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Abstract The description of elastic, nonadhesive con-

tacts between solids with self-affine surface roughness

seems to necessitate knowledge of a large number of

parameters. However, few parameters suffice to determine

many important interfacial properties as we show by

combining dimensional analysis with numerical simula-

tions. This insight is used to deduce the pressure depen-

dence of the relative contact area and the mean interfacial

separation D�u and to present the results in a compact form.

Given a proper unit choice for pressure p, i.e., effective

modulus E* times the root mean square gradient �g, the

relative contact area mainly depends on p but barely on the

Hurst exponent H even at large p. When using the root

mean square height �h as unit of length, D�u additionally

depends on the ratio of the height spectrum cutoffs at short

and long wavelengths. In the fractal limit, where that ratio

is zero, solely the roughness at short wavelengths is rele-

vant for D�u. This limit, however, should not be relevant for

practical applications. Our work contains a brief summary

of the employed numerical method Green’s function

molecular dynamics including an illustration of how to

systematically overcome numerical shortcomings through

appropriate finite-size, fractal, and discretization correc-

tions. Additionally, we outline the derivation of Persson

theory in dimensionless units. Persson theory compares

well to the numerical reference data.

Keywords Contact mechanics � Surface roughness �
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1 Introduction

Most solids have surfaces with self-affine roughness, which

means that the height spectra of their undeformed surfaces

scale with a power of the wave vector over several decades

[18, 28, 33]. As a consequence of this roughness, solids

tend to touch intimately only at a miniscule fraction of the

apparent contact area [34]. Central quantities characteriz-

ing mechanical contact are the relative contact area ar, the

mean gap D�u between the solids, and the contact stiffness

K, which is the derivative of D�u with respect to pressure [5,

22, 24]. Predicting either one of those descriptors for a

given system—with well-defined height spectra and elastic

properties—had not been possible until the beginning of

the last decade. This changed when Persson proposed a

scaling approach to contact mechanics and rubber friction

[25]. The theory prompted the first numerical simulations,

which addressed systematically the contact mechanics of

solids with self-affine rough surfaces [13].

Traditional approaches to contact mechanics neglect

long-range elasticity [6, 12, 26]. This approximation is not

only undesirable from a mathematical point of view,

because it is uncontrolled, but also for practical reasons.

Calculations neglecting long-range elasticity almost always

lead to qualitatively wrong results [22, 26]. One example is

that traditional contact theories predict that the gap distri-

bution remains Gaussian even under load when in fact it is

exponential. As a consequence, traditional approaches to

contacts grossly underestimate by how much additional

load reduces the mean gap. This can easily lead to a sev-

eral-decades overestimation of the leakage current through
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a mechanical interface at a given relative contact area even

far away from the percolation transition [10].

In contrast, Persson theory has passed all comparisons to

simulations so far, in the sense that the correct functional

dependencies or constitutive laws follow from it, at least

for relative contact areas of less than 50 %. The coeffi-

cients of the constitutive laws tend to be within Oð10 %Þ of

those produced by high-quality simulations [4, 8, 10, 24,

35]. For example, it predicts the area–load dependence and

gap distribution functions to within 15 % accuracy

between extremely small and 50 % contact area [4, 8, 35].

The field of contact mechanics of randomly rough sur-

faces has much matured in the last 10 years. Persson

extended his theory to many interfacial problems, such as

adhesion [15, 19, 31], plasticity [2, 26], contact stiffness [9,

24], leakage [20, 29, 32], squeeze-out [21], and the transi-

tion from elastohydrodynamic to boundary lubrication [30].

As far as numerics are concerned, various groups now have

the expertise to simulate solids with surfaces containing

several million grid points in the top layer, although con-

sidering billions of grid points per plane (as we did in the

preparation of this work) still necessitates the use of su-

percomputers. Despite much progress, well-defined refer-

ence data are lacking, and moreover, estimates for the ratio

of relative contact area and dimensionless load at small load

have not yet converged [8, 13, 35, 38]. One of the reasons

for the lack of such data is that no dimensional analysis has

been conducted assessing which parameters are relevant

and which quantities should be used to dimensionalize data.

Such an analysis is useful to simplify the comparison

between experiment, theory, and simulation.

In this work, we provide reference data for two inter-

facial properties: ar and D�u, including instructions on how

to dimensionalize the data. Note that the contact stiffness

K can subsequently be obtained from the mean gap, which

is the reason why we do not consider K in the present work.

One aim of our endeavor is to put experimentalists in a

position to deduce reasonable approximations to, say, the

mean gap as a function of pressure. At the same time, we

wish to enable theoretically inclined practitioners to deduce

some of the answers by themselves. For this purpose, we

review Persson’s contact mechanics theory (finding occa-

sional shortcuts to some of the original calculations) and

also describe the Green’s function molecular dynamics

(GFMD) method [7, 16], which allows one to conduct

simulations of planes with several million grid points on a

standard single CPU core. This includes guidelines on how

to systematically extrapolate the observable of interest to

large system sizes (finite-size scaling), to large ratios of

short- and long-wavelength cutoffs (fractal scaling), and to

the continuum limit. Last but not least, we introduce a way

to nondimensionalize the data with the goal to facilitate the

comparison of data from different research groups.

The paper is organized as follows. In Sect. 2, we

introduce the basic model assumptions and describe the

means of characterizing the surface roughness. Section 3

presents the results of GFMD calculations for the scaling of

relative contact area and mean gap with different correc-

tions. Section 3 also contains the reference data. Section 4

summarizes the main findings. In the appendix, we briefly

review Persson’s theory as well as the GFMD technique.

2 Theory and Method

2.1 Basic Model Assumptions

Throughout this work, we make some basic assumptions

and approximations. These are (1) linear elasticity of the

solids, (2) hard-wall repulsion between them, and (3) the

small-slope approximation. We make no additional

(uncontrolled) approximations in our numerical solutions of

the contact problem, unlike traditional contact mechanics

approaches such as the Greenwood–Williamson theory [12,

26], one assumption of which are circular or elliptical

shapes of contact patches (numerical simulations reveal that

contact predominantly lives in fractal patches, which arise

through the merging of many Hertzian contacts). We note

that dropping any of our assumptions would make it

impossible to present a complete set of reference data

without making use of three-dimensional representations or

tables. This means that plastic deformation and adhesion of

the surfaces are not included in our model.

Nevertheless, our assumptions can be considered to be a

good approximation for many applications. Plasticity only

becomes relevant when the locally averaged stress in a

contact exceeds a threshold, namely the hardness. At

macroscopic scales, the stress is much smaller than the

macroscopic hardness. When fine features of the height or

the contact geometry are resolved, stresses become large,

but so does the hardness, which is a scale-dependent

quantity [23]. Persson theory allows one to estimate these

effects and reveals that for many quantities, plasticity will

only induce small perturbations.

Likewise, direct adhesive interactions between solids

are confined to those points where the two surfaces touch

microscopically or are about to do so. Nevertheless,

adhesion can become relevant (for soft solids) when cap-

illaries are present. We point the reader to refs. [31] and

[19] for a more detailed discussion. In this work, we

assume, as already mentioned, hard-wall interactions, i.e.,

at no position at the interface may the z-coordinate of the

top solid be smaller than that of the substrate. Formally,

this nonholonomic boundary condition can be written as:

ztopðx; yÞ� zbottomðx; yÞ; ð1Þ
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where ztop(x, y) and zbottom(x, y) are the z-coordinates of the

contacting surfaces for top and bottom solid, respectively,

while x and y indicate in-plane coordinates. No forces act

between the solids when they are not in contact and infi-

nitely high repulsion occurs when they overlap.

The assumption of linear elasticity together with the

small-slope approximation makes it possible to combine

both roughness and compliance of the two solids into an

effective roughness and an effective compliance [14].

These can then be assigned to either side of the interface.

The effective local height then becomes h(x, y) =

ztop(x, y) - zbottom(x, y) and the effective modulus reads

1

E�
¼ 1� m2

1

E1

þ 1� m2
2

E2

; ð2Þ

where the Ei and mi denote the elastic moduli and the

Poisson ratios of the two contacting solids.

The small-slope approximation permits neglecting the

sideways motion of atoms, so that it suffices to consider

scalar displacement fields. Put differently, by restricting

ourselves to a scalar displacement field and by using the

effective modulus E*, we implicitly implement the small-

slope approximation, even if the slopes for which we solve

the contact mechanics problem are large.

2.2 Quantifying Surface Roughness

Let us define the effective height of the undeformed

interface h(x, y) as the gap between the surfaces when they

touch in a single point, i.e., in the limit of a vanishingly

small normal load L = 0?. The values of h(x, y) can be

interpreted as a field of (spatially correlated) random

numbers. The main assumption usually made for their

stochastic properties is homogeneity across the surface,

e.g., no wear tracks or systematic surface structuring. In

addition, we will also assume isotropy, i.e., a Peklenik

number of one. As a consequence of homogeneity and

isotropy, any point is expected to yield the same average

height for different realizations of the interface. Moreover,

local gradients average to zero, although their magnitudes

are finite. Lastly, the expected magnitude of the height

change between two points (on a self-affine surfaces)

increases as a power law of the distance between them.

This can be expressed mathematically as:

hhðrÞi ¼ �h0; ð3Þ
hhðrÞ � hðrþ DrÞi ¼ 0; ð4Þ

hðrÞ � hðrþ DrÞf g2
D E

/ Dr2H ; ð5Þ

where r and Dr are vectors in the (x, y) plane. H is the

Hurst roughness exponent [28], which also determines the

fractal dimension of a surface, i.e., Df = 3 - H.

In Fourier space, the stochastic properties of the surface

roughness read:

~hðqÞ
� �

¼ 0 for q 6¼ 0; ð6Þ
~h�ðqÞ~hðq0Þ
� �

¼ dq;q0CðqÞ; ð7Þ

where the surface height spectrum C(q) exhibits the power

law scaling

CðqÞ ¼ Cðq0Þ
q

q0

� ��2�2H

ð8Þ

within a range 2p/kl \q \2p/ks, i.e., in between cutoffs at

long and at short wavelengths, respectively. q0 indicates an

arbitrary reference wave number, which one can choose to

coincide with ql = 2p/kl. In Eq. (7), dq, q0 represents the

Kronecker symbol, which needs to be replaced with the d(q -

q0) Dirac delta function for infinite systems in the continuum

limit instead of discrete, periodically repeated systems.

For experimental systems [28], 0 B H B 1. While it is

formally possible to assume values outside this interval,

we are not aware of any experiment finding such Hurst

exponents, so we disregard that possibility here. The

typical situation is that a surface power spectrum has a

rolloff [28] at wave vector qr so that H = -1 for q \ qr

is a reasonable approximation and H = 0.85 ± 0.05 for

q [ qr. From a computational point of view, a rolloff is as

easily implemented as in a theoretical approach. We

nevertheless disregard the rolloff here and instead focus on

the contact mechanics for wavelengths shorter than the

rolloff wavelength. Our motivation for this choice is that

this makes a comparison between theory and simulation

more transparent. Moreover, it is not possible to produce

meaningful reference data when the limits kr=L ! 0 and

ks/kr? 0 do not interchange, where L is the linear system

size. When using a long-wavelength cutoff rather than a

rolloff, the interchangeability of limits is much less

problematic.

The stochastic properties of the surface—or an inter-

face—are fully defined by the following variables: H, L, kl,

ks, C(ql), and, in the case of numerical calculations, a,

which is the resolution of the lattice, i.e., the (smallest) grid

spacing of the discrete elastic manifold. These six param-

eters can be replaced by the following set of parameters: H,
�h, �g, L0 ¼ L=kl, k

0

l = kl / ks, and k0s = ks / a.

The RMS height �h and RMS gradient �g can be computed

either in real space or in Fourier space. For a discrete set of

heights, we use the transform

hðrÞ ¼
X

q

~hðqÞ exp½iq � r� ð9Þ

~hðqÞ ¼ 1

N

X
r

~hðrÞ exp½�iq � r�; ð10Þ
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where N is the number of points in the surface, and where

q should be chosen in the image in which q is minimized.

Thus,

�h2 ¼ 1

N

X
q

j~hðqÞj2; ð11Þ

�g2 ¼ 1

N

X
q

q2j~hðqÞj2; ð12Þ

for discrete systems. In order to connect to continuum

theories, one needs to replace the discrete Fourier sums for

finite, discrete, and periodically repeated systems with

Fourier integrals representing infinite and continuous

systems. Going from the discrete to continuous

representation in Fourier space implies that the

thermodynamic limit L ! 1 is satisfied. Taking into

account that nominal contact area A0 !1 when L ! 1,

the following expression should be used:

X
q

! lim
A0!1

A0

ð2pÞ2
Z

d2q: ð13Þ

Evaluating �h and �g for continuous systems analytically (for

0 \ H \ 1), one can recognize that they are dominated by

long and short wavelengths, respectively:

�h2 ¼ q2
l CðqlÞ

H
1� ql=qsð Þ2H
n o

; ð14Þ

�g2 ¼ q4
s CðqsÞ

2� 2H
1� ql=qsð Þ2�2H
n o

; ð15Þ

because �f � ql=qs disappears in the ‘‘fractal’’ limit

(defined as �f ! 0). Specifically, �hf ¼ ql

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðqlÞ=H

p
(for

H [ 0) depends only on the spectral features at ql in the

fractal limit, while �gf ¼ q2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðqsÞ=ð2� 2HÞ

p
(for H \ 1)

only depends on the spectral features near qs.

Any observable O measured or computed for a given

normal pressure p will be a function of many variables, i.e.,

O ¼ Oðp;E�;H; �h; �g; 1=L0; 1=k0l; 1=k
0
sÞ: ð16Þ

However, in most cases of practical interest, one should be

close to the following two limits: (1) the thermodynamic

limit 1=L0 ! 0 and (2) the fractal limit 1/k0l : ks/kl ? 0.

Moreover, when comparing to continuum theories, one

should reduce discretization effects, which leads to (3) the

continuum limit 1/k0s ? 0. In most cases, one should

therefore be interested only in the dependence of a quantity

on three surface-topography-related variables, namely H, �h,

and �g. Since we are still free to choose the unit of length,

H and �g are the only dimensionless parameters that can

matter in the thermodynamic/fractal/continuum (TFC)

limit.

In consequence, the mean gap in a self-affine fractal

interface in the TFC limit can only depend on three vari-

ables, i.e.,

D�u ¼ �h � Dudlðp=E�;H; �gÞ; ð17Þ

where Dudl is the dimensionless mean gap, which can only

depend on dimensionless numbers. Any other dependence

is not possible, because D�u must have the dimension of

length. Of course, Eq. (17) is only meaningful under the

assumption that the TFC limit exists and is unique, i.e., that

it does not matter in what order the limits 1=L0 ! 0 and 1/

k0l ? 0 are taken.

Given the above analysis, one can conclude that not only

the gap but any quantity can depend in a nontrivial fashion

on at most two surface topography-related, dimensionless

parameters, namely H and �g. This constitutes a dramatic

reduction in complexity as compared to the initial set of six

topography-defining variables. As a caveat, we note that it

is nevertheless possible that Dudl ¼ 0. In that case, the

leading order is a correction / �f .

2.3 Dimensional Analysis of the Elasticity of Half-

Spaces

In three-dimensional space, the elastic energy density Uel/

V is a bilinear function of the strain (qua / qRb ? qub/qRa)/

2 in the harmonic approximation. Here, ua(R) is the dis-

placement field, and it is proportional to the elements of the

elastic tensor Cabcd [17]. For a homogeneous medium, this

implies that the energy density is bilinear in the wave

vector if the energy is calculated in Fourier space. The

elasticity of a half-space must still be harmonic in the

displacements (which are now only defined on the surface)

and it will still be proportional to the elements of the elastic

tensor. However, the energy density is no longer normal-

ized to a volume element but to a surface element. Since

the areal energy density must still be harmonic and thus

quadratic in the displacements, the prefactor can only be

proportional to the wave vector. This means that U /
qE�j~uðqÞj2 is the only possible dependence. Fixing the

prefactor requires lengthy calculations [31], the result of

which is

Uel=A0 ¼
E�

4

X
q

qj~uðqÞj2; ð18Þ

where A0 is the nominal surface area of the solid experi-

encing an external force. In Eq. (18), we have restricted the

displacement to be normal to the surface, which is justified

in the small-slope approximation as long as forces are

normal, too.

From Eq. (18), the elastic force onto the surface layer

can be derived. In static equilibrium, it must be balanced
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by some external pressure. This leads to the following

equilibrium condition:

E�

2
q~uðqÞ þ ~pifðqÞ þ ~pextðqÞ ¼ 0; ð19Þ

where ~pifðqÞ is the interfacial force, e.g., the Fourier

transform of the pressure that the top solid exerts on the

bottom solid, and ~pextðqÞ is an externally exerted pressure.

For a constant external pressure, i.e., ~pextðqÞ ¼ p0d0;q the

equilibrium condition can be written as:

~pifðqÞ ¼
�p0 if q ¼ 0;
� E�

2
q~uðqÞ else:

�
ð20Þ

Let ~uoldðqÞ be a solution for a given height profile h(r).

One can then construct a new solution for a system in

which all in-plane coordinates are scaled according to

ðx; yÞnew ¼ s � ðx; yÞold, which implies qnew = qold/s:

E�

2
ðs � qnewÞ~uoldðs � qnewÞ ¼ �~pif;oldðs � qnewÞ: ð21Þ

This equation can be reexpressed as

E�

2
qnew ~unewðqnewÞ ¼ �~pif;newðqnewÞ ð22Þ

with

~pif;newðqnewÞ ¼
1

s
� ~pif;oldðqnew=sÞ: ð23Þ

Thus, all interfacial forces scale with 1/s, which then must

also hold for the external pressure.

Our scaling transformation leaves �h invariant and only

changes �g to �g=s. However, by renormalizing p to p/s, we

get back our old solution. Therefore, p=E��g is the only

variable which the mean separation can depend on. This

simplifies Eq. (17) to

D�u ¼ �h � Dudlðp=E��g;HÞ: ð24Þ

For other observables, similar relationships can be found,

where the prefactor is a product of a power of �h and the

elastic constant E*, and the relevant dimensionless

parameters are p=E��g and H.

In some cases, one might find that Dudl ¼ 0. This,

however, does not imply that D�u is zero when expressed as a

multiple of a microscopic length. It can still be finite, but

since �h can have diverged in the fractal limit, the ratio D�u=�h

has become zero. In that case, it can be more appropriate to

nondimensionalize the gap—or other quantities of unit

length—by a microscopic or mesoscopic length. One pos-

sibility to achieve this is the use of the following alternative

dimensionless expression for the mean gap Duadl via

D�u ¼ ð�gksÞ � Duadlðp=E��g;HÞ: ð25Þ

This is shown in Fig. 7 below. Using Eqs. (8), (11), (12),

the leading-order term of ksð�fÞ can be written as

�gks ¼ 2p�h
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln �f

p
H ¼ 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H=ð1� HÞ
p

�H
f 0\H\1;

�f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln �f

p
H ¼ 1;

8<
: ð26Þ

with �f ¼ ks=kl\1:

3 Results

3.1 Continuum, Fractal, and Finite-Size Corrections

3.1.1 Contact Area

Any contact mechanics simulation is conducted at a finite

system size L rather than in the thermodynamic limit. The

ratio kl/ks is also finite and the roughness at the smallest

wavelength is discretized only down to a finite ratio a/ks. In

this section, we investigate to what extent one can express

a dimensionless observable Osim
d computed at finite values

of �t ¼ kl=L, �f ¼ ks=kl, and �c ¼ a=ks through

Osim
d ðp=E��g;H; �t; �f ; �cÞ
¼ OTFC

d ðp=E��g;HÞ þ Ct�
at

t þ Cf�
af

f þ Cc�
ac

c

ð27Þ

and extrapolate to the TFC limit by computing the obser-

vable of interest at finite values of �t, �f , and �c. Both the

exponents ai and also the proportionality constants Ci can

be functions of H and p=E��g, though one would expect the

exponents to depend only weakly on the pressure.

Note that any of the three corrections can be significant

and it is not a priori clear which correction is important for

a given combination of H and p=E��g. Therefore, it is

important to systematically control the values of the

parameters independently of each other, i.e., by only

changing one �i at a time. This point is taken into account

in our calculations in the following way: we choose a

reference system, namely L=kl ¼ 2, kl/ks = 1,024, ks/

a = 2, and run simulations by varying each value of �i

while keeping the other two constant. To estimate sto-

chastic error bars, we perform calculations with up to four

different realizations of the randomly rough surfaces.

All the calculations have been carried out using the

GFMD technique described in ‘‘Appendix 2’’ and imple-

mented in our in-house parallel code. Note that to get

reliable extrapolated results in one of the limits, it is nec-

essary to approach the limit as closely as possible. This

requires considering quite large system sizes L: The typical

‘‘close to a limit’’ system size in the present study is L ¼
215 which corresponds to about 1 billion grid points in the

2D contact plane. The largest linear size presented here is

L ¼ 217 (about 17 billion grid points in the contact plane),

which we used to ascertain the scaling of the mean gap

with �f (see Fig. 6 below).
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We start our analysis with the continuum corrections to

the contact area, which historically were the first ones to

come under scrutiny. Hyun and Robbins [13] evaluated

contact area using �c ¼ 1=2 arguing that roughness extends

down to the smallest scale. This argument is valid if one is

interested in determining the contact area of real systems,

although a rigorous definition of contact may only be pos-

sible in the realm of continuum mechanics. We therefore feel

that the limit �c ! 0 is more appropriate for our purpose, all

the more when testing the validity of a solution in continuum

mechanics. To this date, no consensus has been reached to

the precise value of the dimensionless ratio j � ar �gE�=p for

small p. Recent numerical estimates range from j = 2

(�c ¼ 1=32, �f ¼ 1=64, �t ¼ 1) in ref. [35] to values

exceeding 2.5 (e.g., �c ¼ 1=16, �f ¼ 1=8, �t ¼ 1=16) in ref.

[38], while Persson theory predicts that j ¼
ffiffiffiffiffiffiffiffi
8=p

p
� 1:6.

In Fig. 1, we show how the proportionality coefficient j
depends on �c for fixed values of �f ¼ 1=1024 and

�t ¼ 1=2. Here, j is defined as

j ¼ A

A0p�
; ð28Þ

where A and A0 are real and apparent contact area,

respectively, and p� ¼ p=E��g. We find that the �c correc-

tion follows a power law with the exponent ac & 0.67 at

small loads. This is in agreement with the work by Cam-

pañá and Müser [8] who found the same exponent,

although their work was not yet based on the continuum

Green’s functions but rather on the Green’s functions

describing a discrete elastic manifold. Other differences are

that Campañá and Müser [8] did not keep �f constant and

used �t ¼ 1. Despite these distinctions, we confirm that j in

the continuum limit is indeed close to 2 and that it

increases marginally as H decreases. This is also consistent

with Putignano et al. [35, 36] who found virtually no

dependence on H for values of H close to unity, and also

with Persson theory in which j is independent of H.

While previous work focused on the low-load limit, we

extend the analysis of discretization corrections to larger

pressures, where the A � p is no longer accurate. In this

regime j falls below the value of 2. The contact area over

pressure still appears to converge with �0:67
c . The correc-

tions are smaller, and convergence starts at smaller values

of �f than at lower pressures. It is interesting to note that the

relative contact area still seems to be rather independent of

H. At the given values of �f and �t, its value ranges from

0.837 for H = 0.8–0.802 for H = 0 at p* = 0.353.

Figure 2 depicts the influence of the fractal correction �f

on j for two pressures at the default reference values of �c

and �t. For both pressures, we find an exponent of af &
0.67. One can see that larger values of �f can lead to

substantial errors in particular at small pressures and Hurst

exponents close to 1. For example, on the p* = 0.007 curve

for H = 0.8, the error initially increases with � 3�0:67
f so

that to a zeroth-order approximation j may be overesti-

mated by as much as Oð30%Þ if kl/ks = 32 is chosen. This

might explain why recent work by Yastrebov et al. [38],

who focused on continuum corrections, found particularly

large values for j in contrast to studies [8, 35] employing

smaller values of �f . The problem appears to be that if one

keeps kl/a constant but varies ks, it might remain unnoticed

that the error is converted from a continuum correction to a

fractal correction, all the more as both corrections are

positive and each scales only sublinearly with �.
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Fig. 1 Proportionality coefficient j as a function of the discretization

�c for fixed values �t ¼ 1=2 and �f ¼ 1=1024. One set of curves is

evaluated at a low pressure p� ¼ p=E� �g ¼ 0:007 (top panel), while

another one is evaluated at p* = 0.353 (bottom panel)
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Fig. 2 Proportionality coefficient j as a function of the fractal

correction �f ¼ ks=kl for fixed values �c ¼ 1=2 and �t ¼ 1=2. One set

of curves is obtained at a low pressure p� ¼ p=E� �g ¼ 0:007, while

another one is evaluated at p* = 0.353. At higher pressure, only one

set of data (H = 0.8) is shown to emphasize a small value of the

fractal correction. For other values of H, the effect of �f is even

smaller
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It may also be interesting to note that Yastrebov et al.

[38] found values for j close to the predictions based on

the Bush–Gibson–Thomas (BGT) theory [26], which is an

asperity-based model neglecting that individual contact

patches can merge to form fractal-shaped contact patches.

This suggests that systems with small values of �f do not

always behave like self-affine randomly rough surfaces but

more like the collection of (elastically uncoupled) bumps.

For larger values of p*, we again find small prefactors

for the corrections to j. Within the stochastic scatter,

leading-order corrections are consistent with an Oð�0:67
f Þ

dependence. However, prefactors are small. In the case of

H = 0.3, the fractal corrections are even below our (sta-

tistical) detection capabilities. Despite the small prefactors,

it seems as if convergence starts at smaller values of �f than

for smaller pressures.

In the study of TFC corrections to the contact area, we

also investigate how the thermodynamic limit is approa-

ched. Figure 3 reveals that the dependence of j on �t is

rather weak. In fact, corrections are so small that we cannot

determine with certainty the exponent at. The fluctuations

in j are of order 1 and 0.1 % for p* = 0.007 and

p* = 0.353, respectively.

With regard to finding the TFC limit for the contact area,

we summarize that continuum and fractal corrections are

quite substantial, while those related to the thermodynamic

limit are minor. The FC corrections have a larger prefactor

at smaller pressures; however, the asymptotic convergence

to the limits starts at larger values of �c and �f than at

higher pressures. As expected, fine discretizations (small

�c) are required for small values of H, where roughness

lives more strongly on short wavelengths than at large

values of H. Conversely, one must ensure relatively small

values of �f for large H.

From the GFMD results, we obtained Tables 1 and 2

containing coefficients and powers to be used in Eq. (27).

This information allows extrapolating j to the TFC limit.

As a specific example, to extrapolate jsim at p* = 0.007

and H = 0.8, one can add the computed corrections

according to Eq. (27) for the values of �t, �f and �c used in

the simulations:

jTFCðp� ¼ 0:007;H ¼ 0:8Þ � jsimðp�;H; �t; �f ; �cÞ
� 0:0421�t � 8:5879�0:67

f � 0:1279�0:67
c :

ð29Þ

Unfortunately, it is difficult to predict for what range of

pressures the data for p* = 0.007 can be used without

considerable loss of accuracy. Although ar is linear in p* at

low p* ([10-1), one averages over a different distribution

of contact patches when decreasing p*, e.g., the largest

contact patch shrinks with decreasing p*, and the relative

importance of small contact patches increases. Thus, our

tables only convey trends as to which corrections become

important for different H in the high- or low-pressure

regime.

Despite potentially large corrections, well-chosen

parameters allow one to produce quite meaningful results,

even without extrapolation. For example, for H = 0.8 and

p* = 0.007 if one chooses a/ks = 1/2, ks/kl = 1/1,024, and

kl=L ¼ 1, the expected error in j is only 6 % (for a system

size of 2,048). However, to keep the error for a system with

H = 0.3 similarly small, it is better to use a/ks = 1/16 and

ks/kl = 1/256. A system of total size 2,048 9 2,048 can be

easily handled on a single CPU core, and convergence with

a well-tuned GFMD code is reached within less than an

hour of computing time on modern hardware.
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Fig. 3 Dimensionless ratio j as a function of the thermodynamic

correction �t for fixed values �c ¼ 1=2 and �f ¼ 1=1024. Dashed lines

indicate least-squares linear fits. j is nearly independent of the

thermodynamic correction

Table 1 Coefficients and powers in Eq. (27) for j at p* = 0.007

obtained from the GFMD results

H Cc Cf Ct ac af at

0.3 0.6621 1.6322 0.0132 0.67 0.67 1

0.5 0.3817 2.7518 -0.0028 0.67 0.67 1

0.8 0.1279 8.5879 0.0421 0.67 0.67 1

Table 2 Coefficients and powers in Eq. (27) for j at p* = 0.353

obtained from the GFMD results

H Cc Cf Ct ac af at

0.3 0.1202 0.0535 3:1658 � 10�4 0.67 0.67 1

0.5 0.1037 0.0796 8:4447 � 10�5 0.67 0.67 1

0.8 0.0650 1.1145 �3:1623 � 10�3 0.67 0.67 1
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3.1.2 Mean Gap

Unlike the contact area, the TFC analysis of the mean gap

D�u has not attracted much attention in the literature.

Therefore, there are not many references for the D�u to

compare with (in contrast to ar or j for which there exist

computational results from several research groups).

Additionally, the TFC analysis for the mean gap is more

challenging than that for ar. As was mentioned in Sect. 2.3

and as will be clear from the GFMD results, the choice of

the unit for the length scale considerably influences the

value of D�u in the fractal limit. However, when the con-

tinuum and thermodynamic corrections are considered, the

question about the unit of length is not very important and

we use the RMS height �h for normalization in these cases.

Note that we also compare the GFMD results with Persson

theory, which can predict scaling of the D�u with the fractal

correction (see the ‘‘Appendix 1’’ for more information on

Persson theory). For other two corrections, such a com-

parison is not possible as the theory assumes that the

continuum and thermodynamic limits are satisfied.

As before, the continuum limit is examined first. From

Fig. 4, one can see that the discretization corrections are

largest for the smallest values of H. At high pressures, the

corrections follow a linear law. At the lower pressure,

numerical noise does not allow one to establish a scaling

law. Nevertheless, the linear fits can again be used with

high accuracy. Prefactors can be large; for p* = 0.353 and

H = 0, the gap is almost three times larger for �c ¼ 1=2

(which is the reference value) than in the (extrapolated)

limit of �c ¼ 0. In contrast, the corrections for H = 0.8 are

relatively moderate, e.g., they only amount to roughly

20 % of the observable at �c ¼ 1=2: For this larger value of

H, we are plagued with large stochastic error at small p,

which is readily seen from the top panel of Fig. 4.

Thermodynamic corrections show similar trends as

continuum corrections, as one can see in Fig. 5. Specifi-

cally, we find that D�u varies linearly in �t. The numerical

scatter is again particularly large for low p and larger H.

Fractal corrections obtained with GFMD and Persson

theory are shown in Figs. 6, 7, and 8. At the lower pressure,

theory and simulations fit within about 10 % accuracy.

Although the theory gives correct functional dependencies at

the higher pressure, the prefactors are about 2–3 times

smaller than in the simulations (see captions of Figs. 6, 7 for

the exact values of the scaling factors). Independent of the

normalization, there exists a region where the mean gap

varies with �f approximately according to a power law

with pressure-dependent exponents. When normalizing with

the RMS height �h, the exponents at p* = 0.007 are

af = {0.067, 0.26, 0.25, 0.079} for H = {0, 0.3, 0.5, 0.8},

respectively. At p* = 0.353, the exponents are

af = {0.048, 0.30, 0.51, 0.67} for H = {0, 0.3, 0.5, 0.8},

respectively. Using �gks as the normalization factor leads to

the increase in the mean gap with �f according to power laws

with almost zero exponents for H = {0, 0.3} both at higher

and lower pressures. The exponents for the cases of

H = {0.5, 0.8} are af = {0.25, 0.75} at p* = 0.007 and

af = {0.002, 0.14} at p* = 0.353. These results imply that

the mean gap in the fractal limit is zero in units of �h at

relatively small pressures, although the gap measured in

microscopic units such as ks must be greater than zero as long

as contact is not complete.

From Figs. 6, 7, and 8, one can learn that extrapolating to

the fractal limit is far from trivial. One reason is that when

�f ! 0, D�u expressed in units of �h does not show a clear
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Fig. 4 Dimensionless gap in units of the RMS height as a function of

the discretization �c for fixed �t ¼ 1=2 and �f ¼ 1=1024. One set of

curves is evaluated at a low pressure p� ¼ p=E� �g ¼ 0:007 (top panel),

while another one is evaluated at p* = 0.353 (bottom panel). Dashed

lines indicate least-squares linear fits
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the thermodynamic correction �t for fixed values �c ¼ 1=2 and

�f ¼ 1=1; 024. Dashed lines indicate least-squares linear fits
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plateau, while for �gks extremely small values of �f are

required in order to see the convergence. Having only

smaller (though practically relevant) values of �f may lead

to the incorrect conclusion that D�u=ð�gksÞ diverges accord-

ing to a power law. In fact, even though we are using

systems sizes up to L ¼ 217 spanning 5 orders of magnitude

in length, we are still in the ‘‘large �f regime’’ where we

only see the power law divergence (Fig. 7). Nevertheless,

the theory predictions—that agree well with the simulations

at larger �f—clearly indicate the eventual convergence of

D�u=ð�gksÞ to the fractal limit (Fig. 8). These observations

may also suggest that for the mean gap; �f should be con-

sidered as an additional independent variable and not as a

correction, in contrast to the situation for relative contact

area.

Let us discuss in more detail the implications of finding

either (i) a finite value of D�u=�h or (ii) a finite value of

D�u=�gks. Observation (i) goes hand in hand with having

only one or very few mesoscale asperity contacts per area

of size kl
2. Those contacts are found in the vicinity of the

highest peak on a domain of size kl
2. If contact is distrib-

uted more or less homogeneously throughout the apparent

contact area, gaps must automatically disappear when

expressed in units of �h. In this case, i.e., for pressures so

small that contact occurs only near the highest asperity, the

original Persson theory presented in this work is inappro-

priate and finite-size corrections need to be applied [24].

Observation (ii) implies contacts that start to look

homogeneous when spatial features on length scales only

slightly larger than ks are resolved. In fact, given Eq. (15),

one could argue that the root mean square height due to the

roughness on the shortest wavelengths is of orderffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2H
p

�gks. Then, the gaps for large pressures

(p* = 0.353 and H = {0, 0.3, 0.5} in Fig. 7) are of order

of (but smaller than) the root mean square height associated

with short wavelengths. Thus, nontrivial scaling of the gap
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Fig. 6 Dimensionless gap in units of the RMS height as a function of

the fractal correction �f ¼ ks=kl for fixed values �c ¼ 1=2 and �t ¼
1=2: One set of curves is evaluated at a low pressure p� ¼ p=E� �g ¼
0:007 (top panel), while another one is evaluated at p* = 0.353

(bottom panel). Symbols show GFMD results, and solid lines are

obtained using Persson theory. To match with the simulations within

10 % at the higher pressure, theory results are scaled by factors of 3

and 2 for H = {0, 0.3, 0.5} and H = 0.8, respectively. No scaling is

required at the lower pressure
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Fig. 7 Dimensionless gap in units of �gks as a function of the fractal

correction �f ¼ ks=kl for fixed values �c ¼ 1=2 and �t ¼ 1=2. The
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pressure, theory results are scaled by factors of {3.3, 3.1, 2.75, 2} for
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Fig. 8 Dimensionless gap in units of �gks as a function of the fractal
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of �f span almost 15 decades. According to the theory, the mean gap

eventually converges in the fractal limit. Designations and scaling are

the same as in Fig. 7
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with �f can occur when the contacts start to look hetero-

geneous at wavelengths much less than kl but distinctly

more than ks.

We conclude this section by identifying reasonable

reference systems for the evaluation of the mean gap. For

the H = 0.8, p* = 0.007 system, discretization corrections

appear to be rather minor. Choosing a/ks as large as 1/2

does not seem to introduce artifacts. Finite-size corrections

also do not lead to considerable errors. Choosing kl=L ¼
1=4 makes the estimated error for the mean gap be less than

10 %. Lastly, the ratio ks/kl has to be sufficiently small, i.e.,

below 1/1,024. Thus, for such a system, a calculation

should be as large as 8192 9 8192 to achieve an accuracy

of Oð10%Þ (in the absence of extrapolation). This is the

largest system that is commonly run on a single commodity

CPU core or on a single GPU. The choice for the reference

system for H = 0, p* = 0.353 differs quite substantially

from that just discussed. Now, one would probably be

better off with a/ks = 1/16. However, this time L=ks ¼
1=512 is more than sufficient. (For H = 0, the value of kl is

irrelevant, once L=ks has been fixed). Thus, one needs a

system of similar size as before to approach the desired

limits.

For smaller system sizes, it is still possible to get

accurate values of D�u=�h by extrapolating the computed

value to the TFC limit using Eq. (27) and the information

from Tables 3, 4.

3.2 Extrapolated Results

We present reference data for the relative contact area and

the mean gap. From the previous sections, we conclude that

extrapolating these quantities to the TFC limit does not

have simple and universal rules. Therefore, to get a

reasonably small error with the smallest possible compu-

tational expenditures in a contact mechanics simulation,

one has to take into account the quantity of interest, the

statistical properties of the surface roughness (i.e., the

Hurst exponent and �g), and the pressure. For example, for

the mean gap at low pressures and H [ 1, one has to be

careful with the thermodynamic correction, while at higher

pressures and HJ0 most attention should be paid to the

continuum correction. We tried to satisfy the corresponding

conditions for each data point in the reference plots shown

below.

Figures 9 and 10 show the dependence of the relative

contact and noncontact area on the dimensionless pressure

obtained using GFMD for systems with several different

values of the Hurst exponent. Predictions of Persson theory

are also presented in the same plot, for which, as was

Table 3 Coefficients and powers in Eq. (27) for D�u=�h at p* = 0.007

obtained from the GFMD results

H Cc Cf Ct ac af at

0.3 0.1956 7.4279 0.1076 1 0.2639 1

0.5 0.1376 7.0747 0.1107 1 0.2544 1

0.8 0.0891 2.5573 0.0353 1 0.0788 1

Table 4 Coefficients and powers in Eq. (27) for D�u=�h at p* = 0.007

obtained from the GFMD results

H Cc Cf Ct ac af at

0.3 0.1166 0.8058 6.5851 9 10-4 1 0.3009 1

0.5 0.0515 1.6523 7.0326 9 10-4 1 0.5072 1

0.8 0.0199 3.4070 1.3495 9 10-5 1 0.6665 1

10-3 10-2 10-1 100

p/E*g

10-3

10-2

10-1

100

A
/A

0

GFMD, H = 0.3
GFMD, H = 0.5
GFMD, H = 0.8
Persson

_

Fig. 9 Relative contact area as a function of the dimensionless

pressure (at low pressures) obtained using GFMD simulations as well

as predicted by the Persson theory. Both theory and simulations

indicate a linear dependence, for Persson theory with a slope of 1.6,

while the simulations give a slope of 1.93 .. 2.16. The dependence on

H is minor. High pressures are shown in Fig. 10
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Fig. 10 Continuation of Fig. 9. In order to better show the nonlin-

earity both in Persson theory and simulations, we plot the noncontact
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mentioned before, the contact area does not depend on the

Hurst exponent H. This is consistent with the GFMD

results, which suggest that in the TFC limit, the contact

area for H close to 0 and to 1 should not differ by more

than about 10 %. Both our simulations and Persson theory

show the contact area to be a linear function of the pressure

at low loads (Fig. 9), which is consistent with the previous

studies [26, 35, 38]. At low pressures, the contact area

obtained using GFMD is somewhat higher than that pre-

dicted by Persson, which is consistent with the fact that

according to GFMD, j & 2, while Persson predicts

j ¼
ffiffiffiffiffiffiffiffi
8=p

p
� 1:6. Close to the complete contact at high

pressures (Fig. 10), the contact area changes nonlinearly

with pressure. In this regime, Persson theory is closer to the

GFMD results, which is also consistent with the results of

the previous section.

A concise summary of the effects of the TFC corrections

on ar is given in Table 5. It contains the values of j
obtained at p/E* & 0.01 by different authors. The data are

presented in a chronological order and reflects the histori-

cal development of the insight into the problem. The cor-

ollary is that in the last few years, most of the research

groups have been performing computations close to the

continuum limit. However, this has been often achieved by

sacrificing either the fractal or the thermodynamic limit

because of the scarce computational resources. According

to our results, it is more important to satisfy the fractal limit

because the fractal correction �f leads to much larger errors

than the thermodynamic one, unless pressures are extre-

mely small.

Representing reference data for the mean gap meets

some complications. As was shown in the previous

section, D�u=�h! 0 in the fractal limit, following a power

law with an exponent depending on H. This means that

for D�u it is not possible to find a normalization factor

that would allow superimposing the curves for different

values of H, and necessitates a separate plot for each

value of H. Additionally, as real surfaces have a limited

range of self-affinity (which means that the fractal limit

is never reached in practice, even though �f may be as

small as 10-6) and the functional dependence of the

approaching the fractal limit is also pressure-dependent,

it may also be helpful to have reference data for several

values of �f .

Table 5 Values of j at p/E* & 0.01 obtained by different authors

Year Authors H values j j(H = 0.8) �c �f �t

1976 Bush, Gibson, Thomas [6] 0 . . . 1 �
ffiffiffiffiffiffi
2p
p

� 2:51 2.51 0 *1 0

2001 Persson [25] 0 . . . 1 �
ffiffiffiffiffiffiffiffi
8=p

p
� 1:60 1.60 0 0 0

2004 Hyun, Pei, Molinari, Robbins [13] 0.3 . . . 0.9 2.2 . . . 1.8 1.8 0.5 &10-3 1

2007 Campañá, Müser [8] 0.2 . . . 0.8 2.09 . . . 1.98 1.98 ext. &10-3 1

2012 Putignano, Afferrante et al. [35] 0.7 . . . 1 2 2 	1 &10-2 1

2012 Yastrebov, Anciaux, Molinari [38] 0.2 . . . 0.84 2.7 . . . 2.3 & 2.65 	1 0.5 . . . 0.01 	1

2013 Current work 0 . . . 0.8 2.16 . . . 1.93 1.93 ext. ext. ext.

Note that for Persson theory, j does not depend on the choice of �f . The notation ‘‘	1’’ means the value of a correction which is close enough to

the corresponding limit such that the error due to the correction is less than about 5 %. For example, at low pressures, �c ¼ 1=32 and �t ¼ 1=4

correspond to ‘‘	1’’. The term ‘‘ext’’ means that an extrapolation to the corresponding limit is made
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We present such a set of reference data in Figs. 11, 12,

and 13 along with the Persson theory predictions. The D�u
versus p* curves obtained in simulations and theory match

within about 20 % over almost the whole pressure range

(except for the highest p*) and have the functional form

established in the literature [4]. Specifically, at low pres-

sures (but high enough to avoid finite-size effects [24]),

there is a logarithmic region, while at higher pressures a

more complicated nonlinear dependence exists. As one

would expect from the previous section, D�u decreases

while approaching the fractal limit for all the pressures.

However, we did not find a simple normalization factor

that depends solely on �f such that the curves with different

�f (but with the same H) would superimpose in the whole

pressure range

We stress that all points stem from simulations that

fulfill the TC limit within 10 %. As an example, for low

pressures and H = 0.8, the continuum limit necessitates

�c
 1=32, and therefore very large systems, while for

higher pressure �c
 1=4 is sufficient. In all cases �t
 1=2

suffices.

4 Conclusions

In this work, we review analytical and computational

techniques as well as present results of GFMD calculations

for two interfacial quantities—the relative contact area ar

and the mean gap D�u. The contact stiffness K, which is the

derivative of D�uðpÞ; is implicitly given by our data. We

show that it is possible to considerably diminish the

number of quantities necessary for the description of a

contact mechanics problem by choosing proper units of

measurements. In particular, the pressure should be

expressed as a multiple of the effective elastic modulus

times the RMS gradient, at least in the absence of adhesion.

The proper choice for the unit of length is less obvious.

While the RMS height is the intuitive choice, it does not

turn out to be sufficient when expressing the mean inter-

facial gap. In fact, we find that in the fractal limit

�f � ks=kl ! 0, only short-wavelength properties matter,

i.e., D�u is proportional to �gks.

The observation that D�u is determined by short-wave-

length properties of the height spectra in the fractal limit

should not let one conclude that precise knowledge of the

roughness at small length scales is needed to predict D�u in

practice. Most surfaces have roughness exponents around

H = 0.8 and most relative contact areas for practical

applications tend to be much below 1 %. For H = 0.8 and

ar ¼ Oð0:01Þ, we find that the roughness spectrum must be

self-affine over 14 decades, e.g., from nanometer to hun-

dreds of kilometers in order to reach the fractal limit. Thus,

most applications should be very far from it, unless H is

small or surfaces are unusually soft. Knowledge of �f is

therefore needed to predict D�u as a function of H and

p=�gE� in addition to either �gks or �h. If �g cannot be resolved

accurately down to the smallest scales, estimates for D�u

can still be accurate, as that quantity is determined by

roughness on mesoscopic scales. This behavior differs

from that of ar, which turns out to be inversely proportional

to �g and thus to be dominated by small wavelength prop-

erties of the surface spectra. In the latter case, fractal

corrections are relatively small, even if they are still more

serious than thermodynamic and finite-size corrections.

In the present work, we not only investigated the rele-

vance of the ratio ks/kl but also the importance of contin-

uum corrections as well as finite-size or thermodynamic

corrections. The contribution of a particular correction

depends on a number of factors, such as the pressure and

the Hurst exponent, and there are no general simple rules to

select the appropriate values for �c and �t. However, the

finite-size corrections tend to be the least problematic.

Choosing the system size twice kl is sufficient to see the

well-established linearity between normal pressure and

contact stiffness down to Oð0:01%Þ relative contact area.

Finite-size effects are only significant when contact is

localized near the highest asperity. However, macroscopic

surfaces must rest at least on three points to be mechani-

cally stable so that averaging over at least three micro-

scopic points of contact should be given. For a detailed

discussion on how to include finite-size effects into contact

mechanics, we point the reader to ref. [24].

One purpose of this work has been to further explore the

validity of Persson theory of contact mechanics. We find that it

is not only suitable to describe the contact area but also the

noncontact area at high pressure. The first finding was to be

expected, as Persson theory is valid at small p* and moreover

becomes exact at full contact. However, this does not imply

that the deviation from full contact is also predicted correctly,
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Fig. 13 Pressure as a function of the mean gap at different values of

the fractal correction and H = 0.8. The continuum and thermody-

namic corrections are close to the corresponding limits
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i.e., the asymptotic behavior of the noncontact area at high

pressure. Moreover, we observe that the dependence of D�u on

the fractal correction—at fixed values for H, �h; and p*—is

predicted correctly, that is, it finds the correct functional

dependence and exponents. Other numerical parameters, such

as prefactors, are only slightly off. Merely, the mean gap for

relative contact areas close to unity does not appear to match

the trends conveyed by the numerical results. This, however,

only occurs for relative contact areas greater than 90 %, which

is an irrelevant regime for applications. Another point of

criticism—not further elaborated herein—relates to the pres-

sure distribution. It deviates from the predicted linear scaling

at small pressure. For brevity, we chose to not present this here

but rather to discuss it in future work together with an in-depth

analysis of how to modify Persson theory to reflect the

observed trends. However, concerning the observables

investigated in this work, the current Persson theory already

provides an excellent description.
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Appendix 1: Persson Contact Mechanics Theory

for Contact Area and Mean Gap

A promising approach to contact mechanics and related

topics is Persson theory [25, 26, 4]. The principal idea is to

investigate how distributions, such as pressure and gap

distribution functions, broaden when roughness is ignored

initially but then is included gradually by considering

roughness at larger and larger wave vectors—or greater

‘‘magnification.’’ Here, we will summarize those aspects of

Persson theory, which pertain to the reference data pre-

sented in the result section, namely for contact area and

mean gap. Unlike the original literature, our presentation

will be focused on the use of the dimensionless variables

introduced in the main text.

Consider a contact in which the pressure distribution is

locally constant, i.e., p(x0 ± k,y0 ± k) & p0. One can then

approximate the pressure distribution function locally with

Prðjr� r0j\k; pÞ ¼ dðp� p0Þ: Now, assume that we add

some roughness to the interface by adding a Fourier com-

ponent ~hðqÞ expðiq � rÞ to the roughness, where q = 2p/k. If

the amplitude ~hðqÞ is small, contact in the domain will

remain essentially perfect. This leads to a change of the local

stress, see Eqs. (18) and (19), according to

pðjr� r0j\kÞ � pðr0Þ þ
E�

2
q~hðqÞ expðiq � rÞ: ð30Þ

This means that in the vicinity of r0, there is no change of

the pressure, but there is a broadening of the pressure

distribution. In other words, the average pressure remains

p0, but the second moment increases from Dp2
old ¼ 0 to

Dp2
new ¼ Dp2

old þ jE�q~hðqÞ=2j2. One of the main

approximations of Persson theory is that the broadening

of the pressure distribution would be similar even if Dp2
old

were not zero. The pressure distribution then broadens

whenever we include roughness at smaller scales. Since the

broadening does not depend on pressure or location, the

total broadening, averaged over the entire contact, will then

be

Dp2 ¼
X

q

qE�

2

� �2

CðqÞ ¼ E�

2

� �2

�g2: ð31Þ

In the last step, we have made use of the fact that differ-

entiating (heights) in real space corresponds to multiplying

with wave vectors in Fourier space.

It is known from the law of large numbers that folding

distributions functions iteratively according to

PrnewðpÞ ¼
Z

dp0Proldðp0ÞTrðp0jpÞ ð32Þ

ultimately leads to a Gaussian, where Trðp0jpÞ is the

probability that the local pressure changes from p0 to p after

(additional) roughness is included in the calculation. As a

first approximation, one therefore finds PrðpÞ � exp½�ðp�
p0Þ2=2Dp2�=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDp2

p
for the pressure distribution.

The problem of having a single Gaussian is that negative

pressures have finite probability. However, we know that

negative pressures are not allowed for nonadhesive hard-

wall interactions. This problem can be solved by absorbing

into noncontact any part of the pressure distribution func-

tion that becomes negative (there, the pressure is set to

zero). If two surfaces do not touch when spatial features are

resolved down to wavelength k, they should not come back

into contact when roughness at even smaller wavelengths is

resolved. One can implement an absorbing boundary con-

dition, similar to the way how mirror charges are intro-

duced in electrostatics, by subtracting another Gaussian

from the original Gaussian:

Prðp [ 0Þ ¼
exp � ðp�p0Þ2

2Dp2

n o
� exp � ðpþp0Þ2

2Dp2

n o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDp2

p : ð33Þ

The effect of the mirror Gaussian is to implement the

boundary condition, while leaving the mean pressure �p ¼R
pdp Prðp [ 0Þ invariant, i.e., independent of Dp. Persson

finds Eq. (33) through a small detour by mapping the

integral equation for the broadening of the pressure dis-

tribution to a differential equation, which is isomorphic to

the diffusion equation. This detour, however, can be

avoided without loss of information.
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Equation (33) enables one to deduce the relative contact

area

ar ¼
Z 1

0þ
dp PrðpÞ ð34Þ

because any finite local pressure is interpreted as occurring

where the solids are in contact. The solution of the integral

reads

ar ¼ erf
p0ffiffiffi
2
p

Dp

� �
¼ erf

ffiffiffi
2
p

p0

E��g

� �
ð35Þ

¼
ffiffiffi
8

p

r
p0

E��g
þO p0

E��g

� �3
( )

: ð36Þ

Three properties of the solution are interesting to observe:

(1) it satisfies the finding of Sect. 2.3 that observables

should depend on external pressure divided by the product

of E* and �g but they should not depend on any other

dimensionless variable other than possibly H. (2) The

solution turns out to not depend on H for any value of p0.

(3) Corrections to the linear relationship between contact

area and pressure are only of order p0
3. This implies that

linearity between load and contact area should persist up to

at least 10 % contact. These predictions are confirmed by

Fig. 9.

Next, we wish to express the gap as a function of normal

pressure. For p0 !1, the mean gap tends to zero, while

the two surfaces touch in just one point for p0 = 0?. Given

the nature of our problem, there is a monotonic dependence

of the gap on load in between the two limiting cases of no

contact and full contact. This allows us to express the work

done by the pressure on the elastic manifold as follows:

1

A0

dUel ¼ �pð�uÞd�u ¼ �p
d�u

dp
dp; ð37Þ

where �u ¼ u0 þ ~uðq ¼ 0Þ denotes the displacement with

respect to some well-chosen reference point u0. We choose

u0 in such a way that it corresponds to the full contact at the

external pressure pref ¼ 1: Thus, if we knew Uel as a

function of p, we could obtain the displacement �u via

D�u ¼ �uðp0Þ � �uðprefÞ ¼
1

A0

Z pref

p0

dp00
1

p00

dUel

dp00
: ð38Þ

To solve for the elastic energy, Persson argues [25] that the

displacement field ~uðqÞ follows ~hðqÞ for the fraction of the

interface that is in contact at a resolution of q. Thus,

1

A0

Uel p0ð Þ ¼
E�

4

X
q

cðp0; qÞqj~hðqÞj2; ð39Þ

where

cðp0; qÞ ¼ arðp0; qÞ½cþ ð1� cÞa2
r ðp0; qÞ� ð40Þ

is an ad hoc helper function that approximates the depen-

dence of the elastic energy on the resolution-dependent

contact area ar(p0,q) in different pressure regimes. At low

external pressures, c(p, q) is proportional to ar(p0,q) while

at the complete contact it is equal to 1. The contact area

ar(p0,q) follows from Eq. (35) or (36) by confining the

evaluation of �g to wave numbers less than qs. An empirical

correction factor c has the value of the order of unity (a

value of 0.42 has been used in the literature [27, 37]) and

reflects the fact that the elastic energy stored in the contact

region is less than the average elastic energy for perfect

contact [27, 37].

Substituting Eq. (39) into Eq. (38) and assuming an

ideal self-affine surface characterized with the power

spectrum from the Eq. (8), after some algebra we obtain the

following expression for the mean gap D�u as a function of

the external pressure p0:

D�u ¼ hffiffiffiffiffiffi
2p
p

ffiffiffiffiffiffiffiffiffiffiffiffi
H

1�H

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� �2H
f

s

�
Zc

0

dk k2 þ 1
� 	1=ð2H�2Þ

"
cE1 x2
� 	
þ 3ð1� cÞ

�
Z1

1

erf txð Þ½ �2exp �t2x2
� 	 dt

t

#
; ð41Þ

where we have replaced the Fourier sum with a Fourier

integral. Other quantities in Eq. (41) are x �ffiffiffi
2
p

p0c=ðE��gkÞ; c2 : (1 - ef
2-2H)/ef

2-2H, and E1 is a

variant of the exponential integral given by

Ea xð Þ ¼
Z1

1

exp �tx½ �
ta

dt; ð42Þ

and available as a special function in standard libraries

(e.g., the Boost library for C?? [1]).

Equation (41) is not analytically tractable. However, in

future work, we will investigate c(p0,q) in more detail and

an expression might be found that allows to simplify the

integral further.

The pseudocode for computing Persson theory is as

follows:

– Specify the input parameters.

These mainly include the characteristics of the rough

surface.

– Express the input in the dimensionless form.

– Calculate the contact area using Eq. (35)

– Calculate the mean gap using Eq. (41).

Note that choosing a logarithmic mesh for the nested

integral to 1 in Eq. (41) will improve efficiency

without significant loss of accuracy. This effect can
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also be achieved through a variable substitution of the

form p ¼ p0 expðlÞ.

Appendix 2: A Review of Green’s Function Molecular

Dynamics

Green’s function molecular dynamics (GFMD) makes it

possible to calculate the response of a semi-infinite elastic

solid to external forces acting solely on the surface [7, 16]. It

can be described as a classical boundary value method,

which is solved with regular molecular dynamics. In prin-

ciple, it is possible to simulate natural dynamics. However, in

this work, we are only concerned with the static limiting case,

which is why we content ourselves with damped dynamics.

These should be set up in such a way that the static solution is

found in the quickest possible way. Using natural dynamics

would not be efficient, as these would suffer from critical

slowing down. The number of steps to reach equilibrium

would scale with the square of the linear dimension.

In principle, GFMD attempts the solution of Eq. (19).

However, the interfacial pressure is not known explicitly

but only implicitly through the boundary condition Eq. (1).

This implies that the curvature of the potential diverges

when the two surfaces start to overlap, which, in principle,

makes the use of an infinitely small time step necessary. In

the early days of molecular and computational fluid

dynamics, several strategies were designed for related

problems in the context of hard-disk interactions [3]. One

approach was to assign a coefficient of restitution to a

collision of two hard disks, which specifies how much of

the kinetic energy is conserved during a collision. For our

contact mechanics problem, we set this coefficient to zero.

In the following, we will describe how we implement

these dynamics and also describe all other main aspects of

our GFMD program in terms of pseudocode.

– Setup of rigid substrate

Assign uniform random numbers of zero mean and

finite variance for the real and imaginary parts of ~hðqÞ.
All ~hðqÞ are divided by q1?H. Next, heights are

transformed into real space. For this purpose, we use

the FFTW library [11]. We shift the elastic surface such

that it touches the rigid substrate in one (or more)

points without applying pressure (i.e., hmin = 0). The

largest height is then stored in hmax. RMS gradient and

RMS height are best evaluated in Fourier space.

– Setup of elastic top solid

Set all grid points to hmax and define this as a reference.

Initialize the damping g such that the slowest mode,

i.e., the center-of-mass mode is critically damped or

slightly underdamped. This can be achieved with g /

p=E��gL; unless ar is close to 0. When ar is close to 0,

we use g / p=E��gð Þa
ffiffiffiffiffiffiffiffiffi
b=L

p
, where a and b are the

parameters that depend on L and typically are found

empirically. Note that neither the mass nor the damping

should be made a function of wave vector if nonhol-

onomic boundary conditions are in place.

– Loop over time steps until converged

– Transform displacements into Fourier space

– Calculate elastic restoring forces
~FðqÞ ¼ �qðE�=2Þ~unowðqÞ

– Add external pressure
~Fð0Þ  ~Fð0Þ þ p

– Add damping forces
~FðqÞ  ~FðqÞ þ gf~unowðqÞ � ~uoldðqÞg

– Use Verlet to solve equation of motion

~unewðqÞ ¼ 2~unowðqÞ � ~uoldðqÞ þ ~FðqÞDt2

– Transform displacement into real space

– Implement the boundary condition

unewðrÞ  maxfunewðrÞ;�hðrÞg
– Assign uoldðrÞ  unowðrÞ

unowðrÞ  unewðrÞ
– Check termination conditions, e.g., that the contact

area, defined as the relative number of points

satisfying u(r) = -h(r), may not have changed in

many steps; kinetic energy of each individual mode

less than a threshold, etc.
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8. Campañá, C., Müser, M.H.: Contact mechanics of real vs. ran-

domly rough surfaces: a Green’s function molecular dynamics

study. Europhys. Lett. 77, 38,005 (2007)
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