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Abstract We present the calculation results of optimal

texture geometries which maximize the supported load for

a three-dimensional thrust bearing pad. By making use of

the recently developed mean field theory of texture

hydrodynamics, we develop an efficient multigrid optimi-

zation procedure based on the sequential genetic and con-

jugate gradient optimization. We show that our model

allows to determine optimal solutions based on a two-scale

hierarchy of structures, and the existence of particularly

effective optimal geometries is presented and discussed.

Keywords Texture hydrodynamics � Laser surface

texturing � Bearings � Flow factor � Slip length �
Friction

1 Introduction

The interaction between solids, of interest for the tribolog-

ical problem, usually occurs in a range of length scales from

the macroscopic representative size of the contact (e.g., an

Hertzian length, or a bearing nominal contact length for

conforming contacts) to the atomic level. In between, it

includes the length scales corresponding to the hierarchy of

defects (structural, materials inhomogeneity, etc.) com-

monly available at the interface. By simply restricting our

attention to the classical mechanical aspect of a contact, we

note that even when those defects are not initially covering

the surface, their mesoscale is created as a consequence of

wear (in this case permanently) or, in wearless processes as

lubricated contacts, simply as a consequence of the gap

formation. The reason why this happens in the contact of real

solids is that the physics occurring at the mesoscale is nee-

ded to bridge the gap between the atomic (where, e.g.,

friction originates) and the macroscale (where friction is

experienced and the motion is imposed). This aspect, in its

different outcomes, has been increasingly featured in the

wide tribological research of the recent years [1, 2].

Among others, a relatively recent research field involves

wet sliding interfaces whose superficial properties are

created according to an ordered (periodic) scheme of added

defects. In the most common case, those defects are simple

microstructural modifications as holes or grooves, e.g.,

produced with the so-called laser surface texturing (LST)

[3, 4]. They are created with the purpose of manipulating

the macroscopic friction and load support characteristics of

a generic contact pair. However, we have recently theo-

retically shown that tailored contact characteristics can be

gained not only with the physical (i.e., structural) surface

texturing, but also with the chemical modification of sur-

faces (i.e., by adding a slippage texture) [5, 6]. In partic-

ular, we made use of a mean field theory of texture

hydrodynamics (BTH [5]) for the description of the aver-

age flow dynamics induced by the texture. The BTH is

based on the homogenization of the Reynolds flow (i.e., the

lubrication approximation) within the Bruggeman effective

medium (BEM) approach. The theory allows to determine

the average flow dynamics at the contact interface in terms

of flow and shear stress tensorial factors, which can be

analytically calculated as a function of the texture lattice

characteristics (e.g., the area density, lattice constants), as

well as of the hole depth, shape, etc. The theory can also

take into account local slip lengths at the sub-texture scale,

as well as a viscosity texturing. In a recent paper, the theory

has been intensively tested in comparison with ad hoc

numerical calculations [7] as well as with the results of
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independent investigations [5–7], demonstrating its real

suitability to accurately model the texture hydrodynamics

problem.

In this paper, we make a step forward in the compre-

hension of the latter problem and, in particular, we focus on

the macroscopic contact conditions given by a single thrust

bearing pad (of finite size) in the parallel sliding configu-

ration, see Fig. 1 for the schema. We will make use of the

BTH theory, coupled with an ad hoc resolution strategy, to

investigate the optimal texture characteristics which max-

imize the supported load. Different in-plane micro-geom-

etries (e.g., circular or striped) as well as combinations of

structural and slippery texturing will be used, for the first

time, in a stepped and comprehensive discussion on the

optimal surface modifications allowing to maximize the

load. The paper is outlined as follows. In Sect. 2, for

completeness, we briefly summarize the BTH theory [5],

with particular emphasis on the case of circular defects

arranged in a squared lattice (Sect. 2.1) and on the striped

defects (Sect. 2.2). Then, the BTH is applied to the case of

textures constituted by circular or striped defects, both

when the micro-defect is structural (Sects. 3.2–3.4), slip-

pery (Sect. 3.5), and structural/slippery (Sec. 3.6). A brief

description of the numerical approach is given in the

‘‘Appendix’’.

2 Summary of the BTH Theory

Here, we summarize the BEM-averaged ([8–10]) texture

hydrodynamics theory [5]. We consider the case of a

generic-textured surface in relative steady sliding on a

smooth mating substrate, see e.g., the schematic of Fig. 3,

in the hydrodynamic regime. The lubrication is assumed to

occur under isothermal and cavitation-free conditions

(however, as recently shown [6], local states of micro-

cavitation occurring in a reduced fraction of the contact

domain are expected to only marginally affect the model

results). In the lubrication approximation, the local (texture

scale) hydrodynamics occurring in the representative ele-

mentary volume (REV) of interface can be homogenized

with the BEM approach, resulting in the effective lubri-

cation equation given by:

r � �K xð Þrp xð Þ þ C xð ÞUm½ � ¼ 0; ð1Þ

where p xð Þ is the (locally averaged) fluid pressure, Um the

mean surface velocity, K xð Þ is the effective hydraulic

conductivity tensor and C xð Þ is the effective shear flow

conductivity tensor, which are functions of the texture

characteristics. In particular, K and C are determined from

the tensorial relations [5]:

dK Iþ E0dKð Þ�1
D E

¼ 0 ð2Þ

dK Iþ E0dKð Þ�1
dK�1dC

D E
¼ 0; ð3Þ

where the notation /h i corresponds to /h i ¼
P

i ci/i,

and where ci is the texture area density of the generic ith

component /i. Moreover, dK ¼ Ki � K and

dC ¼ Ci � C, where Ki and Ci are the hydraulic and

shear flow conductivity tensors of the generic ith com-

ponent, respectively. In this work, we make use of a

two-component system, i.e., a texture made of the base

material (component of subscript-hf) and the hosted

defect (component of subscript-h, circular or striped and

characterized by a structural and/or slippage property,

see Fig. 2).

For the defect, the conductivities are constant and iso-

tropic, resulting into Kh ¼ Iahh3
h= 12gð Þ and Ch ¼ Ibhhh,

where g is the lubricant viscosity, hh the defect height, I the

identity matrix, lh is the local Navier slip length, and:

ah ¼ 1þ 3
lh=hh

1þ lh=hh

bh ¼ 1þ lh=hh

1þ lh=hh

:

Similar relations hold for the hosting medium (the base

material), where the subscript -h has to be substituted with

-hf. Moreover, the tensorial factor E0 has to be calculated

for each component [5], being a function of (1) the

inclusion shape and orientation, and of (2) the same

effective hydraulic conductivity tensor K. Finally, the

effective shear stress acting on the unstructured surface

reads [5]:

Fig. 1 A generic conformal contact (e.g., a thrust bearing pad, as in

the schema) subjected to a partial surface texturing. The texture is

characterized by an ordered and locally homogeneous lattice of small-

scale defects, which in the most general case can be structural defects

(e.g., holes, pillars, grooves, ridges, etc.), slippery defects (e.g.,

elliptic slippage areas, slippage strips, etc.), or even micro-domains

where the fluid viscosity is modified with respect to a nominal value.

Combinations of the previous mechanisms, e.g., slippery holes, can be

modeled as well
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sh i ¼ g=g0

hþ l

� �
g0v0

þ v0

4
h 1þ l

hþ l

� �
I� Iþ E0dKð Þ�1
h i

dK�1dC

� �

þ 1

2
h 1þ l

hþ l

� �
Iþ E0dKð Þ�1

� �
rp;

ð4Þ

where g0 is a reference fluid viscosity (e.g., the low-pres-

sure low-shear viscosity value), and where v0 = 2Um is the

velocity of the lower moving untextured surface, see

Fig. 3.

2.1 The Flow and Shear Stress Factors for Circular

Inclusions in Isotropic Medium

We consider the case of circular defects embedded in an

isotropic base conductivity tensor, as it occurs in the case

of square grid lattice. In such a case, for both components,

we have the following:

E0 ¼
1

2k
I; ð5Þ

where k is the effective hydraulic conductivity of our

resulting isotropic interface. By defining the texture area

density as ph ¼ pd2= 4l2ð Þ, where l is the lattice constant

and d the defect diameter, from Eqs. (2) and (5), we get the

following:

k� ki

kþ ki

� �
¼ 0: ð6Þ

Since for the defect ki ¼ kh ¼ ahh3
h= 12gð Þ and for the

hosting substrate ki ¼ khf ¼ afh
3
f = 12gð Þ, and by

considering a reference hydraulic conductivity

ks ¼ h3
f = 12gð Þ, by manipulating Eq. (6), we get the

following:

~k ¼k=ks ¼ 2ph � 1ð Þ
~kh � af

2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2phð Þ2 ~kh � af

	 
2

þ4af
~kh

r
;

ð7Þ

where ~kh ¼ kh=ks ¼ ahh3
h=h3

f in the case of constant fluid

viscosity. Moreover, from Eq. (3), the effective Couette

conductivity c can be determined as follows:

ci � c
ki þ k

� �
¼ 0; ð8Þ

where for the defects ci = ch = bhhh and for the hosting

substrate ci = chf = bfhf. Considering a reference

conductivity cs = hf, by manipulating Eq. (8), we get the

following:

Fig. 2 Schema of a two-

components system with

highlighting of the lattice cell.

One component is the circular

(or striped, shown elliptical in

the figure) defect, whereas the

other is the untextured base

material

z

u(x)

x v0

Fig. 3 A surface-textured solid (block) in contact with a rigid solid

(substrate) with the untextured surface. The substrate moves with the

velocity v0, while the block is stationary. The schematic is not equally

scaled along horizontal and vertical directions
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~c ¼ c=cs ¼
~chph af þ ~k

	 

þ bf 1� phð Þ ~kh þ ~k

	 


ph af þ ~k
	 


þ 1� phð Þ ~kh þ ~k
	 
 ; ð9Þ

where ~ch ¼ ch=cs ¼ bhhh=hf . The effective Reynolds

Eq. (1) simplifies then into

r � ~k
h3

f

12g
rp

� �
¼ r � ~chfUm½ �; ð10Þ

where it is clear that ~k and ~c corresponds to the pressure

and shear flow factors for circular inclusions, respectively

(and isotropic lattice).

Finally, the BEM-averaged shear stress acting on the

untextured surface, see Fig. 3, reads

sh i ¼ /fsg0

v0

hf

þ /fp

1

2
hfrp; ð11Þ

where v0 is the sliding velocity of the lower moving

untextured surface, and where the pressure /fp and sliding

/fs shear stress factors, at constant viscosity, are given by:

/fp ¼ 2~k
~ci

~kþ ~ki

� �

/fs ¼ 2� bið Þbi~c
�1
i þ 3~ci

~ci � ~c
~ki þ ~k

� �
:

Note in the calculation of the shear stress factors that no

new variables are introduced more then a combination of

the previously calculated flow factors.

It is always useful to compare the BTH predictions with

those available in the literature. In particular, in Fig. 4, we

compare the results of Eq. (10) (solid red curves), in terms

of nominal film thickness as a function of the applied

normal load, with the numerical (solid black curves) and

experimental (dashed curves) results reported in Ref. [11]

for the case of partially textured thrust bearings. For the

contact details, the reader is remanded to the same Ref.

[11]. Observe that our predictions are in excellent agree-

ment with those of the independent investigation [11]. The

same agreement is confirmed in the comparison of Fig. 5,

where we show, for a partially textured thrust bearing, the

nominal film thickness (top) and the friction torque (bot-

tom) as a function of the angular speed, as determined from

the BTH (red dots), and from the numerical and experi-

mental results of independent investigations [12].

2.2 The Flow and Shear Stress Factors for Striped

Inclusions

We consider now the case of striped defects, with major

direction aligned along an angle / = p/2 with the refer-

ence (transversal texture). In such a case, we have for both

components E0xx = k1
-1, E0yy = E0xy = 0 [5], where k1

and k2 are the effective hydraulic conductivities along the

x1- and x2-axis, respectively (note: The effective hydraulic

conductivity tensor is principally valued in the adopted

reference). Moreover, from Eq. (2), we have the following:

Fig. 4 Nominal film thickness as a function of the applied normal

load (solid red curves) compared with the numerical (solid black

curves) and experimental (dashed curves) results reported in Ref. [11].

For the case of partially textured thrust bearings (Color figure online)

Fig. 5 Nominal film thickness (top) and friction torque (bottom) as a

function of the angular speed. BTH predictions (red dots) are

compared with both numerical and experimental results from

independent investigations [12]. For a partially textured thrust

bearing (Color figure online)
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ki � k1

ki

� �
¼ 0

ki � k2h i ¼ 0;

and after some algebra we get the following:

1

~k1

¼ 1� ph

af

þ ph

~kh

ð12Þ

~k2 ¼ ph
~kh þ 1� phð Þaf ; ð13Þ

where as before ~k1 ¼ k1=ks and ~k2 ¼ k2=ks. From Eq. (2),

the principal shear flow factors can also be determined:

ci � c1

ki

� �
¼ 0

ci � c2h i ¼ 0;

where c1 and c2 are, respectively, the effective shear flow

conductivities along the x1- and x2-axis. After some algebra,

~c1 ¼ ~k1 ph

~ch

~kh

þ 1� phð Þ bf

af

� �

and

~c2 ¼ ph~ch þ 1� phð Þbf ;

where ~c1 ¼ c1=cs and ~c2 ¼ c2=cs. Finally, the BEM

homogenized shear stress acting on the lower moving

untextured surface (sliding at the velocity v0) reads

s ¼ ~Ufsg
v0

hf

þ hf

2
~Ufprp;

where we have the pressure gradient correction tensor ~Ufp :

~Ufp ¼ ~C;

where ~C has been shown before (i.e., ~C11 ¼ ~c1 and
~C22 ¼ ~c2). The sliding correction tensor ~Ufs :

~Ufs ¼ ph

2�bhð Þbh

~ch

þ 1� phð Þ 2�bfð Þ
� �

I

þ 3 ph

~ch

~kh

~ch� ~c1 0

0 0

� �
þ 1� phð Þbf

af

bf � ~c1 0

0 0

� �� �
:

The reader is kindly remanded to Ref. [7] for an extensive

discussion on the BTH for striped inclusions. It is also

implicitly understood that in case of striped texture una-

ligned to form a transversal texture, the effective conduc-

tivity tensors as well as the frictional tensors have to be

rotationally transformed.

3 Application to Plain Bearings: Optimal Texture

to Maximize the Load

In this section, we characterize the problem of texture

optimization targeted to maximize the load support in

thrust (plain-) bearing geometries. Observe, however, that

the mean field theory as well as the developed numerical

scheme (see the ‘‘Appendix’’) is not restricted in their use

to the thrust bearing geometry, i.e., the model requires only

cosmetic modifications when applied to other macro-con-

tact geometries. We assume a steady sliding contact

occurring under the iso-viscous rigid lubrication regime

and isothermal conditions. Moreover, we focus on the

single pad geometry, as shown in the schematic of Fig. 6.

The mean field lubrication is described by Eq. (1), whereas

the flow and shear stress tensors, which locally depend on

the applied texture, are reported in Sects. 2.1 and 2.2.

In Table 1, we summarize the texture schemes adopted

in the calculations. For the reasons we show in the fol-

lowing, the circular shape will be used only for the

microstructural texturing, whereas the striped geometry,

respectively, with (optim. dir.) and without (fixed dir.) the

optimization of the strip direction, will be used for both

microstructural, micro-slippery, and combined structural/

slippery texturing.

As previously described, the slippage has been charac-

terized by a Navier’s slip length l. In this work, l = 0 in the

case of no-slip, whereas l is set to 1 in the case where a

slippage texture is adopted. In reality, of course, the slip

length will have a finite value, but this is unimportant for

the present discussion.

The numerical procedure, reported in the ‘‘Appendix’’,

is here briefly summarized. Eq. (1) is solved (with

Fig. 6 Schematic of the single pad geometry

Table 1 Texture schemes adopted in the calculations

In-plane geometry

Circular Striped

(fixed dir.)

Striped

(optim. dir.)

Structural x x x

Slippery x

Structural\slippery x
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Cauchy’s boundary conditions), and the texture (in terms of

effective conductivities) is optimized at different degrees

of mesh refinement; in particular, at the coarsest level, the

texture is optimized recurring to a genetic algorithm (GA),

which allows to avoid local maximums to be selected. At

successive finer meshes, the texture is refined recurring to a

conjugate gradient (CG) optimization. The final texture

result is a map describing the (locally averaged) structural,

slippery, and in-plane shape properties (e.g., the direction

of the strip) to be realized on the pad. In the following,

however, we first calculate (optimized) Akers’ pad geom-

etries to be used as reference for the successive optimal

texture calculations.

3.1 Optimized Untextured Plain Bearings: The Akers’

Geometry for Different Pad Aspect Ratios

In this section, we determine the optimal pad geometry

which maximizes the load in the case where a structural

modification, obtained with an uniform material remotion,

is applied on the pad. The pad geometry is expected,

therefore, to resemble the classical Akers’ construction

[13]. Since (in this case) no texture is used, the flow factor

tensors in Eq. (1) are simply identity matrices, resulting in

the well-known Reynolds equation. The latter is made

dimensionless in the in-plane lengths with B (half of the

pad width, see Fig. 6), in the vertical lengths with hf (the

nominal separation), and in the pressures with

p� ¼ 12gBUm=h2
f , resulting in

o

ox1

h3 op

ox1

� �
þ o

ox2

h3 op

ox2

� �
¼ oh

ox1

:

For each value of the bearing aspect ratio L= 2Bð Þ it is then

possible to determine the distribution of material remotion

which maximizes the supported load N. As a reference, we

have used the load supported by the optimal Akers’

geometry for the square-sized bearing pad NA [13]:

NA ¼ 0:124gv0 2Bð Þ3h�2
0 ;

where 2B is the side length. Due to the simplicity of the

problem, the adopted optimizer at all grid scales has been

chosen to be the CG.

In Fig. 7, we thus show the normalized load factor We ¼
N=L½ �= NA= 2Bð Þ½ � as a function of the pad aspect ratio

L= 2Bð Þ, as obtained with the found optimal pad geomet-

rical configuration. N/L as well as NA= 2Bð Þ are propor-

tional to the average pressure value at the interface and,

therefore, represent the effective load generation capability

to be used in comparison between different pad aspect

ratios. Note that for 2B/L = 1, We = 1. For increasing

aspect ratios, the support capability increases up to the 30

% with respect to the square (Akers’) geometry which,

therefore, is not the optimal solution for the pad. However,

a further increase in the aspect ratio, after a certain plateau,

drastically reduces the optimal load.

The optimal geometries, corresponding to the inserted

numbers of Fig. 7, are shown, respectively, from Fig. 8a–f.

First, observe that the geometry reported in Fig. 8a shows a

load support equal to NA, despite the numerically opti-

mized and the Akers’ geometry (see Ref. [13]) do not

exactly match. Indeed, our solution does not present a

stepped variation of the gap (as for the Akers’ pad), and

this suggests that the lubrication problem is not particularly

affected by the exact solution close to the borders of the

middle-scale structures created inside the domain. Note

also that the maximum gap in the worked areas (red dots in

the figures) increases by increasing the aspect ratio,

reaching the value of hh/hf = 3.3 in correspondence of the

highest load optimal geometry (given by 2B/L&2/5). By

further increasing the aspect ratio, Fig. 7 shows a plateau in

the optimal load. The reason why this occurs can be easily

understood by observing Fig. 8e and f. Indeed, by

increasing the aspect ratio, the optimal solution is con-

structed by naturally replicating the optimal geometry of

Fig. 8d along the sliding direction, in order to minimize the

side leakages. This, however, is not as efficient as it could

be imagined, since the optimized geometry placed at the

pad outlet (see Fig. 8e) already receives only a fraction of

the inlet flow, due to the side leakage occurring in the front

gap. However, while for 2 consecutive gaps, this combi-

nation still produces normal load (the plateau in Fig. 7), for

increasing aspect ratios, the lubrication occurs clearly

starved in the average.

The pressure field corresponding to the optimal geom-

etry (2B/L & 2/5) is shown in Fig. 9. As it might be

expected, the latter geometry makes an efficient use of its

nominal area, since the fluid pressure raises in almost the

entire pad domain.

1

2
3

4 5

We

N

L

2 B

NA

for ph 1

0.2 0.4 0.8 1.6 5 10 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L 2B

W
e

Fig. 7 Normalized load factor We ¼ N=L½ �= NA= 2Bð Þ½ � as a function

of the pad aspect ratio L= 2Bð Þ, as obtained with the calculated optimal

pad geometrical configuration. The inserted numbers indicate the

optimal solutions shown in Fig. 8a–f
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3.2 Optimization with Circular Structural Texturing

In this section, the circular defect is investigated in terms of

structural texturing. The free variable (to be optimized

along the contact domain) is the hole ratio hh/hf. The tex-

ture area density ph, instead, is kept to a constant value.

In Fig. 10a, we show the normalized load factor We as a

function of the pad aspect ratio L= 2Bð Þ, obtained with the

found optimal pad geometrical configurations for ph = 0.3

and 0.5. As discussed in a recent work [7], adopting a

structural micro-texturing in substitution of a Rayleigh (in

two-dimensions) or an Akers’ (in three-dimensions)

geometry is not an efficient solution, and this is exactly

confirmed in Fig. 10a where the curves lay quite beyond

Fig. 9 Pressure field corresponding to the optimal geometry (2B/L&
2/5) of Fig. 8d. Top values of dimensionless pressure are of order 0.15

1
2 3

We

N

L

2 B

NA

for circular holes

ph 0.3

ph 0.5

0.2 0.4 0.8 1.6 5 10 20
0.0

0.5

1.0

1.5

2.0

L 2B

W
e

(a)

(b)

Fig. 10 Optimization of micro-structuring with circular shape (e.g.,

micro-holes with square lattice)

hh h f 1

hh h f 5

Separations hh h f

(b)(a)

(c) (d)

(e) (f)

Fig. 8 Optimal geometries corresponding to the inserted numbers of

Fig. 7. Red dots indicate the positions of largest gap depth (Color

figure online)
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the NA value. The fluid pressure field corresponding to the

optimal geometry at ph = 0.3 is shown in Fig. 10b. Note

that the pressure rise involves only part of the pad domain,

resulting in a maximum fluid pressure of order 0.02, about

one tenth of the Akers’ optimal pressure.

The optimal geometries for ph = 0.5 are shown in

Fig. 11a–d. Observe that the textured area generally

resembles the Akers’ geometry, both in the worked domain

shape and in the values of maximum hole depth. However,

the produced normal load is remarkably much lower, and it

scales, approximately, with the texture area density ph. We

conclude, for this macro-geometry, that a structural tex-

turing with circular defects does not produce any conve-

nient load support with respect to the adoption of classical

optimal geometries.

3.3 Optimization with Micro-Grooves

in the Longitudinal and Transversal Configuration:

The Role of Fluid Redirection

In this section, we will maximize the load recurring to a

structural striped texture, i.e., to micro-grooves. While

circular defects, arranged in an isotropic lattice, provide

isotropic conductivities (with no other exploitable prop-

erty), striped superficial defects are well known [5–7] to

provide anisotropic average flow conductivities, which

might be used to practically obtain the so-called flow

redirection and retainment widely discussed in the recent

literature [6]. Indeed, it has been demonstrated [6] that an

effective way to increase load support in bearings, cou-

pled with a decrease in friction, is to improve the

entrainment flow as well as to retain it under the sliding

interface by minimizing the side leakage. Recent experi-

mental findings show, instead, the opposite, i.e., the

grooved geometry is counter-beneficial in terms of friction

reduction [4]. The contradiction is, however, only appar-

ent since the reported friction measurements were per-

formed on conformal contacts characterized by a total

structural texturing of the surface. Indeed, in the case of

total texturing, the load support is basically generated by

the collective cavitation of most of the textured area,

which generates a strongly reduced bearing pressure with

respect to a partial texturing of the surface (see e.g., Ref.

[14]). The latter, due to the absence of film rupture (and

reformation), allows for the entire bearing area to con-

tinuously contribute to the pressure rise at the interface,

resulting in the best option for optimizing (if allowed)

contact geometries.

In order to shed light on the role of fluid redirection

and retainment, we solve the optimization problem with

the grooved micro-geometry arranged in the transversal

(groove direction perpendicular to the sliding direction)

and longitudinal configuration. The free variable is the

hole ratio hh/hf, whereas the texture area density ph is kept

to a constant value. In Figs. 12a and 13a, we show,

respectively for the longitudinal and transversal configu-

ration, the normalized load factor We as a function of the

pad aspect ratio L= 2Bð Þ, obtained with the calculated

optimal pad geometrical configurations for ph = 0.3 and

0.5. The resulting fluid pressure fields are shown,

respectively, in Figs. 12b and 13b. It is interesting to

observe that despite the texture micro-geometries differ

only in their orientation, the resulting effect in terms of

optimal bearing load is remarkably different. In particular,

the largest optimal support by the transverse texture is less

than one-third of the longitudinal texture value. Moreover,

the pressure fields of Figs. 12b and 13b show that the

transversal texture provides a maximum pressure even

less than the one for the circular structural texturing

(compare with Fig. 10b). The reason of such huge dif-

ference is due to the different amount of side leakage for

the two groove directions. Indeed, the transverse config-

uration provides larger flow conductivities in the direction

of the side leakage, facilitating the flow escape and,

because of the anisotropic property of the flow factor

tensors, reducing the amount of inlet flow. This is con-

firmed in Fig. 14, where we show the optimal geometries

for ph = 0.3 (the transverse configuration) corresponding

to the inserted numbers of Fig. 13a. Note that the maxi-

mum groove ratio hh/hf & 1.6 for the all pad aspect

hh h f 1

hh h f 3

Separations hh h f

(b)(a)

(c) (d)

Fig. 11 Optimal micro-hole textures, for ph = 0.5. Red dots indicate

the positions of the microstructures with largest depth (Color figure

online)

134 Tribol Lett (2014) 53:127–143

123



ratios, confirming that, due to the strong anisotropy of the

interface, even if increasing the groove depth would

improve the inlet flow, the same increase would determine

a build up of a larger side flow, with a consequent neg-

ative effect on the average bearing pressure. Therefore,

the transverse micro-geometry is simply not effective for

the purpose of increasing the supported load.

The inverse occurs for the longitudinal configuration,

see Fig. 15. Note that the optimal solutions are charac-

terized by two (obviously-) symmetric suction heads

placed at the inlet, indicated by the highest groove ratio

(red dots) in Fig. 15. The reason why those macrostruc-

tures are generated by the optimization algorithm is

related to the improvement of the inlet flow. As also

discussed in Refs. [2, 6, 7, 15], the locally averaged

surface properties of any generic wet contact, as well as

their coupled (long-ranged) interaction required by the

fluid mass conservation constraint, cause the macroscopic

(i.e., collective) property of the same contact, such as the

supported load. Therefore, not only local (texture-scaled)

properties have to be optimized, but also their mutual

interaction occurring at the length scales in between the

micro- and the macro-size of the contact. In order to

maximize the entrainment flow, the topography at the

inlet is microstructured to make use at best of the entire

inlet side as an effective entrainment side. Indeed, despite

of the favorable local anisotropic behavior of the texture,

the direction of the average pressure gradient at the inlet

side borders would produce a certain component of flow

in the lateral direction, resulting in the immediate leakage

of the entrainment flow. This effect is remarkably reduced

by including (at the inlet borders) suction fingers, which

allow for the flow to be redirected, at a scale larger than

the scale of the grooves, in the internal portion of the

1

2 3
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W
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Fig. 12 Optimizations for a grooved micro-geometry in the longitu-

dinal configuration
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Fig. 13 Optimizations for a grooved micro-geometry in the trans-

versal configuration
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domain, as clearly visible in Fig. 15. Anyway, as expected

by the previous argumentations, the load support is lower

than the one provided by the Akers’ solution.

3.4 Optimization of Micro-Grooves with Nonuniform

Direction: Fluid Redirection and Restraint

Occurring in the Micro-Herringbone Geometry

In this section, we relax the micro-grooves direction, which

becomes now a free variable in the optimization process. We

decide to perform two investigations; in particular, we

optimize by excluding from the optimization the lateral

borders (namely, without side-border optimization), and by

including those (namely, with side-border optimization), in

order to have a better understanding of the flow redirection

and restraint in the optimized configurations. The results, in

term of optimal geometries for ph = 0.5 and 2B/L = 1, are

shown in Fig. 16a, c, respectively, for the without and with

optimization. In the latter figures, the red strips show the

local angular alignment of the grooves (in the scaling of

the ghaphs), whereas the red circles indicate, hereinafter,

that no striped defect is locally present (please consider that

the number of strips indicated in the figures has only a

qualitative purpose, i.e., they do not represent in any way the

lattice and dimensions of the defects, nor they have been

somehow scaled. The red strips have been drawn only to

show the local directions of the defects, as well as the areas

wherein the defects have to be realized). Therefore, in this

section, the red circles simply correspond to the untextured

areas. Observe in Fig. 16a that suction fingers have been

created to increase the inlet flow, as well as the micro-

grooves have been aligned in such a way to hinder the side

flow and redirect the same toward the inner part of the

domain. This determines a large amount of fluid particles

sheared at the contact interface and, consequently, an

increase in the bearing pressure. When lateral borders are

included in the optimization, the resulting optimal geometry

is shown in Fig. 16c. Observe in the latter case that the

suction fingers are placed at the inlet corners and, moreover,

they are coupled with micro-herringbone geometry on the

inlet part of the lateral sides. Interestingly, optimal micro-

grooved geometries use a certain (inlet) portion of the lateral

side to best harvest flow from the environment. Moreover,

expulsion fingers are created on the outlet corners of the pad;

this allows, in the average, to increase the length of the fluid

particle trajectory and, therefore, to obtain a prolonged

shearing action on the same fluid particles. Therefore, the

flow is only partially exiting from the middle part of the rear

side (i.e., moving along the shorter distance), since it is also

forced to be routed and sheared through the rear fingers.

The neat effect of the micro-groove optimization is

shown in Fig. 17 in terms of normalized load factor We as a

function of the pad aspect ratio L= 2Bð Þ, for ph = 0.3 and

0.5. Observe that the combination of suction fingers, rear

fingers, and micro-herringbone geometry allows for an

important load support increase only over large values of

L= 2Bð Þ, as expected due to the increase in the length of the

hh h f 1

hh h f 2

Separations hh h f

(b)(a)

(c) (d)

Fig. 14 Optimal geometries for ph = 0.3, in the transverse config-

uration, corresponding to the inserted numbers of Fig. 13a. Red dots

indicate the positions of the microstructures with largest depth (Color

figure online)

hh h f 1

hh h f 7

Separations hh h f

(b)(a)

(c) (d)

Fig. 15 Optimal geometries for ph = 0.3, in the longitudinal config-

uration, corresponding to the inserted numbers of Fig. 12a. Red dots

indicate the positions of the microstructures with largest depth (Color

figure online)
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particle routing under the contact. However, accordingly to

the previous argumentations, and apart from the optimal

solutions at large values of L= 2Bð Þ (which, anyway, do not

represent practicable configurations), the Akers’ geometry

determine the optimal loads.

3.5 Optimization with a Slippery Striped Texture

In the previous sections, we have discussed about the main

mechanisms, obtained by the combined genetic/conjugate

gradient optimization of microstructural texturing, which

mutually contribute to maximize the load support in a

generic wet sliding contact. For the case of (plain) thrust

bearings, in particular, we have stated that optimized micro-

structures do not provide a load support capability larger

than the classical Akers’ like geometry would provide.

However, surface texturing should not be limited to the

micro-structuring; indeed, here, we make use of a different

boundary condition describing the defect and, in particular,

we focus on a texture made of slippery micro-strips. In such

a case, the local micro-strip direction, the slip length lh
describing the defect (slippery strip), and the slip lhf of the

hh h f 1

hh h f 4

Separations hh h f

(b) (c)(a)

(d) (e)

Fig. 16 Optimization of the grooved micro-geometry for ph = 0.5 and 2B/L = 1. The red circles in a, c indicate the untextured areas (Color

figure online)
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Fig. 17 Normalized load factor We as a function of the pad aspect

ratio L= 2Bð Þ, for ph = 0.3 and 0.5
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remaining domain (slippery substrate) are the three free

scalar fields to be searched for the optimal load support.

Since the defect is only slippery, we set hh/hf = 1. Note that

we have optimized, in alternative to the (unbounded) slip

length, its rephrased parameter given by bh (and bhf for the

substrate) as free variable, which strictly monotonically

varies with the slip length and, more important, has boun-

ded values between 1 and 2.

In Fig. 18a, we show the optimal geometry at ph = 0.5

for L= 2Bð Þ ¼ 1, whereas the corresponding fluid pressure

field is shown in Fig. 18b. Observe that the inlet side of the

contact is predicted to be fully slippery, i.e., the applied

slippage has no preferential direction. Moreover, the full

slippery domain resembles, as expected, the Akers’ shape.

Note that, for ph = 0.5, there is no difference between the

slippery strip and slippery substrate texturing; however,

when optimizing with different texture area densities, the

optimal load curve as a function of the pad aspect ratio is

reported in Fig. 19 for ph = 0.3, 0.5, 0.7, 0.9. Interest-

ingly, the all curves superpose till large values of pad

aspect ratios, since the full slippery inlet area solution is

common to all cases. Moreover, despite the predicted loads

are larger than the Akers’ values of corresponding pad

aspect ratios (for relatively small ratios), the maximum

load for the slippery surface is not too far from the maxi-

mum load obtainable from the Akers’ geometry. This is

expected since the Navier’s slippage condition is equiva-

lent to a no-slip condition applied under the surface, i.e., it

is formally geometrically equivalent to an Akers’ geome-

try; therefore, the maximum supported load cannot sensibly

differ from the Akers’ one.

3.6 Super-Bearings: Optimization with a Combined

Structural/Slippery Striped Texture

In the previous sections, we have shown the role of the

grooved micro-geometry and slippery strip, as well as of

other larger-scale structures such as suction and expulsion

fingers, and micro-herringbones, as mechanisms to increase

the load support capability by optimizing the flow redirec-

tion and restraint occurring in the contact zone. However, as

expected at least for the structural case, none of the geom-

etries obtained from the separate microstructural and micro-

slippery surface optimization has showed a neatly improved

load support with respect to the Akers’ solution. However,

we know, from recent investigations, that the combined

structural/slippery texture can remarkably enhance the load

support in the case of one-dimensional wedge bearings [6].

Here, we make use of the GA-CG optimization in order to

determine whether a mixed texture can provide a greatly

Fig. 18 Optimization with a slippage texture at ph = 0.5 for

L= 2Bð Þ ¼ 1. Optimal geometry and corresponding fluid pressure

field (Color figure online)

We

N

L

2 B

NA

for ph 0.3 to 0.9

Akers' optimization 1 2

0.2 0.4 0.8 1.6 5 10 20
0.0

0.5

1.0

1.5

2.0

L 2B

W
e

Fig. 19 Optimal load curves as a function of the pad aspect ratio, for

the slippery texture. For ph = 0.3, 0.5, 0.7, 0.9
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improved load as in the 1D case (where the restraint is

effectively given by the one-dimensionality of the contact

itself). In such a case, the local micro-strip direction, the slip

length lh and the depth hh/hf describing the defect (slippery

strip), and the slip lhf of the remaining domain (slippery

substrate) are the four scalar fields to be searched for the

optimal load support. In Fig. 20a–d, we show the distribu-

tion of micro-slippage on the contact domain for the optimal

geometries at, respectively, L= 2Bð Þ ¼ 1; 2 and 4, with a

texture area density ph = 0.5. The distribution of structural

micro-grooves, completing the description of the previous

optimal geometries, is shown in Fig. 21a–d, where we also

report, with blue contour lines, the areas identifying the

different slippery boundary domains.

Observe that the optimal geometries show, interestingly,

a common rule: Whether slippage is locally included, then

also the micro-groove has to be realized on the surface. The

opposite, instead, does not hold (see white domains in

Fig. 20a–d where red strips are indicated). As a general

conclusion, the optimal geometry is characterized by a

lattice of grooves, with a certain local angular misalignment

with respect to the sliding direction, whose distribution in

the contact domain depends on the pad aspect ratio, and

where only part of such a distribution domain is subjected to

an additional slippage texturing. As a second common

feature, we observe that the local angular alignment of the

striped defect perfectly accomplishes the middle-scale

geometry (e.g., the both slippery or slippery strip domains),

see Fig. 20d. This suggests that not only the local slippage

improves the local, groove-induced fluid dynamics (tar-

geted to the maximum load support), but also the middle-

scale slippage structures are functional to the middle-scale

flow dynamics induced by the grooves. This two-scale

hierarchy of structures (the micro-scale defects and the

middle-scale domains), characterizing the optimal geome-

tries, is interestingly very similar to the few-scales hierar-

chical solutions optimized by Nature, e.g., as in the case of

the Gecko foot (setae and spatulae), the Lotus leave (cuticle

(a)

Both not slippery

Slippery substrate

Slippery strip

Both slippery

Slippery areas

(b) (c)

(d)

Fig. 20 Distribution of micro-slippage on the contact domain for the optimal geometries at, respectively, L= 2Bð Þ ¼ 1, 2 and 4, with a texture

area density ph = 0.5 (Color figure online)
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and wax crystals), shark skin (dermal denticles and

grooves), etc. We stress therefore that our mean field theory,

when solved in conjunction with the GA-CG optimization

procedure, allows (as shown here for the first time) to cal-

culate bio-mimicking pad geometries, a result which would

not be probably possible with a full-scale optimization of

the contact.

In Fig. 20a–d, the shape of the domains characterized

by the slippery grooves (which basically coincides with

the slippery strip domain) is strongly varying depending

on the pad aspect ratio. In particular, it increases in its

relative extension, coupled with the shrinking of the inlet

both slippery domain, when increasing the pad aspect

ratio. For the case at L= 2Bð Þ ¼ 4, the slippery strip

domain occurs on the larger part of the contact domain,

determining a large extension of the micro-herringbone

geometry, whereas the both slippery area is shaped as a

funnel to increase the flow restrain under the contact.

Moreover, we find very interesting to note that such

middle-scaled slippage structures are shaped very closely

to the middle-scale structures describing the micro-

grooves of almost constant depth, see Fig. 21a–d. Due to

the underlying smart aspect of such bio-mimicking

geometries, we may expect a great improvement of the

load support with respect to the Akers’ solution. This is

already clear by observing in Fig. 22 the fluid pressure

field, as obtained for the optimal previous configurations,

where maximum values are (for the all aspect ratios)

larger that the values characterizing the Akers’s optimal

geometry.

Finally, in Fig. 23, we report the dimensionless load

support as a function of the pad aspect ratio (red curves), in

comparison with the predictions for the Akers’ geometry

(gray curve) and of the optimal slippery micro-strip texture

(black curves, see Sect. 3.5). Note that even for small

values of texture area density ph, the supported load is

(a)

hh h f 1

hh h f 3.5

Separations hh h f

(b) (c)

(d)

Fig. 21 Distribution of structural micro-grooves, completing the description of the optimal geometries whose slippage is described in Fig. 20.

We also report, with blue contour lines, the areas identifying the different slippery boundary domains shown in Fig. 20a–d (Color figure online)
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Fig. 22 Fluid pressure fields as obtained from the optimal configu-

rations shown in Figs. 20 and 21

We

N

L

2 B

NA

for ph 0.3 and 0.5

Splippery texture

Structural and slippery texture

Akers' optimization

0.2 0.4 0.8 1.6 5 10 20
0.0

0.5

1.0

1.5

2.0

L 2B

W
e

(a)

We

N

L

2 B

NA

for ph 0.7 and 0.9

Splippery texture

Structural and slippery texture

Akers' optimization

0.2 0.4 0.8 1.6 5 10 20
0.0

0.5

1.0

1.5

2.0

L 2B

W
e

(b)

Fig. 23 Dimensionless load support as a function of the pad aspect

ratio (red curves), in comparison with the predictions for the Akers’

geometry (gray curve) and for the optimal slippery micro-strip

textures (black curves, see Sect. 3.5) (Color figure online)

Fig. 24 Optimization procedure. Schematic
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larger that the Akers’ results for all aspect ratios. In the

case of ph = 0.9, the maximum load is about 70 % larger

than for the Akers’ square pad for L= 2Bð Þ ¼ 2 and 4, so

that a super-bearing configuration will occur in between

those values. Observe also that the supported load almost

increases by increasing the texture area density, suggesting

that the middle-scaled structures have a large weight than

the local striped defect in contributing to the load support

for the plain bearing geometry.

4 Conclusions

We have discussed on the optimal texture distribution

which maximize the supported load for a three-dimensional

thrust bearing pad in the parallel configuration. We have

used the recently developed mean field theory of texture

hydrodynamics (BTH) which allows to accurately calculate

the average interface flow dynamics within the lubrication

approximation and to easily model circular or elliptical or

striped micro-geometries characterized by structural and/or

slippery properties. By adopting a multigrid optimization

procedure based on the genetic and conjugate gradient

optimization, our model has found optimal solutions based

on a two-scale hierarchy of structures, bio-mimicking well-

known Nature optimized surfaces. The existence of par-

ticularly effective optimal geometries (we call super-bear-

ings) has also been presented and discussed. With this work,

we demonstrate the ability of an optimized surface texture

to remarkably affect the macroscopic properties of a generic

sliding contact, confirming the validity of the BTH model as

an effective tool for the accurate and low computing cost

prediction of texture hydrodynamics.

Appendix: Details on the Numerical Model

Equation (1) has been made dimensionless in the in-plane

lengths with B (half of the pad width, see Fig. 6), in the

vertical lengths with hf (the nominal separation) and in the

pressures with p� ¼ 12gBUm=h2
f , resulting in:

r � � ~Krpþ ~Ce1

h i
¼ 0; ð14Þ

to be solved with Cauchy boundary conditions (zero

relative pressure at the borders). Equation (14) has been

discretized with the control volume approach, leading to

the following:

0 ¼Dy kxxp;x þ kxyp;y � cxx

� �
iþ1=2

� Dy kxxp;x þ kxyp;y � cxx

� �
i�1=2

þ Dx kyxp;x þ kyyp;y � cyx

� �
jþ1=2

� Dx kyxp;x þ kyyp;y � cyx

� �
j�1=2

;

ð15Þ

where forward (cross) derivatives have been adopted [e.g.,

p;y

 �

iþ1=2
� 1

2Dy
pi;jþ1 � pi;j þ piþ1;jþ1 � piþ1;j


 �
] to stabilize

the scheme. The set of linear equations represented by

Eq. (15) is solved by a simple Jacobi inversion. Simula-

tions have been run on a coarsest grid with nx
1 = ny

1 = 10

points (first level mesh), with five k-levels of mesh

refinement, characterized by the rule nkþ1
x yð Þ ¼ 2nk

x yð Þ:

The optimization procedure is drawn in Fig. 24. At the

coarsest level, the optimal solution is searched with a

Genetic Algorithm (GA), which allows to avoid being

trapped in local maxima. On the finer meshes, the optimum

search is performed with the conjugate gradient (CG)

method, which allows to refine the solution at each length

scale. A typical texture optimization output is shown in

Fig. 25, where we present the optimal slippage areas for

the structural/slippery texture (see Sect. 3.6), and for

L= 2Bð Þ ¼ 4 and ph = 0.9.

(a) (b)

(c) (d)

(e)

No slippage

On substrate only

On groove only

On groove and substrate

Slippage

(f)

Fig. 25 Typical texture optimization output in term of optimal

slippage areas for the structural/slippery texture (see Sect. 3.6), and

for L= 2Bð Þ ¼ 4 and ph = 0.9
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