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Abstract Formulae are derived from first principles

which predict the wear depth of a ball and a flat surface

through time as they slide against each other, in relation to

any phenomenological law for wear volume, and taking

into account the effect of component geometry. The

equations can be fit using experimental wear volume data

from ball-on-flat tribometers. The formulae remove previ-

ous limiting approximations made in the literature and

extend to the prediction of the wear depth of both con-

tacting surfaces. The wear model accords with a previous

model that is validated by pin-on-disc testing of a steel/

steel contact. The current paper uses the formulae derived

to predict the wear depth of a diamond-like carbon (DLC)

coating and a steel ball as they slide against each other in

deionised water. An Archard equation is used to predict the

wear volume of each surface; however, a DLC coating is

known to form a transfer layer which reduces the rate of

wear, and since this scenario does not obey Archard’s law

directly, a time-dependent-specific wear rate is used to fit a

semi-empirical model to experimental results. The final

model predicts the wear depth of the ball and flat

accurately.
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1 Introduction

Estimations of wear in real-life applications are often based

on experimental testing in the laboratory, under accelerated

test conditions and on idealised test geometries. Whilst

accelerated test conditions are necessary to provide data in

an allowable time frame, the use of an idealised geometry

such as a ball-on-flat contact may provide an erroneous

assessment of wear by disregarding geometric effects on

the evolution of wear depth, and as such care needs to be

taken in the interpretation of experimental data.

A common assessment of wear is Archard’s wear law [1,

2] that estimates the total volume of wear as a function of

sliding distance d and normal load N. Assuming that wear

occurs in hemispherical volumes at each asperity contact

that the contact pressure at an asperity contact equals the

yield pressure of the softer material, and that the area of

contact is a constant, Archard derived the following

expression for the wear volumewV of either surface.

wV ¼ kNd ð1Þ

In Eq. 1, the specific wear rate k is a constant which is

unique to every tribological scenario and material pair. In

the case of mild wear, the specific wear rate is usually

given over the range10�8 � 10�4mm3=Nm.

Archard’s wear law [1, 2] predicts linearity between the

volume of wear and the product of load and sliding distance,

but for many materials, this has been shown not to be the

case. For example, transitions between wear mechanisms or
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changes in surface chemistry may affect the evolution of

wear volume with respect to time. In the case of diamond-

like carbon (DLC) coatings, a transfer layer composed of

wear debris from the DLC coating is often known to adhere

to the counterface material, which limits contact between the

DLC coating and the counterface, thus lowering the specific

wear rate as the contact ensues [3].

An important consideration is that wear depth is

dependent on the area of contact between surfaces, and

whilst the microscopic wear volume of an asperity contact

may occur at some fixed pace according to a fundamental

wear law, the wear depth may vary non-linearly due to a

larger number of asperity contacts as the apparent contact

area increases. For example, in a pin-on-disc test, once the

head has worn away, the area of contact must remain

constant, and so linearity might be assumed between wear

depth and sliding distance, but in a ball-on-flat contact, the

area of contact will increase monotonically from the initial

Hertzian value upwards [4], and so a non-linear prediction

of wear depth with time may be more appropriate.

Prior to Archard’s estimation of wear volume in a tri-

bological contact [1, 2], Preston [5] suggested that the rate

of change of wear depth should vary proportionally to the

contact pressure P and the sliding velocity v. In Eq. 2, wD

denotes the wear depth of either surface, and k denotes the

specific wear rate.

dwD

dt
¼ kPv ð2Þ

In order to compare the wear models of Archard [1, 2]

and Preston [5], the relationship between wear depth and

wear volume must be known. In this paper, a general

formulation is considered where wear volume wV =

wV(wD, A) is written as a function of wear depth wD and

contact area A. The rate of change of wear volume (Eq. 3)

is then determined by two terms; the first is related to the

rate of change of wear depth, and the second is related to

the rate of change of the contact area (which is ignored in

the Archard and Preston formulations of wear).

dwV

dt
¼ owV

owD

dwD

dt
þ owV

oA

dA

dt
ð3Þ

If wear volume is considered to be a function of wear

depth only, i.e., the contact area is assumed to be a

constant, then the second term of Eq. 3 vanishes, and the

Archard and Preston formulations can be expressed in a

comparable rate form. Of course, in many real-life

applications and in many common test geometries such

as a ball-on-flat contact, the area of contact cannot be

assumed constant, and this has an effect on the prediction

of the wear volume of both surfaces.

For a range of component geometries, Kauzlarich and

Williams [6] presented an equation to link wear depth with

sliding distance for a ball sliding against a flat surface. For

a ball-on-flat contact, they assumed that the radius of the

wear scar was small in relation to the radius of the ball and

derived approximate relations for the wear depth of the

ball. They did not consider how the wear to the flat surface

would change as a result of the changing contact area,

which is a result derived later in this work. Furthermore,

Kauzlarich and Williams [6] highlight that wear depth does

not necessarily conform to a linear relationship with sliding

distance and that the effects of geometry on the wear depth

must not be ignored.

Departing from the formulation described above, the

present paper provides formulae to link wear depth with

wear volume of a ball-on-flat contact according to some

fundamental law such as Archard’s wear law, based on no

underlying assumptions other than the surfaces wear uni-

formly, and obey the governing law to predict wear vol-

ume. The proposed formulation removes the asymptotic

approximation made in the work of Kauzlarich and Wil-

liams [6] that the radius of the wear scar is small in relation

to the radius of the ball. Additionally, the phenomenolog-

ical model is extended to predict the wear depth of the flat

surface as a function of the contact area.

The outputs from the wear model derived can be com-

pared to experimental data to assess the fit of the wear

law—and in this manner, confidence can be placed in the

experimental outputs from testing. The wear model derived

in the next section to predict the wear depth of the ball is

shown to compare favourably to the work of Kauzlarich

and Williams [6] who validated their model against

experimental data from pin-on-disk testing of a steel/steel

contact [7]. The derived wear model in our work is

extended further to predict the wear depth of the flat sur-

face. Experimental data from the ball-on-flat contact of a

Fig. 1 A schematic of a ball-on-flat contact. The wear depth of the

ball wD,Ball and the wear depth of the flat surface wD,Flat are labelled,

as are the geometric parameters (namely stroke length l, contact

radius a, ball radius r, and contact area A). Dashed lines represent the

original unworn geometry
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DLC coating as it slides against an AISI 440C steel ball in

deionised water are used to validate the model. Since the

wear of a DLC coating does not obey Archard’s wear law

due to the growth of a carbonaceous transfer layer, a time-

dependent-specific wear rate is used to predict the wear

depth of both surfaces.

2 Derivation of the Equations

A schematic of a ball-on-flat contact including the relevant

geometric parameters is shown in Fig. 1. For a ball sliding

against a flat surface, the actual wear volume of the ball

wV,Ball can be given as a function of the wear depth of the

ball wD,Ball and the contact radius a, by the spherical cap

formula [8], as follows.

wV;Ball ¼
pwD;Ball

6
ð3a2 þ w2

D;BallÞ ð4Þ

Similarly, the wear depth of the ball can be written as a

function of the radius of contact a and the radius of the ball

r [8].

wD;Ball ¼ r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a2
p

ð5Þ

In this manner, wear depth and wear volume of a ball

may be related using geometric parameters. Assuming that

the initial contact radius a0 is Hertzian [4] (where E* is the

reduced modulus, given as a function of the Young’s

modulus E and Poisson’s ratio m of the ball and flat

surfaces),

a0 ¼
3Nr

2E�

� �1=3

1

E�
¼ 1� m2

Ball

EBall

þ 1� m2
Flat

EFlat

� �

ð6Þ

And that the average contact pressure may be given as a

ratio of normal load to contact area;

P ¼ N

A
¼ N

pa2
ð7Þ

Then, through substitution of Eqs. 4, 5, and 7 into Eq. 3,

the following first-order non-linear ordinary differential

equation is derived for the contact radius.

da

dt
¼ dwV

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a2
p

pa3
ð8Þ

This equation describes the rate of change of contact

radius a as a product of the rate of change of wear volume

wV (determined by experiments and provided by a

phenomenological law such as Archard’s wear law) and a

function determined by geometric considerations. The

same differential equation may be derived from either the

Archard or Preston formulation of wear. Using Eqs. 4 and

5, the wear depth and wear volume of the ball can be

extracted once a is known.

An analytical solution for the contact radius may be

found for Eq. 8. Integrating with respect to time yields the

general solution to the differential equation, where wV is

estimated using Archard’s wear law, or some equivalent

phenomenological wear law [9].

�p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a2
p

ða2 þ 2r2Þ ¼ wV ð9Þ

Equation 9 can be rearranged to give the contact radius

explicitly in terms of geometric parameters and the wear

volume of the ball.

a ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1=3 þ n�1=3 � 1

q

n ¼ 1� 3wV

2p2r6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9w2
V � 4p2r6

q

þ 3wV

� � ð10Þ

Supposing thatwV ¼ kNvt þ C (using Archard’s wear

law), where C is the initial volume shrinkage of the sphere

(due to elastic deformation), then based on the initial

conditions (Eq. 6), the constant C is given as follows:

C ¼ �p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a2
0

q

a2
0 þ 2r2

� �

ð11Þ

Using the theory developed here, the wear volume and wear

depth of the flat surface can also be evaluated. Assuming that

the area of the wear scar is given by the product of the stroke

length and the contact diameter, then the wear volume of the

flatwV;Flatand the average wear depth of the flatwD;Flatcan be

related by Eq. 12, where l denotes the stroke length.

wV;Flat ¼ 2alwD;Flat ð12Þ

The wear depth of the flat surface wD,Flat may be

expressed in terms of a measured experimental wear

volume WV.

wD;Flat ¼
WV

2al
ð13Þ

Estimation of the wear volume of the flatWVallows for

extraction of wear depth of the flat surface as a function of

time taking into account the changing contact area

according to Eq. 13. The advantage of this new theory

for the wear depth of each surface is that from a single test

run from which wear volume may be calculated, the theory

allows for an entire description of wear depth as a function

of time which is of great importance to the design engineer

interested in changes in tolerance.

3 Results

Consider the reciprocating contact of a DLC coating and a

6-mm diameter AISI 440C steel ball at a 5 N load and
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0.02 m/s sliding velocity over a 2 mm stroke. Wear vol-

ume data have been collected at 120, 600, 1,200, 1,800,

2,400, 3,000, and 3,600 s. The specific wear rate after

120 s (averaged from the two data points at this time) was

calculated to be 1:75� 10�6mm3=Nm for the DLC coat-

ing, and 2:05� 10�6mm3=Nmfor the ball, using Eq. 1, and

this is used as an input to the wear model described in the

previous section.

Figure 2 shows the predicted contact radius (Eqs. 10

and 11), contact pressure (Eq. 7), wear depth and wear

volume of the ball (Eqs. 4 and 5), and wear depth and

volume of the flat surface (Eqs. 12 and 13), as a function of

time, based on the initial specific wear rate at 120 s. The

results are compared to the analytical results of Kauzlarich

and Williams [6].

The contact radius (top-left) is predicted by the new

model to increase from the initial Hertzian value of

46.5–187 lm after 3,600 s. The model of Kauzlarich and

Williams [6] shows a near identical prediction to our model

in this case since the assumption that the contact radius is

small in relation to the radius of the ball is valid. Since our

model compares well with the Kauzlarich and Williams

model under different load and sliding velocity—and the

Kauzlarich and Williams model was validated against the

general case of a steel/steel contact—we can conclude that

our model is validated in the general case of a steel/steel

contact. Indeed, the model can be trusted in any ball-on-flat

contact, which obeys Archards wear law.

In the context of the DLC coating/steel contact, the

experimental data for the contact area match the model

well initially, but deviate as the test time increases. This is

suggested to be due to the growth of a carbonaceous

transfer layer as is known for DLC coatings [10] which

reduces wear to both surfaces. As a result of the changing

contact area, the contact pressure (top-right) is shown to

decrease from an initial Hertzian value of 0.73 GPa to a

final value of 0.05 GPa after 3,600 s.

The wear depth of the ball (middle-left) is predicted by

the new model to be 5.84 lm after 3,600 s. The model

overestimates the wear depth considerably, when compared

to the average experimental value of 3.1 lm. The model

fits the data well initially, however. Similarly, the wear

volume of the ball (middle-right) is overestimated by the

new model (since this is directly related to the wear depth).

A final wear volume of 3:21� 10�4mm3is predicted by the

new model, in comparison with the experimental obser-

vation of 0:93� 10�4mm3.

The prediction of wear volume and wear depth of the

ball by the model of Kauzlarich and Williams [6] is the

same as the prediction of the new model. However, the new

model can be extended to predict the wear depth of the

DLC coating also. The wear depth of the DLC coating is

Fig. 2 Contact radius (top-left),

contact pressure (top-right),

wear depth of the ball (middle-

left), wear volume of the ball

(middle-right), wear depth of

the DLC coating (bottom-left),

wear volume of the DLC

coating (bottom-right), plotted

as a function of time. The black

line represents the numerical

solution, the red asterisks

represent the model of

Kauzlarich and Williams (K &

W) [6], and the black circles

represent experimental data.

Error bars are shown by black

vertical lines and represent the

error in measurement (Color

figure online)
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predicted by the new model to be 0.20 lm after 3,600 s,

whereas physical tests suggest that it is approximately half

of this in reality. Similarly, the wear volume of the DLC

coating is overpredicted by the new model in the latter part

of the test. Again, this is suggested to be due to the growth

of a transfer layer in the contact.

An observation from the model presented in this work is

that the wear depth of the ball is initially calculated to be

non-zero (0.36 lm) by Hertzian calculations, and this is

due to the elastic deformation of the ball in which Eq. 5

interprets as wear (since the contact width is non-zero

initially). The supposed wear depth of the ball calculated

by the differential equation is actually a sum of the wear

depth plus the elastic deformation of the ball. Since the

elastic deformation of the ball tends to be zero as the

pressure tends to be zero, this approximation becomes less

important as the test goes on.

The wear model is able to predict the wear depth and

wear volume of a ball and a flat surface as they slide

against each other. However, an input to this model is the

specific wear rate of each surface, which must be calcu-

lated directly from experiments, and an issue arises in the

context of DLC coatings since the experimental specific

wear rate varies with time, and as such the Archard-based

wear model cannot predict the evolution of wear accu-

rately. A physical interpretation for this is thought to be

related to the growth of a transfer layer—which is known

to reduce the specific wear rate of a DLC coating [3, 10].

For example, if the development of a transfer layer pre-

vents contact between the DLC coating and steel—then the

contact develops from a DLC coating/steel contact with a

high-specific wear rate to a DLC coating/transfer layer

contact with a low-specific wear rate as the transfer layer

grows across the contact. To account for the growth of a

transfer layer during the wear of a DLC coating against

steel, the model can be extended to include a non-constant-

specific wear rate. This extension is also of interest in a

general case for any tribological scenario when Archards

wear law does not hold, for example due to a transition

between wear mechanisms or due to chemical changes at

the interface.

4 Extension to a Time-Dependent Specific Wear Rate

A general case where the specific wear rate depends on

time is considered. If wear volume is estimated by Ar-

chard’s wear law [1, 2] and the specific wear rate is given

as k ¼ kðtÞ, then the differential equation for contact area

(Eq. 8) can be written as follows.

da

dt
¼ Nv k þ dk

dt

� �

t

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a2
p

pa3
ð14Þ

A numerical solution to Eq. 14 will yield estimations of

the wear depth and wear volume of a ball and a flat surface

(using Eqs. 4, 5, 12, and 13). The numerical solutions

presented in this paper have been obtained using the

implicit scheme ode 15 s in MatLab R2012a (MathWorks

Inc., Natick, MA, USA).

The functional form that is chosen for the specific wear

rate is conditioned by the experimental findings. It may be

the case that a constant specific wear rate is found for tests

of varying sliding distance, suggesting that the analytic

results of the previous section are sufficient to describe the

evolution of wear. For more complex cases, where the

specific wear rate is a function of time, it must be

emphasised that care needs to be taken when choosing a

functional form for k(t), especially when only a few data

points are available. Table 1 considers two special cases

for k(t). In these cases, care must be taken when extrapo-

lating the data—since a negative gradient may lead to

unrealistic negative wear rates.

Figure 3 shows how the specific wear rate varies with

time for both the steel ball and DLC-coated flat surfaces. A

linear regression (black line) and an exponential regression

(red line) are used to fit the model to the data. For both the

ball and flat surfaces, an exponential curve provides the

best fit.

The wear model can now be fitted to the data, by

numerically solving the appropriate ordinary differential

equation (Eq. 14) using an exponential form for k. Figure 4

shows the numerical solution of the new (semi-empirical)

wear model (black line) fitted to the experimental data

(black circles). The change in contact radius (top-left) fits

very well with the experimental data, predicting a final

contact radius of 139 lm suggesting a mean contact pres-

sure of 0.08 GPa. The final wear depth of the ball is pre-

dicted to be 3.23 lm in comparison with the observed

average of 3.20 lm from the experiments. The depth of the

DLC coating wear scar is estimated as 0.093 lm in com-

parison with the observed average of 0.11 lm from the

experiments.

Table 1 Two special cases of Eq. 14, for linear and exponential

specific wear rates

Functional form Contact area temporal gradient

Linear, k(t) = a1t ? a2 da

dt
¼ Nv 2a1t þ a2ð Þ

ffiffiffiffiffiffiffiffiffi

r2�a2
p

pa3

Exponential, kðtÞ ¼ b1eb2 t da

dt
¼ Nvb1 1þ b2tð Þeb2 t

ffiffiffiffiffiffiffiffiffi

r2�a2
p

pa3
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5 Conclusion

• The Archard and Preston formulations were generalised

to include the change in contact area as the ball-on-flat

test progressed. An equation was derived (Eq. 10) to

predict the change in contact radius with time for any

phenomenological wear law. From this, wear depth and

wear volume of a ball and a flat surface were extracted.

Fig. 3 Specific wear rate

(SWR) plotted as a function of

time for the ball (left), and the

DLC coating (right).

Experimental data are indicated

by blue circles. The linear

regression is given as a black

line, and the exponential

regression is given as a dashed

red line (Color figure online)

Fig. 4 Contact radius (top-left),

contact pressure (top-right),

wear depth of the ball (middle-

left), wear volume of the ball

(middle-right), wear depth of

the DLC coating (bottom-left),

wear volume of the DLC

coating (bottom-right), plotted

as a function of time. The

specific wear rate of the ball and

flat surfaces is assumed to

decrease exponentially. The

black line represents the

numerical solution, and the

black circles represent the

experimental data. Error bars

are shown by black vertical

lines and represent the error in

measurement
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• Experimental tests of an AISI 440C steel ball against a

DLC coating showed that the original model with a

constant specific wear rate did not predict the wear

accurately. This was due to the assumption that the

specific wear rate was constant, whereas experimen-

tally, the specific wear rate was observed to vary with

time. This was due to the formation of a transfer layer,

the effects of which are not included for in Archard’s

wear law.

• Assuming a specific wear rate varies in time, and an

exponential model was fitted to the data for the ball and

flat surfaces based on experimental observations. Wear

volumes and wear depths were predicted accurately as a

result with less than a 5 % deviation from the

experimental data. The assumption that the specific

wear rate varies in time may, in a general case, be due

to a transition between wear mechanisms or due to

chemical changes.

• The model features a high degree of modularity as it

can accommodate arbitrary functional forms to calcu-

late wear volume. It is hoped that the flexibility of the

model presented in the paper will be exploited by

tribologists to further put its descriptive and predictive

power to the test.

• Care should be taken when fitting functional forms for

the specific wear rate. Critically, a need for several data

points was highlighted to allow confidence in the choice

of fitting a functional form for the specific wear rate.

• Possible extensions to this work include a consideration

of a line contact or elliptic contact, following a similar

methodology to the point contact discussed in this

work.
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