelastic response of the

fluid in the contact.

3.2 Viscoelastic and Eyring Model

In 1977, Johnson and Tevaarwerk proposed that EHD

friction was controlled by a combination of behaviours

which they described overall as ‘‘nonlinear Maxwell’’ [22].

Johnson and Tevaarwerk’s equation is shown in Eq. 2 and

indicates that the strain rate originates from two compo-

nents, the first viscoelastic and the second a viscous, Eyring

shear thinning term;

_c ¼ 1

Gp

ds
dt
þ se

gp

sinh
s
se

� �
ð2Þ

where Gp and gp are the elastic shear modulus and low

shear rate Newtonian dynamic viscosity of the lubricant,

respectively, both at the pressure p, while se is the ‘‘Eyring

stress.’’ The latter is the threshold shear stress above which

significant shear thinning occurs (formally at which the

effective viscosity falls to a fraction 1/sinh(1) or about

85 % of its Newtonian value) and typically has a value

between 5 and 10 MPa. In stress versus strain rate form,

Eq. 2 rearranges to

s ¼ se sinh�1
gp

se

_c� 1

Gp

ds
dt

� �� �
ð3Þ

The latter shows clearly how the elastic term reduces the

shear stress in the contact by accommodating some of the
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applied strain. For lubricants at high pressure, Gp is typi-

cally of order 109 Pa, the shear stress in EHD contact rarely

exceeds 108 Pa, while the time for the oil to pass through

the contact is of order 10-4 s. Inserting these values in the

viscoelastic term of Eq. 3 indicates that viscoelastic term is

only a significant proportion of the whole at strain rates less

than ca. 105 s-1. In practice, this means that the elastic term

is only important when transit times are short and where

strain rates are modest, for example in rolling element

bearings when slide–roll ratios are low. It is of less sig-

nificance in high sliding contacts. Johnson and Tevaarwerk

also suggested that viscoelasticity is only significant when

the low shear rate viscosity of the fluid in the contact, gp,

exceeds 105–106 Pa.s.

When the elastic term is negligible compared to the

viscous term, Eqs. 2 and 3 reduce to

_c ¼ se

gp

sinh
s
se

� �
ð4Þ

and

s ¼ se sinh�1
gp _c

se

� �
ð5Þ

The sinh(x) function has two important mathematical

properties. One is that at low values of x it approaches the

value x. This means that at low shear stress, when s � se,

Eq. 4 becomes _c ¼ s=gp, i.e, the fluid becomes Newtonian.

The second is that at values of x greater than about 1.5,

sinh(x) approaches ex/2, so that when the shear stress s
exceeds se, Eq. 5 very quickly becomes

s ¼ se loge 2gp _c=se

� �
ð6Þ

which expands to

s ¼ se loge _cð Þ þ se loge 2gp=se

� �
ð7Þ

Johnson and Tevaarwerk’s model thus suggests that at low

strain rates, fluids behave in a Newtonian fashion if they

have low viscosity or are at modest pressure, but that in

high-pressure contacts, they show a viscoelastic response.

At all contact pressures, as the strain rate and thus the shear

stress is increased, fluid shear becomes dominated by Ey-

ring shear thinning which ultimately leads to a linear mean

shear stress versus log(strain rate) relationship at high

sliding speeds, at least until contact heating prevails. This

is shown in Fig. 4 from [22], where traction divided by

contact area (mean shear stress) is plotted against log

(slide–roll ratio), which, at constant entrainment speed, is

proportional to strain rate.

Equation 7 also shows that so long as s[ 1.5se over

most of the contact, values of the Eyring stress, se, and

mean low shear rate viscosity, �gp, can be determined from a

plot of �s versus loge( _c) at a fixed temperature and load.

If the contact is assumed to operate at a mean, constant

pressure, �p, and the low shear rate viscosity is assumed to

vary with pressure according to the Barus equation,

gp ¼ goeap, where a is the pressure–viscosity coefficient of

the lubricant, a further simplification is possible in that

Eq. 7 becomes [22];

�s ¼ se log e _cð Þ þ se loge

2go

se

� �
þ a�p

� �
ð8Þ

This means that when �s[ 1.5se, the Eyring stress and the

pressure–viscosity coefficient can be calculated either from

the plot of mean shear stress against strain rate at constant

applied load, or from a plot of mean shear stress against

pressure at constant strain rate. The validity of using the

Barus piezoviscosity equation will be discussed later in this

paper. This approach assumes, as a first approximation, that

se and a are independent of pressure. In practice, both may

vary linearly with pressure, and the extent of this variation

can be estimated by comparing friction results at different

mean contact pressures.

Hirst and Moore derived essentially the same model as

Johnson and Tevaarwerk and tested it on a much wider

range of fluids and over a wider temperature range [30, 31].

They studied low molecular weight polymers and simple

molecular fluids as well as mineral oils. This is important,

since, as will be discussed later, in principle Eyring’s

equation is only applicable to simple molecular liquids, and

also because it means that some of their work can be

reproduced today, which is not possible in the case of

polymeric or mineral oil-based fluids.

Since 1980, Johnson and Tevaarwerk’s model has been

accepted by many EHD researchers, and the main focus of

further research has been on testing it and refining the fit

between measurements and model, in particular by taking

account of temperature rise in the contact and of the var-

iation of pressure across the contact.

Fig. 4 Mean shear stress versus slide–roll ratio traction curves for

five different fluids; the nonlinear Maxwell-fitted equation predictions

are shown as solid lines; from [22]
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3.3 Temperature Correction

The combination of high shear rate and shear stress leads to

large concentrations of heat being generated and thus to a

significant temperature rise in the contact, and this greatly

complicates the interpretation of EHD friction measure-

ments. The equations governing temperature rise in an

EHD contact were described by Archard [34]. There are

two components, the ‘‘mean flash temperature rise,’’ D�Tsurf ,

of the solid surfaces in response to transient heat input as

they traverse the contact, and an additional rise of mean oil

film temperature above that of the bounding solid surfaces,

D�Toil, due to the relatively low thermal conductivity of the

oil.

The total mean temperature rise of the oil film above the

inlet temperature is then given, for a point contact, by:

D�T ¼ D �Tsurf þ D�Toil

¼ 1

2pKsqcð Þ0:5
2b

U

� �0:5

�sDuþ h

8Koil

�sDu ð9Þ

where the first term describes the mean flash temperature

rise and the second the additional oil film temperature rise.

In Eq. 9, b is the half-width of the contact, Ks, q and c the

thermal conductivity, density and specific heat of the solid

bodies, respectively, U the entrainment speed, h the film

thickness and Koil the thermal conductivity of the oil at the

mean pressure of the contact. The ratio 2b/U represents the

time taken for the surfaces to pass through the contact. The

product of mean shear stress and sliding speed, �sDu, is the

heat generated per unit area in the contact. The flash

temperature term in Eq. 9 assumes that both solids are of

the same material and travel at approximately the same

speed with respect to the contact, but it can quite easily be

adjusted to accommodate different materials and speeds. In

the second term, the value in the denominator 8 is debated

and depends on where heat is generated in the oil film.

Archard derived the value of 8 assuming that heat is gen-

erated evenly through the oil film thickness while a value

of 4 was obtained if all the heat is generated at the mid-

plane.

Equation 9 shows that at high values of mean shear

stress and sliding speed, the mean oil film temperature can

rise very significantly, especially when the film thickness,

h, is large. For example, for a typical steel ball on flat

sliding/rolling contact as described later in this paper and a

film thickness of 500 nm, a value of �sus = 107 W/m2 gives

a mean oil film temperature rise of 50 �C. Shear stress falls

typically 4 % for every 1 �C rise in temperature, so this

temperature increase has a very strong effect on EHD

friction at high strain rates and is primarily responsible for

the levelling out and decrease in friction seen in traction

curves at high sliding speeds, for example in Fig. 3. It also

complicates the interpretation of traction curves since it

must be accounted for before any model of rheology can be

inferred. One approach is to confine any analysis of the

traction data to results that are known, based on Eq. 9, to

originate from films that have experienced a minimal

temperature rise, e.g. D �T \ 2 �C. However, as discussed

by Hirst and Richmond, at high pressure this may leave

only a small range strain rates between the viscoelastic

region and the thermal region from which to derive a

description of shear thinning behaviour [35].

Conroy et al. addressed this problem by obtaining

traction curves at various temperatures [25]. Combination

of the results, based on film temperatures calculated using

Eq. 9, then enabled isothermal traction curves to be con-

structed even within the ‘‘thermal’’ region. Evans and

Johnson used a similar approach in which they employed

values of D�T calculated from Eq. 9 to adjust the bulk

temperature and sliding speed during friction tests so as to

obtain isothermal EHD friction data over a very wide range

of conditions for three lubricants [36, 37]. Their results,

shown in Fig. 5 for a mineral base oil, confirmed the

nonlinear Maxwell model of Eq. 2 [36], but also identified,

for two of the fluids tested, a limiting shear stress, sc, at

which the shear stress levelled out at high strain rate,

suggestive of plastic yield behaviour. Evans and Johnson

found that sc increased linearly with mean pressure of the

lubricant film. Incorporating this limiting shear stress into

Johnson and Tevaarwerk’s model gives Eq. 10, where Ke

describes the proportionality between sc and mean

pressure.

s ¼ min se sinh�1
gp

se

_c� 1

Ge

ds
dt

� �� �
;Kep

� �
ð10Þ

Fig. 5 Isothermal traction curves over a wide range of contact

pressures for one mineral oil; from [36]
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In this equation, Ge is a composite elastic shear modulus

incorporating both the shear modulus of the lubricant film

at high pressure and the elastic shear of the solid surfaces

[37].

Hirst and Richmond discussed the thermal problem in

some detail and applied a very accurate thermal correction

procedure to EHD friction measurements. They found that

isothermally corrected shear stress versus log(strain rate)

curves only became precisely linear at high strain rates, as

predicted by Eq. 7, if the values of lubricant thermal con-

ductivity employed in the thermal correction were those

measured at high pressure [35]. They noted that the thermal

conductivities of lubricants at 1 GPa are generally about

twice as large as the corresponding values at atmospheric

pressure.

An alternative method of extending the thermal region

was developed by LaFountain et al. who used a rolling–

sliding ball on flat disc tribometer [38]. They conducted a

series of Stribeck curve measurements (friction measured

as a function of increasing entrainment speed and thus film

thickness) at different, fixed slide–roll ratios. When con-

verted to friction coefficient versus strain rate curves, this

gave an extended isothermal region represented by the

minima of the Stribeck curves, as shown in Fig. 6. In

essence, this approach, by measuring Stribeck curves,

identifies values of friction that are measured at the

smallest possible film thickness to ensure full film condi-

tions, and thus with lowest possible oil film temperature

rise.

3.4 Variation of Pressure Across the Contact

As already indicated, the main disadvantage of using EHD

friction to determining fluid rheology is that the friction

measured is a composite value of shear stress integrated

over a wide range of conditions within the contact. Of

particular concern is the variation of pressure, and thus low

shear rate piezoviscosity gp across the contact

One approach in analysing EHD friction data is to

assume that the whole film is at the mean Hertz contact

pressure. However, in practice, pressure varies greatly over

an EHD contact and at high loads and low speeds can be

approximated to the Hertz pressure distribution. Hirst and

Richmond provide expressions to test when the assumption

of a Hertz pressure distribution is valid [35].

The mean shear stress can be calculated by allowing gp

to vary with pressure over a contact, and for a point contact

and Eyring shear thinning this gives:

�s ¼ F

A
¼ 2pse

pb2

Zb

0

r sinh�1
gp _c

se

� �
dr: ð11Þ

For s[ 1.5se this becomes;

�s ¼ F

W
¼ 2pse

pb2

Zb

0

r loge

2gp _c

se

� �
dr: ð12Þ

For a circular, point contact, according to Hertz theory

p ¼ pmax 1� r2

b2

� �1=2

ð13Þ

where b is the Hertz contact radius. Assuming this pressure

distribution and the Barus viscosity–pressure equation

�s ¼ 2se

b2

Zb

0

r loge

goeapmax 1�r2=b2Þ1=2ð Þ _c
se

 !
dr: ð14Þ

Combination of the exponential and logarithmic terms

means that when this equation is integrated, it yields the

expression

�s ¼ se loge _cð Þ þ loge

2go

se

� �
þ 2apmax

3

� �
ð15Þ

Since pmean = 2pmax/3, this is identical to the expression

obtained using the mean Hertzian pressure in Eq. 8. A

similar identity between the mean pressure and integrated

pressure shear stress equations is also found for line con-

tact. These identities show that as long as s[ 1.5se over

most of the contact and se is taken to be pressure-inde-

pendent, the mean pressure approach is wholly valid for the

Barus equation. Analytical integration of the logarithmic

form is also quite straightforward for many other expo-

nential-based viscosity–pressure equations such as the

polynomial and Paluch relationships described later in this

paper. From Eq. 12, any form of viscosity–pressure equa-

tion will, of course, yield a linear shear stress versus log

(strain rate) relationship so long as the strain rate is con-

stant and s[ 1.5se over most of the contact.

Fig. 6 Use of a series of Stribeck curves at different slide–roll ratios

to obtain full film EHD friction data over a wide shear rate range;

from [38]
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At lower shear stresses when _cgp\1:5se, the logarith-

mic approximation is no longer appropriate, and integration

of the sinh-1() expression, or even one including the vis-

coelastic term over the varying pressure of the contact, has

to be carried out [30, 39, 40]. This is particularly the case

for low viscosity fluids, where the shear stress of a sig-

nificant proportion of the film does not reach se. Muraki

and Dong have shown that in this case, it is possible to treat

the contact as two separate regions, one assumed to be

Newtonian and the other to obey the logarithmic relation-

ship of Eq. 8. The two regions are separated, for circular

contact, by the radius at which the sinh-1 term, ðgp _c=seÞ is

equal to unity [40].

Allowance of variation of pressure across the contact

was taken further in 2000 by Fang et al., who assumed a

line contact EHD film with a Hertzian pressure distribution,

equations to describe how low shear rate viscosity varied

with the pressure and temperature and the Eyring equation

to describe shear thinning behaviour [41, 42]. They then

repeatedly solved for temperature and shear stress distri-

bution across the contact while systematically varying the

constants se and a until the predicted EHD friction fitted

most closely with the measured values.

The above has described how analysis of EHD friction

data since the 1960s has led EHD researchers to a rheo-

logical equation for lubricant behaviour based on a com-

bination of viscoelasticity, the Eyring shear thinning

equation and, at very high stresses, a limiting shear stress.

Perhaps surprisingly there has been little systematic

attempt to test the fit of friction data to other shear thinning

equations, though it has been claimed that a linear rela-

tionship between shear stress and log(strain rate) can be

predicted using other models [43, 44], or indeed, simply

result from shear heating [45].

Full computational solutions of the EHD problem have

been carried out by numerous researchers using a wide

range of shear thinning equations and the results compared

to friction measurements, e.g. [46–52]. All produce, as

might be expected, the general shape of traction curves,

with varying levels of quantitative match. However, in

view of the complexity of full EHD solutions, the authors

do not believe that this approach provides a robust way of

validating shear thinning models.

4 Rheology from High-Stress Viscometers

It became clear in the 1960s that progress in elastohydro-

dynamic lubrication required knowledge of the properties

of lubricants at a combination of high pressure and high

strain rate, and this led researchers at Georgia Institute of

Technology to build a succession of high-pressure

rheometers aimed at measuring liquid properties under

these conditions. In 1968, Novak and Winer developed a

capillary viscometer able to reach a pressure of 0.7 GPa

with an applied shear stress of 0.1 MPa and employed this

to study the viscosity of several lubricants [53]. For the

polymer solutions tested, they found shear thinning

behaviour, but all of the base oils tested showed Newtonian

response at all test conditions. This approach was extended

in 1975 by using shorter capillaries to reach shear stresses

as high as 4 MPa, but again base oils behaved only in a

Newtonian fashion once heating effects were taken into

account [54].

These two studies failed to reach a sufficiently high

shear stress for shear thinning of low MWt base oils to

occur, but in 1979, Bair and Winer developed three new

high-pressure rheometers based on shear of fluid between a

moving piston and stator [55]. They used these to explore

both the elastic (stress vs. strain) and viscous (stress vs.

strain rate) behaviour of three base fluids. At high pressures

and low temperatures up to about 50 �C above the glass

transition temperature, all three lubricants behaved as

elastic solids upon initial application of stress, with an

apparent yield stress that increased with pressure and

temperature. This yield stress also increased with strain

rate. One of the three rheometers was able to reach a

combination of high shear stress (up to 50 MPa) with quite

high strain rate (up to 500 s-1). This showed that at lower

pressures and higher temperatures, all three fluids showed

shear thinning behaviour above a shear stress of about

10 MPa, tending towards a limiting shear stress value, sL,

that increased linearly with pressure and decreased with

temperature. Bair and Winer proposed an equation based

on an asymptotic shear thinning expression combined with

a viscoelastic term [56];

_c ¼ 1

Gp

ds
dt
� sL

gp

loge 1� s
sL

� �
ð16Þ

This can be rearranged in terms of shear stress as;

s ¼ sL 1� e
�gp

sL
_c� 1

Gp
ds
dt

� 	 !
ð17Þ

In 1982, Bair and Winer developed a new piston-based

rheometer to address a problem of pressure drop during test

measurement, and shear stress versus strain rate curves

were measured for a range of lubricants, including polymer

solutions, up to 1.1 GPa and a shear stress of 80 MPa [57].

Shear thinning occurred for both base fluids and polymer

solutions and shear stress levelled out as strain rate

increased, in a fashion consistent with Eq. 17.

A very different method for studying lubricant rheology

at high shear stresses was developed by Ramesh and

Clifton in 1987 [58]. They measured the compression and

8 Tribol Lett (2014) 56:1–25
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shear waves transmitted from the impact of two flat plates

separated by a very thin film of lubricant and from these

were able to monitor the shear stress and strain of the film

over a time scale of less than a millisecond. The approach

could not directly study the variation of shear stress with

strain rate and applied only very small amounts of shear,

but did show that the lubricants tested had an apparent

limiting shear stress that increased linearly with pressure

over the pressure range of 1–5 GPa.

In 1990, Bair and Winer developed a new high-pressure

viscometer based on a rotating cylinder configuration in

order to reach controlled, high strain rates [43]. A key barrier

in such development is heating of the test fluid during shear

and consequent reduction in effective viscosity. The new

design addressed this by using a very short duration of shear

to avoid unacceptable cylinder temperature increases,

combined with a very narrow film gap down to almost one

micron to minimise oil film temperature rise. This enabled

combinations of shear stress and strain rate, up to 10 MPa

and 104 s-1, respectively, to be reached without significant

shear heating. Two fluids were studied, and the same pattern

of shear stress versus strain rate behaviour was found as

noted at higher pressures and lower strain rates, i.e, linear

increase on a log/log plot at low strain rates followed by

levelling out towards a limiting value as strain rate was

increased. In a subsequent paper in 1992, Bair and Winer

combined this data with some taken at very high pressures

and low strain rates to suggest that the transition from

Newtonian to plastic behaviour described by Eq. 17 broad-

ened as pressure was increased [59]. They proposed a

modification of this equation to accommodate this.

Further thermal analysis showed that there was a sig-

nificant flash temperature effect in the cylinder walls even

during short duration tests and this led Bair and Winer in

1993 to develop another, ‘‘isothermal’’ concentric cylinder

viscometer with a shorter time of operation of 3 ms, so as

to prevent significant temperature increase of the cylinders

[60]. Again, as shown in Fig. 7, they found levelling-out of

shear stress/strain rate curves at high strain rates, in support

of the existence of a limiting shear stress, sL.

The high-pressure capability of this viscometer was

increased by Bair to 600 MPa in 1995 [61] and to almost 1

GPa in 2002 [62]. In 1995, Bair also suggested the use of

the reduced Carreau–Yasuda equation;

s ¼
gp _c

1þ gp _c
so

� 	a� 	 1�nð Þ=a
ð18Þ

where a and n are constants and n \ 1 [61]. so is a modulus

or stress at which shear thinning becomes significant. Ini-

tially Bair used sL in place of so but it is clear that so does

not represent a limiting shear stress. For a = 2 and

n = 0.5, it is the stress at which the effective viscosity has

fallen 21 % below its Newtonian value and it typically has

a value between 4 to 10 MPa for simple molecular fluids,

but a much smaller one for polymeric liquids. More

recently, Bair has tended to use the term sC [44] or G [63],

but in this review, so is preferred to avoid confusion with

the elastic shear modulus used in the viscoelastic term. In

2002, Bair added a pressure-dependent, limiting shear

stress to the Carreau Yasuda model [44] to give, omitting

the Maxwell viscoelastic term,

s ¼ min _cgp 1þ
gp _c

so

� �a� � n�1ð Þ=a

;Kcp

" #
ð19Þ

Since 2002, there appears to have been relatively little

further development of high shear stress viscometry. Bair

and his colleagues at Georgia Institute of Technology

remain the only group to construct and employ short

duration, high-stress/high-strain viscometers, perhaps

because of the formidable problems involved in their

design, in particular to limit their response time. Bair has

used the Carreau–Yasuda equation for modelling EHD

lubrication, accompanied by criticism of the Eyring equa-

tion [44, 45, 64]. The relative suitability of these equations

in EHD contact conditions will be discussed later in this

paper, but first their origins are briefly outlined.

5 EHL Rheology Models

5.1 Eyring

Eyring’s model of viscosity, introduced in 1936, treats

liquid flow as a unimolecular, ‘‘chemical’’ reaction in

Fig. 7 Shear stress versus strain rate data for a 5-phenyl-4-ether

(5P4E) showing ‘‘limiting shear stress’’ from two high-stress

viscometers; from [60]
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which the elementary process is a molecule (or flow unit)

passing from one equilibrium position to another over a

potential energy barrier [65]. It was based on the newly

developed partition state chemical reaction rate theory [66,

67]. Figures 8 and 9 show the process schematically. A

molecule moves approximately one molecular distance, k,

into a neighbouring hole in the liquid. If no external force

is applied, the number of times per second that molecules

passes over the energy barrier and hence moves in either

direction, i.e, their diffusion rate, is given by:

kD ¼ Be�Ea=kT ð20Þ

where Ea is the activation energy for flow and B contains

the ratio of the partition functions of the activated and

initial state, which includes a free-volume term.

However, when a shear force is applied, this has the

effect of reducing the activation energy for a flow process

in the direction of applied force and increasing it in the

reverse direction, as shown in Fig. 9. The activation energy

is assumed to be raised and lowered by the value sk2k3k/2,

where s is the applied shear force per unit area, k2 is the

length of the molecule in the direction of the applied force,

k3 is its length in the transverse direction (so sk2k3 is the

shear force on the individual molecule) and k/2 the distance

it has to move to reach the top of the energy barrier.

The specific flow rates in the forward and backward

directions, kf and kb, are therefore given by:

kf ¼ Be� Ea�sk2k3k=2ð Þ=kT ¼ kDesk2k3k=2kT ð21Þ

kb ¼ Be� Eaþsk2k3k=2ð Þ=kT ¼ kDe�sk2k3k=2kT ð22Þ

Since each time a molecule passes over a potential barrier,

it moves a distance k, the rate of motion of the layer rel-

ative to its neighbour is given by:

Du ¼ kDk kf � kb

� �
¼ kDk esk2k3k=2kT � e�sk2k3k=2kT

� 	

ð23Þ

or, from the definition of the sinh() function,

Du ¼ 2kDk sinh
sk2k3k

2kT

� �
: ð24Þ

The shear rate is given by the difference in velocity divided

by the spacing between layers, k1

_c ¼ Du

k1

¼ 2kDk
k1

sinh
sk2k3k

2kT

� �
ð25Þ

while the effective viscosity is the shear stress divided by

the strain rate:

ge ¼
s
_c
¼ sk1

2kDk sinh sk2k3k
2kT

� � : ð26Þ

At low shear stresses when s � 2kT/k2k3k,

sinh sk2k3k
2kT

� �
¼ sk2k3k

2kT
, so under these conditions, the (New-

tonian) viscosity is given by;

g ¼ sk1

2kDk sk2k3k
2kT

¼ 2kTk1

2kDk2k3k
2

ð27Þ

or

kD ¼
kTk1

gk2k3k
2
: ð28Þ

Substituting Eq. 28 into Eq. 25 gives

_c ¼ 2kT

gk2k3k
sinh

sk2k3k
2kT

� �
ð29Þ

Fig. 8 Elementary flow process, a flow unit of area l1l2 moves

distance l into an available hole due to an applied shear force; from

[68]

Fig. 9 Applied shear stress, f, decreases the activation energy for

flow in the forward direction and increases it in the backward

direction; from [66]
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If we set se = 2kT=k2k3k, this becomes Eq. 5, the Eyring

equation adopted by many EHD researchers.

The product k2k3k is called the ‘‘activation volume.’’

Eyring found that for simple molecular liquids, Eq. 27

predicted the actual Newtonian viscosity when this acti-

vation volume was approximately the size of the molecule,

but that for larger molecules, the activation volume

required to predict the measured viscosity was less that the

molecular size [68]. He suggested that this was because the

flow unit was not the whole molecule but that the molecule

moved in a segmental fashion.

In 1941, Eyring included the effect of applied pressure

on activation energy to obtain a relationship between vis-

cosity and pressure [69].

It should be noted that in 1936, Eyring’s goal was to

develop a priori model of the viscosity of simple liquids

which was able to explain how Newtonian viscosity varied

with temperature, free-volume and molecular properties.

The shear thinning equation via which this was derived was

essentially a by-product, and he initially gave it little

attention. However, other scientists working on shear

thinning of polymer solutions and dispersions very soon

started to apply Eyring’s equation to model their findings,

with variable degrees of success.

In 1955, since the original model failed to model com-

plex fluids and multiphase systems, Ree and Eyring

extended Eyring’s model to allow for multiple flow units,

for example of dispersed particles in a fluid medium [70,

71]. Their equation was

s ¼
X

i

aixi sinh�1 bi _cð Þ ð30Þ

where xi is the fraction of a shearing layer occupied by flow

unit type i, ai = kT
k2k3k

� 	
i

is this unit’s se and bi = ki

2kDk

� 	
is

its relaxation time.

The complexity of Eq. 30 means that the Ree–Eyring

model has not generally found favour, and it is unfortunate

that the earliest EHD publications cited these later Ree and

Eyring papers while actually used the original simpler

Eyring equation [17, 72], with the result that Eyring’s

model is often, incorrectly, termed the Ree–Eyring model

in the EHD literature. Eyring’s model has also recently

been referred to as the Prantl–Eyring model [73], since

Prantl, in 1928, developed a similar thermally activated

shear model to describe the plastic flow of solids and also

dry friction [74, 75].

5.2 Carreau and Yasuda

By the 1960s, several shear thinning models had been

developed specifically to describe complex fluids [76]. In

1965, Cross derived a viscosity model for polymer solu-

tions and colloidal dispersions based on equilibrium

between the formation and rupture of linkages between

dispersed or dissolved particles [77]. This took the form:

ge ¼ g1p þ gp � g1p

� � 1

1þ a _cð Þ2=3

 !
ð31Þ

where a is a constant associated the rupture of linkages, gp

is the low shear rate Newtonian viscosity and g?p is its

viscosity at infinite shear rate, i.e, when the fluid has shear

thinned fully to reach a ‘‘second Newtonian.’’ Note that in

the above and the following equations, the suffix p has been

included to remind readers that these are limiting Newto-

nian values at the prevailing pressure. Although Cross

derived the value 2/3 as the power of the strain rate term,

nowadays, this is often generalised to become a constant m,

with value less than 1.

This form of shear thinning equation, with limiting

values of a first and second Newtonian, is appropriate to

fluids where the shear thinning component is dispersed in a

Newtonian continuous phase such as a polymer in solvent,

and is widely used to describe shear thinning of lubricants

containing viscosity modifier polymers. If g?p is set to

zero, as might be appropriate for a polymer melt, or simply

when it much lower than gp and not reached in experiments

[78], then the Cross equation becomes:

ge ¼
gp

1þ a _cð Þ2=3
ð32Þ

In principle, all shear thinning equations can include a

second Newtonian, and Eyring and Powell extended the

Eyring equation in this fashion in 1944 [79].

By the 1960s, a model of polymer rheology was taking

shape based on molecular network theory in which ran-

domly arranged polymer chains are linked together by

temporary junctions which are lost and created as the liquid

flows [80]. In 1972, Carreau showed that one mathematical

solution to this type of model was

ge ¼
gp

1þ k _cð Þ2
� 	1�n

2

ð33Þ

where k is a time constant and n \ 1 [81]. He notes that

this solution is not unique, stating ‘‘unfortunately the

modified network theory does not shed any light on the

actual forms of the functions fp(II) and gp(II). In this sec-

tion, we select arbitrarily plausible forms which will permit

good fit of the experimental data for various flow

situations.’’

At very high shear rates when k _c� 1, Carreau’s

equation reduces to

ge ¼ gp k _cð Þn�1 ð34Þ
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so that a plot of log(effective viscosity) versus log(shear

rate) should give a straight line of gradient (n - 1).

In 1981, Yasuda carried out an extensive study of the

shear thinning of polystyrene polymer solutions and sug-

gested a modification to the Carreau equation to improve

its fit in the transition region between Newtonian and

strong shear thinning [82]. This has the form;

ge ¼
gp

1þ k _cð Það Þ
1�nð Þ

a

ð35Þ

where a and n are constants. a usually has a value close to

2, as in the Carreau equation. This equation has become

known as the Carreau–Yasuda equation and widely used to

describe polymer shear thinning, both in the above form

and with a second Newtonian term;

ge ¼ g1p þ gp � g1p

� � 1

1þ k _cð Það Þ 1�nð Þ=a

 !
ð36Þ

Like the Carreau equation, Eq. 35 reduces to Eq. 34 at high

strain rates. The Carreau and Carreau–Yasuda equations

can be expressed in terms of shear stress simply by mul-

tiplying through by the strain rate, e.g.,

s ¼
gp _c

1þ k _cð Það Þ 1�nð Þ=a
ð37Þ

When the time constant, k, is replaced by gp/so, this results

in the form of the Carreau–Yasuda equation advocated by

Bair and coworkers and shown in Eq. 18.

According to Bair, from thermodynamic arguments, so

can be equated to NvkT where Nv is the number of molecules

per unit volume [83]. Interestingly, this is very closely

related to the expression for se = kT/k1k2k in the Eyring

equation, where k1k2k is the activation volume. Indeed, if

we set the volume of a molecule equal to the activation

volume, se and so become identical. Bair estimated the

value of so for various liquids and found that for simple

liquids, 1/Nv corresponds quite closely to the volume of a

molecule but that for polymers, it becomes much smaller

than this [83], just as was found by Kauzmann and Eyring

for simple fluids versus ones with larger molecules [68].

6 Low Shear Rate Piezoviscosity

All the shear thinning equations described above reduce, at

very low shear rate, to viscosity gp, which is taken to be the

Newtonian viscosity of the fluid at the prevailing pressure.

Therefore, although not critical in choosing the form of

shear thinning equation, when testing any such equation, it

is essential to have an accurate description of the way that

viscosity varies with pressure over the range of pressures of

interest. Indeed, much of the debate about preferred shear

thinning models has been confused by simultaneous con-

cern about which pressure–viscosity equation to employ.

This section therefore briefly reviews the development of

our understanding of pressure–viscosity equations.

In 1884, Warburg and Sachs carried out viscosity

measurements on three liquids and proposed a linear

equation [84]:

gp ¼ go 1þ bpð Þ ð38Þ

Less than a decade later, Barus, who was able to reach

higher pressures, found that viscosity increased much more

rapidly than linearly with pressure and proposed his well-

known exponential equation, which predicts that log(gp)

varies linearly with pressure [85];

gp ¼ goeap ð39Þ

Warburg’ and Barus’ equations are not contradictory since

the exponential equation reduces to the linear form when

p � a.

Subsequent measurements over the next 50 years

showed that Barus equation gave a good first approxima-

tion but was rarely obeyed accurately over a wide pressure

range. Liquids generally show a gradient of logg versus

p that progressively reduces with increasing pressure

(concave to the pressure axis) at low-to-moderate pressures

and a gradient that increases with pressure (convex to the

pressure axis) at very high pressures, with the transition

from concave to convex shape occurring at lower pressure

as temperature is reduced, as shown schematically in

Fig. 10 for the fluid di-ethylhexylphthalate. In 1953, an
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Fig. 10 Typical viscosity versus pressure for a liquid showing

‘‘concave’’- and ‘‘concave/convex’’-shaped behaviour
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influential study sponsored by the ASME studied 56

lubricants having a wide range of structures and viscosities

up to a pressure of 1 GPa [86]. This indicated that the

majority of lubricating oils have concave-shaped curves up

to 1 GPa in the temperature range 0 to 200 �C.

Using available data including the ASME report results,

in 1966, Roelands developed two equations that gave good

fit to viscosity–pressure behaviour for a wide range of

fluids over the region where fluids showed concave-shaped

curves [87]. The simpler of these is

gp ¼ gRe
loge

go
gR

� 	
1þ p

pR

� 	Z
� �

ð40Þ

where gR and pR are universal constants having values of

6.31.10-5 Pas and 196 MPa, respectively. go is the low-

pressure viscosity and Z has a value specific to the lubri-

cant, typically around 0.6. If Z \ 1, then Roelands’ equa-

tion fits concave-shaped curves, while if Z [ 1, it fits

convex-shaped behaviour [87]. Roelands’ equation, like

that of Barus, has single fitting constant, while his equation

expressing how viscosity varies with both pressure and

temperature has two fitting constants.

Recently Paluch has suggested a two constant equation

specifically to fit convex-shaped piezoviscous behaviour

[88];

gp ¼ goe Cp= p1�pð Þð Þ ð41Þ

where C is a dimensionless constant, while p1 is the

pressure at which the viscosity becomes infinite.

To describe the whole viscosity–pressure behaviour

where there is first a concave-shaped log(gp) versus p curve

at low pressures and a convex-shaped on at higher pres-

sures, the third-order polynomial expression can be fitted;

gp ¼ goe aoþa1pþa2p2þa3p3ð Þ ð42Þ

where ao, a1, a2, a3 are constants.

A useful concept to explain origins of viscosity–pressure

behaviour and from which to develop viscosity–pressure–

temperature equations is that of free volume. Diffusion of

molecules in a liquid is considered as a process in which

the molecules move into neighbouring holes, so the dif-

fusion rate depends on the availability of these holes, and

thus on the free volume, i.e., volume of the liquid not

occupied by molecules. In 1951, Doolittle found that the

viscosity of several liquids depended on

gp ¼ Ae
Vo

V�Vo
ð Þ ð43Þ

where V is the average volume of a molecule (volume of

liquid divided by number of molecules) and Vo is the vol-

ume actually occupied by a molecule (its Van der Waal’s

volume) [89]. (V-Vo) is thus the free volume. Equation 43

was subsequently given a theoretical basis by Cohen and

Turnbull in terms of the statistical availability of holes large

enough to accommodate moving molecules [90].

Doolittle’s equation has resulted in a large number of

viscosity–pressure–temperature equations based on differ-

ent assumptions of the dependence of Vo and V on pressure

and temperature. In general, it has been found that while

V depends on both pressure and temperature, Vo depends

only on temperature. Roelands has shown that his pres-

sure–viscosity equation can be derived from free-volume

theory by assuming a Weibull distribution of available

holes, rather than the exponential one assumed by Cohen

and Turnbull [87].

Yasutomi et al. have developed a liquid viscosity–

pressure–temperature equation based on free-volume

principles of the form [91];

gp ¼ gge
�2:3C1ðT�TgÞF

C2þðT�TgÞF

� 	
ð44Þ

where Tg is the glass transition temperature, given by

Tg ¼ Tgo þ A1 loge 1þ A2pð Þ, F ¼ 1� B1 loge 1þ B2pð Þ
and A1, A2, B1, B2, C1, C2 are constants. Bair has reviewed

pressure–viscosity relationships as used in EHD, with a

particular focus on free volume-based models [92].

In EHD research, the most widely used pressure–vis-

cosity equations have been the Barus and Roelands’

equations. These have the advantage of having just one

disposable constant, while the Barus equation is also

appealing due to its mathematic simplicity. It is generally

accepted that the Barus equations is only an approximation

and rarely holds over a wide pressure range. The Roelands’

equation is only applicable when the viscosity–pressure

behaviour is monotonic and cannot capture a combination

of concave- followed by convex-shaped behaviour. Fortu-

nately, most modern EHD friction studies use temperatures

above 50 �C, to be relevant to steady-state conditions in

engines and transmissions. At and above this temperature,

most lubricants show concave deviation from log/linear

behaviour, at least up to 1 GPa. Unfortunately, while vis-

cosity measurements up to 200 MPa are quite easy to

acquire using commercial equipment, very few groups are

currently able to make such measurements above 1 GPa, as

needed for application in EHD shear thinning equations. In

consequence, the Roelands’ and Barus equations are

sometimes used inappropriately to extrapolate measured

data to higher pressures.

7 Two Problem Areas

Before discussing the relative merits of the Eyring and

Carreau–Yasuda models with respect to describing lubri-

cant rheology in EHD conditions, two other aspects of the

problem will be discussed, both of which have impacted
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the debate: the critical issue of shear heating and the

problem of lubricant repeatability.

7.1 The Thermal Problem

A key issue, which is not always clear from the literature, is

that for most practical lubricants, there is only marginal

overlap between conditions over which high shear stress

rheological data and EHD friction measurements can cur-

rently be acquired. This is because high-stress viscometers

are more severely constrained by shear heating than EHD

contacts. Equation 45 shows the EHD temperature rise

presented earlier in Eq. 9, now expressed in terms of strain

rate instead of sliding speed and with the ratio 2b/U

replaced by its equivalent time, i.e, the time of transit of the

surfaces across the contact, ti.

D�T ¼ 1

2pKsqcð Þ0:5
t0:5
i hþ 1

8Koil

h2

 !
�s _c ð45Þ

If we apply this equation to an EHD contact and insert

typical thermal properties of steel, Ks = 47 J/msK,

q = 7,850 kg/m3, c = 475 J/kgK, thermal conductivity of

oil Koil = 0.25 J/msK, (a typical value at 1 GPa [93] ),

representative values of b of 0.15 mm, U = 3 m/s,

ti = 0.1 ms, and h = 150 nm, Eq. 45 becomes

DT ¼ 6þ 1ð Þ � 10�14�s _c ð46Þ

This implies that, for the temperature rise not to exceed

1 �C, the product �s _c must be less than *1.5.1013 W/m3.

We can thus reliably measure a shear stress of 2.107 Pa

only up to a strain rate of ca. 106 s-1 without recourse to

thermal correction.

Equation 45 can also be applied to estimate the tem-

perature rise in short-duration, high-stress viscometers. To

analyse oil film temperature rise in these, Bair has sug-

gested the use of the Brinkman or Nahme-Griffith number,

Na ¼ bs _ch2=Koil, where b is the temperature coefficient of

viscosity [59]. Bair suggests a value for b of 0.05. It is

evident that this non-dimensional group is very closely

related to the second term in Eq. 45.

In a short duration, rotating cylinder viscometer, ti,

corresponds to the minimum time for the viscometer to

stabilise at the required strain rate and for a stress to be

measured. Bair and Winer refer to this as the response time

and indicate that it is as low as 3 ms for their isothermal

viscometer [60]. If this value, the thermal properties of

Bair’s viscometer [94] and a gap size of h = 2 lm are

inserted into Eq. 45 we obtain

DT ¼ 3þ 2ð Þ:10�12�s _c ð47Þ

This implies that, for a limit of DT = 1 �C, the product �s _c
must be less than *2.1011 W/m3. We can thus reliably

measure a shear stress of 2.107 Pa only up to strain rate of

104 s-1. However, in the EHD contact, because of its short

transit time, viscoelasticity influences shear stress below a

strain rate of *105 s-1. This means that direct comparison

of shear stresses from an EHD contact and a high-stress

rheometer is only possible over a very narrow shear rate

range and for low shear stress conditions. Figure 11 com-

pares the practical boundaries of shear stress and strain rate

below which reasonably ‘‘isothermal’’ data, i.e, with

DT \ 2 �C, can be obtained based on the above film gaps,

h, and response times, ti, superimposed on a set of typical

measured EHD shear stress versus strain rate curves.

Equation 45 also indicates the importance, when pre-

senting high-stress viscometer results, of providing infor-

mation as to both response time and film gap, and for EHD

friction of providing film thickness and entrainment

velocity values, so that the possible impact of heating can

be assessed by the reader.

7.2 Lubricant Repeatability Problem

In historical terms, a significant problem in EHD research

in general, and in comparing EHD friction with high-stress

viscometer data in particular, is that practically all liquid

lubricant base fluids are poorly defined mixtures, so that it

is usually impossible to repeat or extend any research

conducted in the past. Base mineral oils are mixtures of

hydrocarbon structures whose proportions vary with crude

oil source and refining processes. Polymer base oils such

silicones, polyglycols and their fluorinated analogues,

perfluoropolyethers, also vary from batch to batch in terms

of molecular weight distribution even when they have the

same viscosity. The highly researched oligomer 5-pheny-4-

ether (5P4E) is a mix of various isomers, which can cause a

large variation in low-temperature viscometric properties

from sample to sample. There are pitfalls even for

Fig. 11 Representative EHD friction curves showing representative

upper limits of high-stress viscometer measurements (dashed line)

and EHD friction measurements (solid line) to ensure DToil \ 2 �C
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apparently well-defined base fluids; for example Santotrac

40, which has one predominant molecular structure, is

often compared with Santotrac 50, which includes a vis-

cosity modifier and other additives. One group of base

fluids that offers some possibility of reproducibility are the

esters, which generally have defined molecular structures.

Unfortunately, while it is possible to obtain esters in pure

form, commercial ester base oils are always complex

mixtures, with their name referring simply to their pre-

dominant component. Indeed, mixtures are almost always

preferable to pure materials for use as lubricants, since

when all the molecules have the same molecular structure,

there is a greater tendency for the liquid to crystallise when

cooled rather remain a viscous fluid.

All of the above means that most research measurements

of high-pressure viscosity, EHD friction or high shear

stress/strain rate behaviour made between the 1960s and

1990s cannot be confirmed or extended at the present day.

This is one reason for a problem that has already been

alluded to, which is that historically EHD researchers have

rarely had available pressure–viscosity data for the specific

lubricants they have studied over the range of pressures

relevant to EHD friction. Instead, they have had to assume

a form of the pressure–viscosity response—usually, for

simplicity, Barus—and have tried to estimate both pres-

sure–viscosity and shear thinning behaviour from the same

experiments. This will be discussed in more detail later.

This issue has been recognised and a few liquids have

been identified that can be purchased as almost pure com-

pounds to form a basis of parallel study of both viscosity and

shear thinning by different research groups now and in the

future [95, 96]. These include the hydrocarbon squalane and

some esters. Another ester that was initially favoured, di-

isodecylphthalate, unfortunately turned out to be an iso-

meric blend whose properties varied with provenance [97].

8 Eyring versus Carreau–Yasuda

It is clear that there are differing views as to which con-

stitutive equation most accurately describes the rheology of

lubricants in EHD contact conditions. Whereas many EHD

researchers have accepted and used the Eyring model, Bair

and co-workers have argued for the Carreau–Yasuda model

together with a limiting shear stress, based on high-stress

viscometry.

This is an important issue since an appropriate model of

EHD rheology is needed for EHD simulations aimed at

predicting EHD friction, and the two models predict quite

different shear stress behaviour when applied over a wide

range of strain rates.

The Eyring equation is remarkable in that it describes

the relationship between shear stress and strain rate using

only one disposable parameter, se. It is thus particularly

easy to seek a fit to experimental data. This convenience,

the fact that it appears to fit EHD friction data closely and

also that it is based on a fundamental molecular model,

albeit one that originated in 1936, has made it the equation

of choice for most EHD researchers. Not surprisingly, the

latter have proved quite reluctant to replace it by the

Carreau–Yasuda model, which has at least three disposable

constants and, as will be shown, appears to be no better at

fitting EHD friction data than the Eyring equation.

This reluctance has led Bair and co-workers to publish a

series of papers in support of the Carreau–Yasuda and

against the Eyring equation. Broadly speaking their advo-

cacy of Carreau–Yasuda is based on the following four

arguments.

1. Shear stress versus strain rate behaviour in high-stress

viscometers does not obey the Eyring equation but

does fit the Carreau–Yasuda equation

2. The Carreau–Yasuda equation provides observed EHD

friction behaviour, in particular the observation that

mean EHD shear stress varies linearly with log(strain

rate).

3. Use of the Eyring equation predicts unrealistic piezo-

viscous behaviour.

4. The Eyring equation is ‘‘wrong.’’

These arguments are discussed in turn below.

1. Fit of Carreau–Yasuda and Eyring equations to high-

stress viscometer data

Over the last twelve years, Bair and co-workers have

studied the shear thinning properties of a wide range of

fluids using short duration, high-stress viscometry and fit-

ted the results with the Carreau and Carreau–Yasuda

equations. Many of these fluids have been formulated

lubricating oils of unknown composition or complex mix-

tures of hydrocarbons, but a few are well defined. Of

particular interest is a study of several pure liquids [62].

Figure 12 shows Bair’s data values for the pure hydro-

carbon squalane at three pressures, together with dashed

lines showing his derived Carreau parameters. The test

temperature is 20 �C. Also on this figure are solid lines

showing predictions using the Eyring equation, based on

se = 5.5 MPa and the low shear rate viscosity at the

appropriate pressure. It can be seen that the Eyring equa-

tion provides excellent fit—to the extent that the lines

largely obscure the Carreau lines.

Similar close fit between the Eyring equation and shear

stress/shear rate measurements was found by the authors

for all of the well-defined fluids described in [62]. This

similarity of fit between the Carreau and Eyring equations

at relatively low strain rates is not surprising since the

Carreau and Eyring equations are remarkably similar in
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form. Thus, if we expand the two equations in a Taylor

series, we find, assuming n = 0.5 in the Carreau equation,

s ¼ se sinh�1
gp _c

se

� �

¼ gp _c 1� 1

6

gp _c

se

� �2

þ 3

40

gp _c

se

� �4

� 5

112

gp _c

se

� �6

: : :

" #

ð48Þ

sðn¼0:5Þ ¼ gp _c 1þ
gp _c

so

� �2
 !0:5�1

2

¼ gp _c 1� 1

4

gp _c

so

� �2

þ 5

32

gp _c

so

� �4

� 15

158

gp _c

so

� �6

: : :

" #

ð49Þ

With appropriate choices for se and so, the sums of the two

series only diverge markedly when the inner bracketed

term becomes greater than unity.

Figure 13 shows a comparison of high-stress viscosity

data with predictions from the Carreau–Yasuda and Eyring

equations using data for a commercial polybutene taken

from [98] showing that the Eyring equation can also fit

polymer melt shear thinning behaviour.

This close fit does not, however, mean that either

equation will necessarily correctly describe shear thinning

in EHD contacts, where strain rates are generally at least an

order of magnitude greater. Figure 14 extrapolates the

predictions of both the Carreau with Eyring equations for

squalane to higher strain rates, more relevant to EHD

contacts, but not yet attainable in high-stress viscometers.

Plots are shown in the log/log form favoured by polymer

rheologists, the linear/log form used by most EHD

researchers and the linear/linear form used to display

traction curves. It can be seen that the two equations pre-

dict very different behaviours at strain rates above 104 s-1.

For some fluids tested in high-stress viscometry, the

shear stress appears to level out at a limiting value at high

strain rate, when plotted in log/log form. Early observa-

tions of this effect may be tainted by thermal effects, but

similar behaviour has been seen in more recent work after

the thermal problem was fully recognised [44, 59–61, 83].

Unfortunately such data are not always accompanied by

information as to the film gap and the viscometer response

time, so it is not possible to verify that the effect is wholly

rheological or in part due to a surface temperature rise.

2. The logarithmic traction curve

A characteristic feature of EHD friction measurements,

as can be seen in Figs. 4, 5 and 6, is that they invariably

show linear mean shear stress versus log(strain rate)

behaviour at high strain rates, until thermal effects ensue.

Furthermore, application of thermal correction results in

this linearity being preserved to even higher strain rates

[35]. This behaviour is anticipated from the Eyring model

for shear thinning although this does not appear to have

played a role in the initial choice of the Eyring equation to

describe EHD friction [17, 27].

Considerable effort has been expended by researchers

using high-stress viscometry to show that the shear thin-

ning equations developed from their data also predict this

characteristic mean shear stress/strain rate behaviour. This

requires these equations to be integrated over the contact

area to obtain mean shear stress, e.g., for point contact,

�s ¼ F

A
¼ 2

b2

Zb

o

r:f gp _c
� �

dr ð50Þ

where s = f gp _c
� �

is the preferred shear thinning model.

The pressure is assumed to vary according to the Hertz

equation, p ¼ po 1� r2=b2ð Þ0:5.
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When integrated in Eq. 50, the Carreau–Yasuda equa-

tion still fails to predict linear mean shear stress versus

log(strain rate) behaviour at high strain rates. To achieve

the latter, a limiting shear stress has to be imposed to

curtail the rise in shear stress at high strain rates. In 1990,

Bair and Winer thus proposed that a combination of

Newtonian viscosity with Barus piezoviscous response in

regions of the contact below a critical pressure and having

a limiting shear stress in regions above it, i.e.

s ¼ min goeap;Kp½ �, was able to give the required linear/log

response [43]. Unfortunately, as noted in a Discussion to

this paper, their mathematical analysis was flawed [99].

To test whether the various suggested shear thinning

equations give linear/log behaviour, Eq. 50 below has been

solved for one fluid using four different shear thinning

equations; (1) Newtonian, (2) asymptotic as in Eq. 17, but

without a viscoelastic term, (3) Carreau–Yasuda and (4)

Eyring.

�s ¼ F

A
¼ 2p

pb2

Zb

o

r:min f gp _c
� �

;Kcp

 �

dr ð51Þ

The properties of the lubricant chosen were again those of

squalane at 20 �C, with the shear thinning properties; Ey-

ring stress se = 5.5 MPa; Carreau–Yasuda parameters

so = 6.6 MPa, a = 2, n = 0.46; Kc = 0.075. The Car-

reau–Yasuda values were taken from [62] while the value

of Kc was arbitrary. The contact conditions were po = 0.9

GPa, a = 0.1 mm. The lubricant had go = 0.039 Pas,

while its pressure–viscosity response was described by a

third-order polynomial as Eq. 42, determined by best-fit-

ting viscosity data in [95].

The predictions are shown in Fig. 15, where the dashed

lines are from Eq. 50, i.e, with no limiting shear stress,

while the solid lines are from Eq. 51 with a limiting shear

stress. In the absence of a limiting shear stress, the New-

tonian and Carreau–Yasuda equations predict very high

mean shear stress at high strain rate, while the Eyring

response is linear/log above a mean shear stress of about

20 MPa. When the limiting shear stress Kc is imposed, the

Eyring equation still shows linear/log behaviour until it

levels out quite sharply at the limiting stress, as also noted

for experimental EHD friction results by Evans and John-

son [36]. None of the other equations yield a significant

linear region with the data used. This is further discussed

when the Carreau–Yasuda equation is fitted to experi-

mental EHD friction data later in this paper.

3. Eyring equation predicts unrealistic piezoviscous

behaviour

One criticism levelled at the Eyring equation is that

when applied to EHD friction data in the form of Eq. 8 to

extract both the Eyring stress, so, and also the pressure–

viscosity coefficient, a, the values of the latter are often

different from those determined using high-pressure vis-

cometry [100]. This is probably because Eq. 8 assumes that

the fluid obeys the Barus viscosity–pressure equation,

which is generally not accurate over a large pressure range.

It is possible to assume other viscosity–pressure data and

extract best-fit constants to these from EHD friction data,

but a much better approach is, of course, to determine
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viscosity–pressure response using a high-pressure viscom-

eter and employ this when fitting shear thinning equations

to friction measurements. This will be illustrated later in

this paper.

4. The Eyring equation is ‘‘wrong’’

A theme of criticism of the Eyring model by advocates

of the Carreau–Yasuda and related shear thinning equa-

tions is that the Eyring equation is ‘‘wrong’’—primarily

that it has been disproved by other researchers, and that

Eyring himself has disowned it.

It has been repeatedly suggested by Bair and co-workers

that Eyring eventually ‘‘rejected’’ his original viscosity

model, e.g. [45, 64, 73, 100–102]. This is based on a paper

in 1958 [71] in which Ree, Ree and Eyring state that Ey-

ring’s original equation did not adequately describe the

shear thinning of complex fluids to which other researchers

were applying it, and provided an extended model based on

multiple flow units to apply to such materials. This was not

a disavowal of the original model. Indeed, in another paper

the same year, Eyring and coauthors outlined three separate

but related models, his original one for simple liquids, the

Ree–Eyring model for polymer solutions and a third for

high MWt polymer melts [103]. They wrote of Eyring’s

original model that ‘‘it gives a very satisfactory account of

the viscosity of simple liquids.’’

It should be appreciated that when it was introduced in

1936, the Eyring viscosity model was one of very few

liquid shear thinning models, and the only one with a

theoretical basis. As such, it was widely applied by

researchers concerned with shear thinning phenomena.

Unfortunately, the only liquids that showed shear thinning

at attainable strain rates in high shear conditions at that

time were (and to a large extent remain) complex fluids

such as polymer solutions and melts and dispersions of

solid particles in liquids. Thus, the Eyring model was

applied to diverse materials including polymer solutions,

cordite and masticated rubber, to which, since the model is

based on there being one predominant flow unit, it was

inappropriate. Indeed, until the development of EHD and

high-stress rheometers, the only liquids that showed any

shear thinning at attainable strain rates in high shear con-

ditions were complex fluids. These are very different from

the simple molecular liquids for which Eyring’s model was

developed, so was hardly surprising that his model did not

find general favour until a sufficiently severe application

arose—EHD lubrication—to make even low molecular

weight liquids shear thin.

The majority of lubricants used today, including the

mineral oils, PAOs and esters, are low viscosity, small

molecule-based blends with average MWt rarely greater

than 400. As such they correspond quite closely the type of

fluids for which the Eyring model was intended.

As a corollary, it is perhaps relevant to query the suit-

ability of the Carreau–Yasuda or Carreau rheological

models to describe shear thinning of simple molecular

liquids. The Carreau model was developed to describe

polymer shear thinning, based on the formation and

breakdown of networks, while the Yasuda’s variant simply

introduced an extra variable to improve fit to shear thinning

measurements on polystyrene solutions. There is no reason

to suppose that such a model is appropriate to describe the

shear thinning behaviour of non-polymeric liquids such as

low MWt base oils. Polymer shear thinning is generally

considered to involve polymer molecule alignment, while

in EHD contacts, shear thinning with characteristic linear/

log shear stress versus strain rate response is seen even for

simple, spherical type molecules, such as cyclohexane,

where alignment is very unlikely, although the molecular

mechanism of shear thinning remains obscure.

8.1 Fitting of Eyring and Carreau–Yasuda Equations

to EHD Friction Curves

As indicated earlier in this paper, many studies have fitted

the Eyring-based, Johnson-Tevaarwerk model to EHD

friction data, especially during the 1970s and 1980s.

However, there have been relatively few systematic

attempts to fit other shear thinning models to such friction

curves. This may reflect the dichotomy between, on the one

hand, researchers with access to EHD friction-measuring

facilities, who have tended to focus on Eyring, and on the

other, rheologists, with a greater interest in models such as

Carreau–Yasuda but limited access to raw EHD friction

measurements.

There have also been very few studies in which Eyring-

based or other models have been fitted to friction curves

using measured low strain rate, high-pressure viscosity

data. Presumably, this is because such data were not gen-

erally available for the specific lubricants being tested.

Instead, it was generally assumed that viscosity varied with

pressure according to the Barus equation and plots of mean

shear stress versus log (strain rate) or mean pressure were

used to extract both Eyring stress and pressure viscosity

coefficient, as described earlier. One notable advance on

this approach is a study by Muraki and Konishi who

compared the fit of various shear thinning models for the

pure ester lubricant, di-ethylhexyl-phthalate to EHD fric-

tion curves using pressure–viscosity data of this fluid from

[86] fitted to Roelands’ equation [104]. They found that the

Eyring equation fitted better than other models tested, but

did not test the Carreau–Yasuda equation.

A comparison of both the Carreau–Yasuda and Eyring

models with EHD friction measurements for a range of

well-defined fluids has recently been made by the authors

and will be published in a separate paper. A single example
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is included in this review. Figure 16 shows EHD friction

data in the form of mean shear stress versus strain rate for

the fluid di-2-ethylhexyl-phthalate (DEHP).

This was chosen because it is a well-defined fluid

(99.5 % Aldrich), has available pressure–viscosity data up

to 1 GPa from two independent sources [86, 100] and is

also one of the few where a detailed fit of EHD friction

measurements with shear thinning models, although not the

Carreau–Yasuda model, has already been attempted [104].

The test rig used was a minitraction machine (MTM) which

has a rolling–sliding ball on disc configuration. The applied

load was 20 N, corresponding to a maximum Hertz pres-

sure of 0.83 GPa. This relatively low load was chosen both

to minimise viscoelastic effects and to ensure that the

maximum contact pressure was within the pressure range

for which viscosity–pressure data are available. The shear

rate values were determined from EHD film thickness

measurements using optical interferometry at the same

temperatures and load, with a small correction to allow for

the different elastic moduli of glass and steel in the EHD

film thickness and MTM friction tests, respectively. Tests

were carried out at 10 �C intervals between 30 and 110 �C,

and this allowed accurate correction of the effect of tem-

perature rise to be made, as carried out by previous

researchers [35]. The dashed lines in Fig. 16 show the EHD

friction data with an applied temperature correction to

bring them to isothermal conditions. It can be seen that the

levelling-out of friction observed at high speed originates

wholly from thermal effects at this applied load. It is

important to note that the temperature correction involves

no assumptions as to the rheology of the lubricant and is

based simply on determining the variation of shear stress

with temperature at each strain rate.

The measurements in Fig. 16 were regression-fitted

using both the Carreau–Yasuda and Eyring models by

comparing the measured mean shear stress with the one

calculated using Eq. 50, with viscosity varying with pres-

sure according to the Yasutomi model constants for DEHP

given in [100]. Fitting was made only to the data at strain

rates greater than 2.5 9 105 s-1, to avoid the viscoelastic

region.

For the Carreau–Yasuda equation, the four values so, n,

a and Kc were allowed to vary, so between 2 and 50 MPa, n

between 0.1 and 0.5, a between 1 and 2 and Kc between

0.04 and 1. For the Eyring equation, two types of fit were

made. One assumed that se was independent of pressure

and within the range 2 to 50 MPa, while the second, fol-

lowing previous workers [22, 104], introduced a second

variable parameter by allowing se to vary linearly with

pressure with respect to a reference pressure pR, according

to Eq. 52, where k1 was between ± 3.10-8 Pa-1.

se ¼ seR 1þ k1 p� pRð Þð Þ ð52Þ

Figure 17 shows the Carreau–Yasuda best fits.

In this figure and the two following ones, the isother-

mally corrected experimental values are shown as their

individual data points for clarity, while the best-fit pre-

dictions are shown as solid lines. It can be seen that at test

temperatures of 70 �C and above, there is good fit over the

whole strain rate range. At a combination of low temper-

ature and low strain rate, measured shear stress falls below

predicted values due to an elastic component. The latter

was not taken account of in this analysis in which curve

fitting was confined to data at strain rates greater than

2.5 9 105 s-1. At low temperatures and high shear stres-

ses, in the Carreau–Yasuda equation, there is a small dis-

crepancy between measured data and best-fit curves.

Table 1 lists the best-fit constants used in this graph. In
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Fig. 16 Measured mean shear stress versus strain rate curves for di-

2-ethylhexyl-phthalate at seven test temperatures. Applied load is

20 N, corresponding to a maximum Hertz pressure of 0.83 GPa,

entrainment speed = 2.5 m/s; dashed lines are isothermally corrected
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practice, with four disposable constants, several combina-

tions of constants so, a and n gave similar quality fits, and

the ones listed are simply those with the lowest variance.

The values of n, 0.15–0.3, were considerably lower than

the value of 0.41 suggested from high-stress viscometer

measurements [55], indicating more a severe mode of shear

thinning in EHD contacts than found using viscometry.

Figure 18 shows best fits using the simple Eyring

equation, where se is taken as independent of pressure

(though dependent on temperature). As with the Carreau

Yasuda equation, the measured mean shear stresses fall

below the predicted values at low strain rates due to an

elastic component. However, at all other conditions, the fit

is remarkably close considering that for each temperature

there is only one disposable constant, se. At lower tem-

peratures, the predicted shear stresses are just slightly

higher than the measured values. This small divergence can

be resolved by allowing se to vary linearly with pressure as

shown in Fig. 19. Figures 18 and 19 are indeed very sim-

ilar and the only difference that can be clearly seen is at

60 �C, where the predicted shear stresses using the simple

Eyring equation are very slightly higher than the measured

values. Table 2 lists the constants used for the Eyring fits

shown in Figs. 18 and 19.

It is important to note that the limiting shear stress ratio,

Kc, added to the Carreau–Yasuda equation by Bair (Eq. 19),

is quite different from the value Ke introduced into the

Maxwell-Eyring equation by Evans and Johnson (Eq. 10).

The latter is considered to represent the ratio of shear

strength to pressure of an organic solid [36], has a value of

greater than 0.1 that is broadly independent of temperature

and is only reached for fluids with high EHD friction such as

traction fluids. In Figs. 16 to 19, it might be expected to

produce a levelling-out of shear stress when this reaches ca.

60 MPa, at considerably above 108 s-1. By contrast, to fit

EHD friction data, Kc must have a much lower value to

provide levelling-out of friction at about 40 MPa.

The above comparison of EHD friction measurements

with predictions of the Carreau–Yasuda and Eyring shear

stress/strain rate models using actual pressure–viscosity data

for the fluid indicates that both equations give reasonably

close fit to experimental data. However, the Eyring equation

matches low-temperature data somewhat better, especially

when a second disposable constant is introduced via pressure

Table 1 Carreau–Yasuda equation best-fit constants

T (�C) so (MPa) n a K

30.7 21.2 0.17 1.0 0.077

40 19.4 0.21 1.5 0.077

50.1 22.4 0.22 1.2 0.071

60.1 25.4 0.23 1.2 0.065

70.2 23.6 0.275 1.5 0.056

80.2 23.4 0.27 2.0 –

90.6 28.1 0.26 2.0 –

100.6 40.0 0.25 2.0 – 0
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Fig. 18 Comparison of Eyring equation predictions with isother-

mally corrected EHD mean shear stress versus strain rate curves for

di-2-ethylhexyl-phthalate; solid lines are Eyring fits
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rate curves for di-2-ethylhexyl-phthalate; solid lines are Eyring fits

Table 2 Eyring equation best-fit constants

T (�C) se (MPa) seR (MPa) k1 (GPa-1)

30.7 7.1 5.8 -2.0

40 8.1 7.7 -0.4

50.1 8.9 8.8 -0.4

60.1 10.7 8.8 -2.8

70.2 11.5 11.1 -1.2

80.2 13.8 14.5 ?1.2

90.6 18.7 19.5 ?1.2

100.6 33.1 18.8 ?1.2
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dependence of se. The Carreau–Yasuda equation can be

made to fit friction-derived shear stress data by assuming

low values of the Carreau constants n and a, lower than

determined from high-stress viscometry. It is important to

note, however, that only one lubricant is shown here, and this

is a relatively simple molecular fluid for which the Eyring

model was designed. Further comparisons to include a wider

range of fluids, including polymeric fluids, are needed to

determine the suitability, or otherwise, of the two rheolog-

ical equations, and indeed others, to predict EHD friction of

the various lubricant types.

9 Current and Future Developments

The above comparison of the suitability of the Eyring and

Carreau–Yasuda equations to describe the rheology of

lubricant films in EHD contact conditions show quite clearly

the problems involved in high-stress viscometry of reaching

the EHD contact conditions and in EHD friction of decon-

voluting film rheology from a single-friction measurement

obtained over a range of contact conditions. Clearly what is

needed is a wholly new approach which avoids these prob-

lems entirely. Such a ‘‘philosophers stone’’ is sadly not yet

available but two techniques, one experimental the other

computational, have potential in the future for resolving, at

least in part, the debate about EHD rheology.

9.1 Probing the Velocity Profile in EHD Contact

An underlying assumption when modelling EHD and also

when interpreting friction data in terms of shear thinning

equations is that, at least in the absence of thermal effects or

until a critical shear stress is reached, the rheological prop-

erties of the lubricant do not vary through its thickness. This

is implicit in applying models such as the Eyring and Car-

reau–Yasuda equations to predict friction since they assume

that in the absence of a pressure gradient, the strain rate is

given by Du/h, i.e, that the film is subject to Couette shear. To

go further than this, we need to be able to measure the

velocity profile across the thickness of the EHD contact.

In 1993, Bair and Winer studied velocity profiles by

tracking micro-sized dispersed particles in three lubricants

sheared between two flat surfaces at high shear stress [105].

The lubricant films were observed from the side, which

meant that their thickness, of 150 lm, was much greater

than a normal EHD film. The applied pressure was up to 0.3

GPa, the shear stress 25 MPa and the strain rate 10 s-1, and

low temperatures were used to ensure high viscosity and thus

high shear stress conditions. Linear flow profiles were

observed, but at conditions at which shear thinning should

occur, localised slip bands, evident by local variations in

refractive index, were seen, aligned at an angle to the walls.

It is not clear, however, whether similar behaviour would

occur within a film of EHD dimensions and pressure.

Recently, a very promising new experimental method

for obtaining velocity profiles through EHD films has been

described [106]. An EHD contact is established between

two glass surfaces using a lubricant containing dissolved

fluorescent dye. A small column of lubricant within this

contact is bleached using a narrow laser beam, and the

movement of this column is observed over time by map-

ping the fluorescence intensity. Typical distributions of

intensity during sliding are shown in Fig. 20. From these

distributions, velocity profiles across EHD films of ca

100 nm thickness were obtained. It was found that low

MWt polybutenes give Couette shear in low-pressure EHD

contacts, but form a velocity profile suggestive of plug flow

at higher pressures [106]. When a hydrophobic coating was

applied to one surface, slip at this surface was observed

[107].

To date, this method has only been applied to viscous

lubricants and to pure sliding conditions, but it holds the

potential for greatly extending our understanding of the

rheology of EHD films in the future. Clearly, if it is shown

that flow is not based on Couette shear over a significant

range of operating conditions, this will profoundly change

our approach to modelling EHD friction.

9.2 Molecular Dynamics Simulation (MDS)

In molecular dynamics computer simulation, a large

ensemble of molecules is placed in an imaginary box with

appropriate attractive and repulsive forces between all the

individual atoms present. The boundaries are then subject to

shear (by displacing molecules at the top and bottom of the

Fig. 20 Through thickness velocity profiles of an EHD film of

polybutene in sliding contact (film thickness = 630 nm); from [106]
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box), and the motion of all the molecules is tracked over a

large number of tiny time steps. From the resulting forces

and motion, the shear stress and velocity profile can be

obtained. In principle, this approach can determine precisely

how liquids flow under shear at a molecular level, and there

have been many studies aimed at this [108]. These have

provided support to many different models of shear thinning,

including both the Eyring and Carreau equations, e.g. [109–

114]. There are still a number of major problems to the

approach, however. Because very short time steps have to be

used, the computational time to model low shear rates is very

large and currently it is only possible to directly simulate

shear rates greater than about 108 s-1, higher than that can be

reached in experimental work. There are various mathe-

matical ways of addressing this problem [108, 115]. Another

issue is how to take account of the heat generated at very

large rates of shear in realistic fashion.

However, the main problem with respect to predicting

EHD friction is to determine the correct interaction forces

and, in particular, the forces that hinder rotation and

bending within individual molecules. It is known that EHD

friction is very critically dependent on molecular flexibil-

ity, so such forces must be defined very precisely. The

MDS approach holds great promise in future for estab-

lishing the nature of and the impact of molecular structure

on shear thinning of liquids at high stresses. However,

much further validation, ideally using experimental data at

higher shear rates than currently attainable, is needed

before it can become a reliable predictive tool.

10 Conclusions

This paper has reviewed the history of research on elas-

tohydrodynamic friction and the existing controversy

concerning the most appropriate rheological model to use

for predicting this type of friction.

Measurement of EHD friction over a wide range of con-

ditions by many authors has found that friction is controlled

by three main types of rheological behaviour, a viscoelastic

response at low slide–roll ratios, a shear thinning response at

intermediate to high sliding speeds and thus strain rates, and

possibly, though the evidence is more limited, a pressure-

dependent limiting shear stress at very high sliding speeds

and pressures. Shear thinning becomes significant for simple

molecular lubricants such as most ester and low MWt

hydrocarbon oils above a shear stress of between 5 and

10 MPa. However, for lubricants based on polymer melts,

the onset of shear thinning can occur at lower shear stresses.

There is disagreement concerning the most appropriate

relationship between shear stress and strain rate to describe

shear thinning in EHD contacts. Practitioners of high-stress

viscometry advocate the use of the Carreau or Carreau–

Yasuda equation coupled with a limiting shear stress

(Eq. 19),while many EHD researchers prefer the Eyring

equation (Eq. 5). A problem that is not always recognised

is that high-stress viscometry measurement is critically

limited by the problem of temperature rise of both the

lubricant film and the bounding solid surfaces due to shear

heating. This means that high-stress viscometry is incapa-

ble of reaching the combinations of high strain rate and

high stress relevant to most EHD friction studies. It also

makes it crucial when interpreting EHD friction data to

account for the oil film temperature rise.

This paper has examined the relative merits of the Eyring

and Carreau–Yasuda model as applied to EHD friction, in

particular considering some of the arguments used against the

Eyring model by advocates of Carreau–Yasuda. Most of these

arguments appear spurious. It has been noted that both the

Eyring and Carreau equations can be arranged to give very

similar predictions and fit high-stress viscometer data equally

well up to maximum shear stresses attainable in high-stress

viscometry. However, at stresses more representative of those

present in EHD contacts, the predictions of Eyring and Car-

reau–Yasuda equation diverge quite markedly.

A complication that has confused the choice of shear

thinning model is that both models require knowledge of

the pressure–viscosity behaviour of the lubricant of interest

up to the high pressures present within EHD contacts. Such

data is rarely available for commercial lubricants. This

perhaps explains why there appear to have been surpris-

ingly few systematic attempts, with one notable exception

[104], to test the fits of Eyring, Carreau–Yasuda or, indeed,

other rheological models, to experimental EHD friction

data using fluids of known pressure–viscosity behaviour.

To address this issue, recent work by the authors is

described, which tests the ability of the Carreau–Yasuda

and Eyring equations to fit EHD friction data for a well-

defined ester, di-ethylhexyl-phthalate, of known pressure–

viscosity properties. This finds that both equations can

predict EHD friction data well at high temperatures and

thus low shear stresses, but the Carreau–Yasuda equation is

slightly less able to predict friction accurately at high

stresses, even when a quite low limiting shear stress is

assumed. The Eyring shear thinning equation provides

close fit to experimental, isothermal friction data over the

whole range of shear stresses reached.

References

1. Gohar, R.: Elastohydrodynamics, 2nd edn. Imperial College

Press, London (2002)

2. Spikes, H.A.: Sixty years of EHL. Lubr. Sci. 18, 265–291 (2006)

3. Bair, S., Liu, Y., Wang, Q.J.: The pressure-viscosity coefficient

for Newtonian EHL film thickness with general piezoviscous

response. Trans. ASME J. Tribol. 128, 624–631 (2006)

22 Tribol Lett (2014) 56:1–25

123



4. Foord, C.A., Hamman, W.C., Cameron, A.: Evaluation of

lubricants using optical elastohydrodynamics. ASLE Trans. 11,

31–43 (1968)

5. Van Leeuwen, H.: The determination of the pressure—viscosity

coefficient of a lubricant through an accurate film thickness

formula and accurate film thickness measurements. Proc. Inst.

Mech. Eng. J. 223, 1143–1163 (2009)

6. Hamrock, B.J., Dowson, D.: Ball Bearing Lubrication. The Elas-

tohydrodynamics of Elliptical Contacts. Wiley, New York (1981)

7. Habchi, W., Bair, S., Qureshi, F., Covitch, M.: A film thickness

correction formula for double-Newtonian shear-thinning in

rolling EHL circular contacts. Tribol. Lett. 50, 59–66 (2013)

8. Bair, S.: Shear thinning correction for rolling/sliding elastohy-

drodynamic film thickness. Proc. Inst. Mech. Eng. J219, 69–74

(2005)

9. Grubin, A.N.: Fundamentals of the hydrodynamic theory of

lubrication of heavily loaded cylindrical surfaces. In: Ketova,

Kh.F. (ed) Proceedings of Symposium, Investigation of the

Contact of Machine Components. Central Scientific Research

Institute for Technology and Mechanical Engineering, Book No.

30, pp. 115–166, Moscow, 1949, D.S.I.R Trans. No. 337

10. Lewicki, W.: Some physical aspects of lubrication in rolling

bearings and gears. Engineer 200, 176–178 (1955)

11. Crook, A.W.: The lubrication of rollers. Phil. Trans. R. Soc.

Lond. A250, 387–409 (1958)

12. MacConochie, I.O., Cameron, A.: The measurement of oil film

thickness in gear teeth. Trans. ASME J. Basic Eng. 82, 29–34

(1960)

13. Crook, A.W.: The lubrication of rollers, III—a theoretical dis-

cussion of friction and temperatures in the oil film. Phil. Trans.

R. Soc. A254, 237–258 (1961)

14. Smith, F.W.: The effect of temperature in concentrated contact

lubrication. ASLE Trans. 5, 142–148 (1962)

15. Crook, A.W.: The lubrication of rollers, IV—measurements of

friction and effective viscosity. Phil. Trans. R. Soc. A255,

281–312 (1963)

16. Harrison, G., Trachman, E.G.: The role of compressional vis-

coelasticity in the lubrication of rolling contacts. Trans. ASME

J. Lubr. Technol. 94, 306–312 (1972)

17. Bell, J.C., Kannel, J.W., Allen, C.M.: The rheological behaviour

of the lubricant in the contact zone of a rolling contact system.

Trans. ASME J. Basic Eng. 86, 423–434 (1964)

18. Jefferis, J.A., Johnson, K.L.: First paper: sliding friction between

lubricated rollers. Proc. Inst. Mech. Eng. 182, 281–291 (1967)

19. Johnson, K.L., Cameron, R.: Fourth paper: shear behaviour of

elastohydrodynamic oil films at high rolling contact pressures.

Proc. Inst. Mech. Eng. 182, 307–330 (1967)

20. Johnson, K.L., Roberts, A.D.: Observations of viscoelastic

behaviour of an elastohydrodynamic lubricant film. Proc.

R. Soc. Lond. A337, 217–242 (1974)

21. Tevaarwerk, J., Johnson, K.L.: A simple non-linear constitutive

equation for elastohydrodynamic oil films. Wear 35, 345–356

(1975)

22. Johnson, K.L., Tevaarwerk, J.L.: Shear behaviour of elastohy-

drodynamic films. Proc. R. Soc. Lond. A356, 215–238 (1977)

23. Johnson, K.L.: Introductory review of lubricant rheology and

traction. In: Proceedings of 5th Leeds-Lyon Symposium on

Tribology, Elastohydrodynamic Lubrication and Related Topics,

pp. 155–161. MEP, London (1978)

24. Johnson, K.L., Nayak, L., Moore, A.: Determination of elastic

shear modulus of lubricants from disc machine traction tests. In:

Proceedings of 5th Leeds-Lyon Symposium on Tribology, Elas-

tohydrodynamic Lubrication and Related Topics, pp. 204–208.

MEP, London (1978)

25. Conroy, T.F., Johnson, K.L., Owen, S.: Viscosity in the thermal

region of EHD traction. In: Proc 6th Leeds-Lyon Symposium on

Tribology, Thermal Effects in Tribology, pp. 219–227. MEP,

London (1980)

26. Adams, D.R., Hirst, W.: Frictional traction in elastohydrody-

namic lubrication. Proc. R. Soc. A332, 505–525 (1973)

27. Hirst, W., Moore, A.J.: Non-Newtonian behaviour in elastohy-

drodynamic lubrication. Proc. R. Soc. A337, 101–121 (1974)

28. Hirst, W., Moore, A.J.: The elastohydrodynamic behaviour of

polyphenyl ether. Proc. R. Soc. A344, 403–426 (1975)

29. Hirst, W., Moore, A.J.: Elastohydrodynamic lubrication at high

pressures. Proc. R. Soc. A360, p403–p425 (1978)

30. Hirst, W., Moore, A.J.: Elastohydrodynamic lubrication at high

pressures. II - Non-Newtonian behaviour. Proc. R. Soc. A365,

537–565 (1979)

31. Hirst, W., Moore, A.J.: The effect of temperature on traction in

elastohydrodynamic lubrication. Phil. Trans. R. Soc. Lond.

A298, 183–208 (1980)

32. Plint, M.A.: Traction in elastohydrodynamic contacts. Proc. Inst.

Mech. Eng. 182, 300–306 (1967)

33. Allen, C.W., Townsend, D.P., Zaretsky, E.V.: Elastohydrody-

namic lubrication of a spinning ball in a nonconforming groove.

Trans. ASME J. Lubr. Technol. 92, 89–96 (1970)

34. Archard, J.F.: The temperature of rubbing surfaces. Wear 2,

438–455 (1959)

35. Hirst, W., Richmond, J.W.: Traction in elastohydrodynamic

contacts. Proc. Inst. Mech. Eng. C202, 129–144 (1988)

36. Evans, C.R., Johnson, K.L.: The rheological properties of elas-

tohydrodynamic lubricants. Proc. Inst. Mech. Eng. C200,

303–312 (1986)

37. Evans, C.R., Johnson, K.L.: Regimes of traction in elastohy-

drodynamic lubrication. Proc. Inst. Mech. Eng. C200, 313–324

(1986)

38. LaFountain, A.R., Johnston, G.J., Spikes, H.A.: The elastohy-

drodynamic traction of synthetic base oil blends. Tribol. Trans.

44, 648–656 (2001)

39. Moore, A.J.: The derivation of basic liquid flow properties from

disc machine traction tests. In: Proceedings of 7th Leeds-Lyon

Symposium on Tribology, Friction and Traction, pp. 289–295.

MEP, London (1981)

40. Muraki, M., Dong, D.: Derivation of basic rheological param-

eters from experimental elastohydrodynamic lubrication traction

curves of low-viscosity lubricants. Proc. Inst. Mech. Eng. 213,

53–61 (1999)

41. Fang, N., Chang, L., Webster, M.N., Jackson, A.: A non-aver-

aging method of determining the rheological properties of

traction fluids. Tribol. Intern 33, 751–760 (2000)

42. Fang, N., Chang, L., Johnson, G.J., Webster, M.N., Jackson, A.:

An experimental/theoretical approach to modelling the viscous

behaviour of liquid lubricants in elastohydrodynamic lubrication

contacts. Proc. Inst. Mech. Eng. J215, 311–318 (2001)

43. Bair, S., Winer, W.O.: The high shear stress rheology of liquid

lubricants at pressures of 2 to 200 MPa. Trans. ASME J. Tribol.

112, 253–256 (1990)

44. Bair, S.: The nature of the logarithmic traction gradient. Tribol.

Intern. 35, 591–597 (2002)

45. Bair, S.: Rheology and high-pressure models for quantitative

elastohydrodynamics. Proc. Inst. Mech. Eng. J223, 617–628

(2009)

46. Houpert, L., Flamand, L., Berthe, D.: Rheological and thermal

effects in lubricated EHD contacts. Trans. ASME J. Tribol 103,

526–532 (1981)

47. Wang, S.H., Zhang, H.H.: Combined effects of thermal and non-

Newtonian character of lubricant on pressure, film profile,

temperature rise, and shear stress in EHL. Trans. ASME J.

Tribol. 109, 666–670 (1987)

48. Sui, P.C., Sadeghi, F.: Non-Newtonian thermal elastohydrody-

namic lubrication. Trans. ASME J. Tribol. 113, 390–396 (1991)

Tribol Lett (2014) 56:1–25 23

123



49. Wang, S., Cusano, C., Conry, T.F.: Thermal analysis of elas-

tohydrodynamic lubrication of line contacts using the Ree–Ey-

ring fluid model. Trans. ASME J. Tribol. 113, 232–242 (1991)

50. Khonsari, M.M., Hua, D.Y.: Thermal elastohydrodynamic ana-

lysis using a generalized non-Newtonian formulation with

application to Bair–Winer constitutive equation. Trans. ASME

J. Tribol. 116, 37–46 (1994)

51. Sharif, K.J., Evans, H.P., Snidle, R.W., Newall, J.P.: Modeling

of film thickness and traction in a variable ratio traction drive

rig. Trans. ASME J. Tribol. 126, 92–104 (2004)

52. Otero, J.E., Morgado, P.L., Tanarro, E.C., de la Guerra Ochoa,

E., Lantada, A.D., Munoz-Guijosa, J.M., Sanz, J.M.: Analytical

model for predicting the friction coefficient in point contacts

with thermal elastohydrodynamic lubrication. Proc. Inst. Mech.

Eng. J. 225, 181–191 (2011)

53. Novak, J.D., Winer, W.O.: Some measurements of high pressure

lubricant rheology. Trans. ASME J. Lubr. Technol. 90, 580–590

(1968)

54. Jakobsen, J., Winer, W.O.: High shear stress behaviour of some

representative lubricants. Trans. ASME J. Lubr. Technol. 97,

479–485 (1975)

55. Bair, S., Winer, W.O.: Shear strength measurement of lubricants

at high pressure. Trans. ASME J. Lubr.Technol. 101, 251–257

(1979)

56. Bair, S., Winer, W.O.: A rheological model for elastohydrody-

namic contacts based on primary laboratory date. Trans. ASME

J. Lubr. Technol. 101, 258–264 (1979)

57. Bair, S., Winer, W.O.: Some observations in high pressure

rheology of lubricants. Trans. ASME J. Lubr. Technol. 104,

357–364 (1982)

58. Ramesh, K.T., Clifton, R.J.: A pressure-shear plate impact

experiment for studying the rheology of lubricants at high

pressures and high shearing rates. Trans. ASME J. Tribol. 109,

215–222 (1987)

59. Bair, S., Winer, W.O.: The high pressure high shear stress

rheology of liquid lubricants. Trans. ASME J. Tribol. 112, 1–9

(1992)

60. Bair, S., Winer, W.O.: A new high pressure, high shear stress

viscometer and results for lubricants. Tribol. Trans. 36, 721–725

(1993)

61. Bair, S.: Recent developments in high pressure rheology of

lubricants. Proceedings of 21st Leeds-Lyon Symposium on

Tribology, Lubricants and Lubrication, pp. 169–187. Elsevier

Science B.V, Amsterdam (1995)

62. Bair, S.: The high pressure rheology of some simple model

hydrocarbons. Proc. Inst. Mech. Eng. J. 216, 139–149 (2002)

63. Bair, S., Khonsari, M.M.: Reynolds equations for common

generalized Newtonian models and an approximate Reynolds-

Carreau equation. Proc. Inst. Mech. Eng. J. 220, 365–374 (2006)

64. Bair, S., Vergne, P., Querry, M.: A unified shear-thinning

treatment of both film thickness and traction in EHD. Tribol.

Lett. 18, 145–152 (2005)

65. Eyring, H.: Viscosity, plasticity, and diffusion as examples of

absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

66. Ewell, R.H.: The reaction rate theory of viscosity and some of

its applications. J. Appl. Phys. 9, 252–269 (1938)

67. Kincaid, J.F., Eyring, H., Stearn, A.E.: The theory of absolute

reaction rates and its application to viscosity and diffusion in the

liquid state. Chem. Rev. 28, 301–365 (1941)

68. Kauzmann, W., Eyring, H.: The viscous flow of large molecules.

J. Am. Chem. Soc. 62, 3113–3125 (1940)

69. Powell, R.E., Roseveare, W.E., Eyring, H.: Diffusion, thermal

conductivity, and viscous flow of liquids. Ind. Eng. Chem. 33,

430–435 (1941)

70. Ree, T., Eyring, H.: Theory of non-Newtonian flow. I. Solid

plastic system. J. Appl. Phys. 26, 793–800 (1955)

71. Ree, F., Ree, T., Eyring, H.: Relaxation theory of transport

problems in condensed systems. Ind. Eng. Chem. 50, 1036–1040

(1958)

72. Bell, J.C.: Lubrication of rolling surfaces by a Ree–Eyring fluid.

ASLE Trans. 5, 160–171 (1962)

73. Bair, S.: Actual Eyring models for thixotropy and shear-thin-

ning: experimental validation and application to EHD. Trans

ASME J. Tribol. 126, 728–732 (2004)

74. Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der

festen Körper. Z. für Angew. Math. und Mech. 8, 85–106 (1928)

75. Popov, V.L., Gray, J.A.T.: Prandtl-Tomlinson model: history

and applications in friction, plasticity, and nanotechnologies.

ZAMM-J. Appl. Math. Mech. 92, 683–708 (2012)

76. Sutterby, J.L.: Laminar converging flow of dilute polymer

solutions in conical sections: part I. Viscosity data, new vis-

cosity model, tube flow solution. AIChE J. 12, 63–68 (1966)

77. Cross, M.M.: Rheology of non-Newtonian fluids: a new flow

equation for pseudoplastic systems. J. Coll. Sci. 20, 417–443

(1965)

78. Morris, E.R.: Shear-thinning of ‘random coil’ polysaccharides:

characterisation by two parameters from a simple linear plot.

Carbohydr. Polym. 13, 85–96 (1990)

79. Powell, R.E., Eyring, H.: Mechanism for relaxation theory of

viscosity. Nature 154, 427–428 (1944)

80. Lodge, A.S.: Constitutive equations from molecular network

theories for polymer solutions. Rheol. Acta 7, 379–392 (1968)

81. Carreau, P.J.: Rheological equations from molecular network

theories. Trans. Soc. Rheol. 16, 99–127 (1972)

82. Yasuda, K.Y., Armstrong, R.C., Cohen, R.E.: Shear flow prop-

erties of concentrated solutions of linear and star branched

polystyrenes. Rheol. Acta 20, 163–178 (1981)

83. Bair, S.: Measurement of real non-Newtonian response for

liquid lubricants under moderate pressures. Proc. Inst. Mech.

Eng. J215, 223–233 (2001)

84. Warburg, E., Sachs, J.: Ueber den Einfluss der Dichtigkeit auf

die Viscosität tropfbarer Flüssigkeiten. Ann. der Physik 258,

518–522 (1884)

85. Barus, C.: Isothermals, isopiestics and isometrics relative to

viscosity. Am. J. Sci. 266, 87–96 (1893)

86. Pressure-viscosity Report, A.S.M.E.: Viscosity and density of

over 40 lubricating fluids of known composition at pressures to

150, 000 psi and temperatures to 425F. ASME, New York

(1953)

87. Roelands, C.J.A.: Correlational aspects of the viscosity-tem-

perature-pressure relationship of lubricating oils. PhD thesis,

Techn. Univ. of Delft (1966)

88. Paluch, M., Dendzik, Z., Rzoska, S.J.: Scaling of high-pressure

viscosity data in low-molecular-weight glass-forming liquids.

Phys. Rev. B 60, 2979–2982 (1999)

89. Doolittle, A.K.: Studies in Newtonian flow. II. The dependence

of the viscosity of liquids on free-space. J. Appl. Phys. 22,

1471–1475 (1951)

90. Cohen, M.H., Turnbull, D.: Molecular transport in liquids and

glasses. J. Chem. Phys. 31, 1164–1169 (1959)

91. Yasutomi, S., Bair, S., Winer, W.O.: An application of a free

volume model to lubricant rheology I—dependence of viscosity

on temperature and pressure. Trans. ASME J. Tribol. 106,

291–302 (1984)

92. Bair, S., Kottke, P.: Pressure-viscosity relationships for elas-

tohydrodynamics. Tribol. Trans. 46, 289–295 (2003)

93. Larsson, R., Anderson, O.: Lubricant thermal conductivity and

heat capacity under high pressure. Proc. Inst. Mech. Eng. J. 214,

337–342 (2000)

94. Bair, S., Khonsari, M., Winer, W.O.: High-pressure rheology of

lubricants and limitations of the Reynolds equation. Tribol.

Intern. 31, 573–586 (1998)

24 Tribol Lett (2014) 56:1–25

123



95. Bair, S.: Reference liquids for quantitative elastohydrodynam-

ics: selection and rheological characterization. Tribol. Lett. 22,

197–206 (2006)

96. Harris, K.R.: Temperature and pressure dependence of the vis-

cosities of 2-ethylhexyl benzoate, bis (2-ethylhexyl) phthalate,

2, 6, 10, 15, 19, 23-hexamethyltetracosane (squalane), and dii-

sodecyl phthalate. J. Chem. Eng. Data 54, 2729–2738 (2009)

97. Harris, K.R., Bair, S.: Temperature and pressure dependence of

the viscosity of diisodecyl phthalate at temperatures between (0

and 100) C and at pressures to 1 GPa. J. Chem. Eng. Data 52,

272–278 (2007)

98. Bair, S.: The high-pressure, high-shear stress rheology of a

polybutene. J. Non-Newt. Fluid Mech. 97, 53–65 (2001)

99. Clifton, R.J.: Discussion to paper Bair, S., Winer, W.O.: The

high shear stress rheology of liquid lubricants at pressures of 2

to 200 MPa. Trans. ASME J. Tribol. 112, 253–256 (1990)

100. Bair, S., Winer. W.O.: The pressure-viscosity coefficient at

Hertz pressure and its relation to concentrated contact traction.

Proceedings of 26th Leeds-Lyon Symposium on Tribology,

Thinning Films and Tribological Interfaces. Elsevier Science

B.V., Tribology Series vol. 38, pp. 433–443. Elsevier Science

B.V., Amsterdam (2001)

101. Bair, S., Vergne, P., Marchetti, M.: The effect of shear-thinning

on film thickness for space lubricants. Tribol. Trans. 45,

330–333 (2002)

102. Bair, S., Qureshi, F.: The generalised Newtonian fluid model

and elastohydrodynamic film thickness. Trans. ASME J. Tribol.

125, 70–75 (2003)

103. Eyring, H., Ree, T., Hirai, N.: The viscosity of high polymers—

the random walk of a group of connected segments. Proc. Nat.

Acad. Sci. USA 44, 1213–1217 (1958)

104. Muraki, M., Konishi, S.: Shear behavior of low-viscosity fluids

in EHL contacts (Part 1): theoretical analysis with a thermal

Eyring model. Jpn. J. Tribol. 38, 1085–1096 (1993)

105. Bair, S., Qureshi, F., Winer, W.O.: Observations of shear

localization in liquid lubricants under pressure. Trans. ASME J.

Tribol. 115, 507–514 (1993)

106. Ponjavic, A., Mare, L., Wong, J.S.: Effect of pressure on the

flow behavior of polybutene. J. Polym. Sci., Part B: Polym.

Phys. 52, 708–715 (2014)

107. Ponjavic, A., Wong, J.S.: The effect of boundary slip on elas-

tohydrodynamic lubrication. RSC Adv. 4, 20821–20829 (2014)

108. Todd, B.D., Daivis, P.J.: Homogeneous non-equilibrium

molecular dynamics simulations of viscous flow: techniques and

applications. Mol. Simul. 33, 189–229 (2007)

109. Ashurst, W.T., Hoover, W.G.: Shear viscosity via periodic

nonequilibrium molecular dynamics. Phys. Lett. 61A, 175–177

(1977)

110. Berker, A., Chynoweth, S., Klomp, U.C., Michopoulos, Y.:

Non-equilibrium molecular dynamics (NEMD) simulations and

the rheological properties of liquid n-hexadecane. J. Chem. Soc.,

Faraday Trans. 88, 1719–1725 (1992)

111. Kioupis, L.I., Maginn, E.J.: Impact of molecular architecture on

the high-pressure rheology of hydrocarbon fluids. J. Phys.

Chem. B 104, 7774–7783 (2000)

112. Lacks, D.J.: Energy landscapes and the non-Newtonian viscosity

of liquids and glasses. Phys. Rev. Lett. 87, 225–502 (2001)

113. Rottler, J., Robbins, M.O.: Shear yielding of amorphous glassy

solids: effect of temperature and strain rate. Phys. Rev. E 68.1,

011507 (2003)

114. Borzsak, I., Cummings, P.T., Evans, D.J.: Shear viscosity of a

simple fluid over a wide range of strain rates. Mol. Phys. 100,

2735–2738 (2002)

115. Bair, S., McCabe, C., Cummings, P.T.: Calculation of viscous

EHL traction for squalane using molecular simulation and rhe-

ometry. Tribol. Lett. 13, 251–254 (2002)

Tribol Lett (2014) 56:1–25 25

123


	History, Origins and Prediction of Elastohydrodynamic Friction
	Abstract
	Introduction
	Two Main Approaches to EHD Rheology
	Rheology from EHD Friction Measurements
	Early Work
	Viscoelastic and Eyring Model
	Temperature Correction
	Variation of Pressure Across the Contact

	Rheology from High-Stress Viscometers
	EHL Rheology Models
	Eyring
	Carreau and Yasuda

	Low Shear Rate Piezoviscosity
	Two Problem Areas
	The Thermal Problem
	Lubricant Repeatability Problem

	Eyring versus Carreau--Yasuda
	Fitting of Eyring and Carreau--Yasuda Equations to EHD Friction Curves

	Current and Future Developments
	Probing the Velocity Profile in EHD Contact
	Molecular Dynamics Simulation (MDS)

	Conclusions
	References


