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Abstract This paper suggests a new mechanism called

‘balancing wedge action’, which is based on the hydrody-

namic lubrication theory for textured surfaces. While past

studies have considered the local wedge film action pro-

duced by textured feature, this new mechanism is based on

the promotion of a wedge film action between surfaces by

the incorporation of a textured feature. The analytical

model used in the current study is a one-dimensional

centrally pivoted pad bearing having a single dimple on the

pad, which considers the equilibrium of the moment

applied to the surfaces. Analytical equations are derived for

the pressure, shear stress, load, friction, and moment by

integrating the Reynolds equation. A series of parametric

simulations of the depth, width, and location of a dimple

were conducted. The analytical results showed that the

incorporation of a single dimple on the pad surface

increases the convergence ratio between the surfaces,

producing a load capacity and reducing the friction. No

negative pressure can be found within the dimple, where a

positive pressure with a greater positive gradient causes a

higher shear stress than that outside the dimple. The trends

for the load and friction in relation to the dimple depth and

location are complex. The creation of the dimple closer to

the centre results in a failure to obtain an equilibrium

solution for the moment.

Keywords Hydrodynamic lubrication � Texture �
Moment � Balance

Abbreviations

F Dimensionless friction, F = fh0/(glu)

H Dimensionless film thickness, H = h/h0

H1 Dimensionless film thickness at inlet, H1 = h1/h0

H2 Dimensionless film thickness at left side of dimple,

H2 = h2/h0

H2d Dimensionless film thickness at left side of dimple,

H2d = h2d/h0

H3 Dimensionless film thickness at right side of

dimple, H3 = h3/h0

H3d Dimensionless film thickness at right side of

dimple, H3d = h3d/h0

Hd Dimensionless dimple depth, Hd = hd/h0

K Convergence ratio, K = (h1 - h0)/h0

L2 Dimensionless position at left side of dimple,

L2 = l2/l

L3 Dimensionless position at right side of dimple,

L3 = l3/l

Lpv Dimensionless position of pivot, Lpv = lpv/l

M Dimensionless moment, M = h0
2m/(6gl3u)

P Dimensionless pressure, P = h0
2p/(6glu)

Pmin Dimensionless minimum pressure

Q Dimensionless mass flow rate, Q = q/(h0u)

Qc Dimensionless Couette flow rate, Qc = qc/(h0u)

Qp Dimensionless Poiseuille flow rate, Qp = qp/(h0u)

S Dimensionless shear stress, S = -h0s/(gu)

Sc Dimensionless shear stress by Couette flow,

Sc = 1/H

Sp Dimensionless shear stress by Poiseuille flow,

Sp = H/2(dP/dX)

X Dimensionless coordinate in direction of surface

motion, X = x/l

W Dimensionless load, W = h0
2w/(6gl2u)

f Friction (N/m)

h Film thickness (m)
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h1 Film thickness at inlet (m)

h2 Film thickness at left side of dimple (m)

h2d Film thickness at left side of dimple (m),

h2d = h2 ? hd

h3 Film thickness at right side of dimple (m)

h3d Film thickness at right side of dimple (m),

h3d = h3 ? hd

h0 Minimum film thickness (m)

hd Dimple depth (m)

l Width of pad (m)

l2 Position at left side of dimple (m)

l3 Position at right side of dimple (m)

lpv Position of pivot (m)

nmax Maximum number of series terms

p Pressure of fluid film (Pa)

q Mass flow rate, q = qc ? qp (m3/(ms))

qc Couette mass flow rate (m3/(ms))

qp Poiseuille mass flow rate (m3/(ms))

s Shear stress (N/m)

u Sliding speed of moving surface (m)

x Coordinate in direction of surface motion (m)

w Load (N/m)

g Viscosity (Pas)

1 Introduction

Hydrodynamic lubrication theory shows that there is no

pressure generation in perfectly parallel contacts between

mating and sliding surfaces. This is because no wedge action

exists in the contact area. However, there are many machine

elements with a flat–flat contact area such as thrust bearings,

mechanical face seals, piston-skirt systems, and slide guide

ways in which hydrodynamic lubrication action is antici-

pated. If some surface irregularity exists, a local wedge

action may produce hydrodynamic pressure to support a

load. Although this concept was first suggested to investigate

the hydrodynamic pressure mechanism in parallel sliding

contacts, it has recently been investigated and used to

enhance the tribological performance by using macro-fea-

tures one or two orders of size smaller than the contact area.

However, the hydrodynamic lubrication mechanism pro-

duced by a textured surface is still poorly understood and is

thus being investigated.

In the current paper, the authors propose a new mech-

anism in which the incorporation of a textured pattern

could promote a hydrodynamic lubrication action. This

mechanism considers the equilibrium of the moment

applied to a pad, which has been ignored in past studies.

The variation in the shape of the pressure distribution by

the incorporation of a textured feature increases the con-

vergence ratio of the surfaces, at which the equilibrium of

the moment is achieved. The increased convergence ratio

results in greater pressure generation by the wedge action

over the contact area. The current paper derives the ana-

lytical equations for the pressure, shear stress, load, fric-

tion, and moment in the case where a single dimple is

created on the pad. A parametric investigation of the

dimple size and location is also conducted.

2 Background

During the last two decades, a great deal of work on

enhancing lubrication characteristics using textured sur-

faces has been conduced in accordance with the recent

significant developments in texturing techniques [1].

However, the basic principle for textured surfaces was

suggested in past years and is still the accepted mechanism.

The first basic principle is based on micro-hydrodynamic

lubrication bearings, in which an unsymmetrical pressure

distribution appears, including the occurrence of cavitation

at the diverging zone of the textured feature. The produced

pressure is not more negative than the vapour pressure of the

lubricant in the diverging zone of the film, whereas the

growth of the positive pressure is not limited to the con-

verging zone of the film. As a result, an unsymmetrical

pressure distribution is produced, giving a normal net force

to support the load. Salama [2] pioneered surface texturing.

Although his motivation was different, he was the first to

experimentally and theoretically investigate the influence of

surface texturing, giving attention to the hydrodynamic

lubrication mechanism for flat–flat contacts as mechanical

face seals. Salama [2] created transverse grooves over a

stationary ring pressed against a rotating flat disc to measure

the frictional torque. His theoretical model considered cav-

itation to use the Reynolds boundary condition. The results

for the friction coefficients predicted by the theory were in

good agreement with the experimental results for thick films,

whereas they were smaller than those for thin films. Hamil-

ton et al. [3] created photoetched micro-asperities on the

stators of mechanical face seals and showed that the load

capacity increased depending on the specifications of these

asperities. By directly observing the seal area between a glass

rotor and a stator, they showed that local pressurisation

occurs at each micro-asperity, while cavitation appears at the

divergence zone of the asperity. Following this work [3],

Anno et al. [4] proposed that small tilts at the top of asperities

might contribute to the load capacity. However, in a later

work [5], they showed that pores could also improve the load

capacity up to the same order as asperities and offered a

greater leakage advantage than the asperities.

Cavitation problems such as those involving the threshold

pressure and boundary condition have remained a principal

area of concern in relation to the mechanism of micro-tex-

tured hydrodynamic lubrication bearings. Olver et al. [6]
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suggested a new mechanism, in which a cavitation pressure

lower than atmospheric pressure in a textured pocket located

at the inlet side produces an additional Poiseuille flow to

support the load as ‘inlet suction’. It was found that a lower

cavitation pressure is expected to cause inlet suction. Their

group extended this concept to fixed pad bearings and found

that an inlet suction could contribute to load support up to a

convergence ratio of around 0.01 [7, 8]. Ausas et al. [9]

compared the pressure distributions between the Reynolds

boundary condition and p–h model proposed by Elrod and

Adams [10], considering the mass conservation of the flow.

They showed that the load support with the Reynolds

boundary condition was overestimated for micro-textured

bearings. Qiu and Khonsari [11] also compared three

boundary conditions—the half-Sommerfeld, Reynolds, and

Floberg-Jakobsson-Olsson (JFO)—for cavitation in dimpled

surfaces for mechanical seal-like contacts. They found that

the JFO theory predicted the smallest pressure generation,

whereas the greatest pressure was produced under the Rey-

nolds boundary condition. This implies that the use of the

half-Sommerfeld condition or Reynolds condition overesti-

mates the load capacity. Qiu and Khonsari [12] conducted a

series of parametric simulations based on the JFO model.

They showed that cavitation does not always have a positive

effect on the load capacity, depending on the operating

conditions, and that its pressure is crucial to the performance.

Direct observation of cavitation in textured patterns has

been conducted in recent studies. Negative results as well as

positive results have been reported, which may arise from

cavitation. Qiu and Khonsari [13] showed that the dimple-

textured specimen caused cavitation in dimples to provide

lower friction coefficient than the flat specimen for steel

rings, while wear of the textured specimen increased.

Tokunaga et al. [14] showed ‘cavitation rings’ in mechanical

face seals, on which dimple-patterned lines were created in

the circumferential direction, with lower friction compared

to flat specimen. Zhang et al. [15] showed that the observed

cavitation patterns were in good agreement with those esti-

mated by the JFO theory. Wahl et al. [16] created crossed

micro-channels on pins to observe cavitation in the channels.

Their experimental results showed that the friction coeffi-

cient increased when cavitation was observed in the micro-

channels. Yang et al. [17] showed a negative impact of

groove pattern on lubrication characteristics in fixed block

pad contacts on a moving transparent disc.

The second basic principle produced by textured surfaces

was proposed by Tønder [18, 19]. Tønder suggested that the

partial incorporation of roughness on a stationary surface in

the inlet region causes pressure generation in a way similar to

Rayleigh step bearings [20], resulting in no cavitation due to

texturing. When the film thickness in the land zone is com-

parable to or greater than the roughness height, this type of

bearing is less effective than fixed pad bearings. When the

film thickness is smaller than the roughness height, the load

capacity and leakage advantages appear.

In the 1990s, a great deal of work was conducted on the

enhancement of lubrication characteristics by textured sur-

faces, as represented by Etsion’s work [1]. Etsion and Burstein

[21] conducted numerical analyses for mechanical face seals,

in which numerous pores were incorporated into the stator. In

their model, a controlled region with a single pore hemisphere

is extracted for calculation by assuming negligible interaction

between the pores. They assumed that the boundary condition

for the cavitation of the lubricant was based on the half-

Sommerfeld condition. Their results showed that the optimum

pore to contact area ratio is 0.2. The optimum pore size

decreased with a decrease in viscosity and an increase in

sealed pressure. Etsion et al. [22] showed experimentally that

substantial increases occurred in the film thickness and sei-

zure load of mechanical face seals with micro-pores textured

by a laser over the stationary ring. They [23, 24] improved the

numerical model to change the depth of the dimple and

boundary condition for the cavitation occurring at the

diverging zone of each dimple and found that the depth to

diameter ratio of the dimple is a significant parameter. They

also applied laser surface texturing to other types of contact

such as thrust bearings [25, 26], conformal pin-on-disc con-

tact [27], reciprocating motion [28, 29], and gas lubrication

[30], producing beneficial tribological performances.

One of the most noteworthy findings in Etsion’s work is

that the partial incorporation of a textured pattern in the

contact area improves the tribological performance. In the

case of mechanical face seals, creating pores at the outer side

of the ring was found to increase the hydrostatic pressure

[24]. In contacts with sliding motion such as thrust bearings

[25, 26] and piston rings [28, 29], partial texturing at the inlet

side is expected to generate a hydrodynamic pressure in a

way similar to the Rayleigh step principle, which was sug-

gested by Tønder [18, 19]. A drastic increase in film thick-

ness (of approximately three times) was experimentally

found to be achieved in the case of partial-textured bearings

compared to the case of un-textured bearings over an entire

load range [26]. This increase in film thickness represented a

reduction in friction of more than 50 % compared with the

un-textured bearing. However, partial texturing at both sides

of the inlet and outlet [26, 29] and central local texturing [28]

were also observed to substantially reduce the friction.

Most of the works on textured surfaces have attempted

to improve the tribological performance of lubricated areas

such as mechanical face seals, piston rings, thrust bearings,

and flat–flat contacts, which have low or zero converging

film shapes. For such contacts, the rigidity of the sup-

porting systems for the mating surfaces seems to be

important because the wedge film action appears to play a

significant role in pressure generation, with even a slight

increase in the convergence ratio between the mating
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surfaces compared to that in the parallel position. In the

current study, the authors focus attention on the movement

of mating surfaces, which have been ignored, as an

important action to be explored to determine the lubrication

characteristics of textured surfaces.

3 Theory

Figure 1 shows a schematic of a centrally pivoted pad

bearing. The upper surface is a stationary pad with width l,

which is supported by a pivot located at the centre of the pad

that allows it to be freely rotated. The lower surface slides

from left to right with a constant speed u. A lubricant with

viscosity g enters the contact area by the drag of the sliding

surface. In this type of bearing, no hydrodynamic lubrication

pressure p is generated in a parallel film [31, 32]. The origin

of the coordinates is located at the left side of the contact area

on the lower surface. Thus, the position of the pivot is

lpv = 0.5 l. A single dimple with depth hd is located at the

inlet side of the contact area. The step points at the left side

and right side areas are l2 and l3. Both surfaces are flat, with

no elastic deformation, except for the dimple feature.

For the flow of a lubricant film with thickness h, the

following incompressible one-dimensional Reynolds

equation can be used:

d

dx
h3 dp

dx

� �
¼ 6ug

dh

dx
ð1Þ

A dimensionless form of the above equation is

d

dX
H3 dP

dX

� �
¼ dH

dX
ð2Þ

where

H ¼ h

h0

; P ¼ h2
0p

6glu
; X ¼ x

l

The film thickness h can be described as follows:

h ¼ h0 þ k l� xð Þ 0� x� l2 and l3� x� l ð3Þ
h ¼ h0 þ hd þ k l� xð Þ l2� x� l3 ð4Þ

k ¼ h1 � h0ð Þ
l

ð5Þ

where h0 is the film thickness at the outlet (x = l), h1 is the

film thickness at the inlet (x = 0), and k is the gradient of

the film thickness. The dimensionless forms of these

equations are as follows:

H ¼ 1þ K 1� Xð Þ 0�X� L2 and L3�X� 1 ð6Þ
H ¼ 1þ Hd þ K 1� Xð Þ L2�X� L3 ð7Þ

K ¼ h1 � h0ð Þ
h0

¼ H1 � 1; H1 ¼
h1

h0

; Hd ¼
hd

h0

;

L2 ¼
l2

l
; L3 ¼

l3

l

where K is the convergence ratio.

The shear stress s applied to the moving surface, and the

dimensionless value S is calculated as follows:

s ¼ � gu

h
� h

2

dp

dx
ð8Þ

S ¼ � h0s

gu
¼ 1

H
þ 3H

dP

dX
¼ Sc þ Sp ð9Þ

Sc ¼
1

H
; Sp ¼ 3H

dP

dX

where the first term of the equations, Sc, is the contribution

of the Couette flow, and the second term, Sp, is that of the

Poiseuille flow.

The load w can be calculated by integrating the pressure

distribution over the contact area. The friction f is the

integrated value of the shear stress over the contact area.

The following equations can be used for load w,

dimensionless load W, friction f, and dimensionless

friction F:

w ¼
Z1

0

pdx ¼ w0 ð10Þ

W ¼ h2
0w

6gl2u
¼
Z1

0

PdX ð11Þ

f ¼
Z1

0

sdx ¼
Z1

0

� gu

h
� h

2

dp

dx
dx ð12Þ

F ¼ � fh0

glu
¼
Z1

0

1

H
þ 3H

dP

dX
dX ð13Þ

Fig. 1 Schematic of pad bearing
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where the negative sign in Eq. (12) implies that the friction

is applied in the opposite direction to the sliding motion.

Dimensional and dimensionless equations for the flow rate

can be written as follows:

q ¼ qc þ qp ð14Þ

qc ¼ u
h

2
; qp ¼ �

h3

12g
dp

dx

Q ¼ q

h0u
¼ Qc þ Qp ð15Þ

Qc ¼
qc

h0u
¼ H

2
; Qp ¼

qp

h0u
¼ �H3

2

dP

dX

where q is the total flow rate, qc is the Couette flow rate, qp

is the Poiseuille flow rate, Q = q/(h0u), Qc = qc/(h0u), and

Qp = qp/(h0u).

The equilibrium equations for the moment m and

dimensionless moment M around the pivot point can be

written as follows:

m ¼
Z1

0

p x� lpv

� �
dx ¼ 0 ð16Þ

M ¼ h2
0m

6gl3u
¼
Z1

0

P X � Lpv

� �
dX ¼ 0 ð17Þ

Lpv ¼
lpv

l

In order to obtain a solution of H1 that satisfies the

equations of motion, the Newton–Raphson method is used

as follows.

Mn þ
oM

oH1

����
H1;n

DH1 ¼ 0 ð18Þ

H1;nþ1 ¼ H1;n þ DH1 ð19Þ

where n is the iteration number of the calculation. Equation

(18) is solved to obtain DH1. After solving Eq. (14), the

approximate value of H1 is revised in Eq. (19).

The dimensionless pressure P can be found analytically

by considering the continuity of the flow in the left land

zone, step zone, and right land zone. The analytical solu-

tion of dimensionless pressure P is found as follows:

P ¼ 1

K

1

H
� 1

H1

� 1

H2
� 1

H2
1

� �
Q

� �
0�X� L2 ð20Þ

P ¼ 1

K

1

H
� 1

H2d

� 1

H2
� 1

H2
2d

� �
Q

� �
þ P2 L2�X� L3

ð21Þ

P ¼ 1

K

1

H
� 1� 1

H2
� 1

� �
Q

� �
L3�X� 1 ð22Þ

where dimensionless pressure P2 at X = L2 and

dimensionless flow rate Q are expressed as follows.

P2 ¼
1

K

1

H2

� 1

H1

� 1

H2
2

� 1

H2
1

� �
Q

� �
ð23Þ

Q ¼
1

H2
� 1

H1

� �
þ 1

H3d
� 1

H2d

� �
þ 1

H3
� 1

� �
1

H2
2

� 1
H2

1

� �
þ 1

H2
3d

� 1
H2

2d

� �
þ 1

H2
3

� 1
� �h i ð24Þ

H2 ¼ 1þ K 1� L2ð Þ ð25Þ
H2d ¼ 1þ Hd þ K 1� L2ð Þ ð26Þ
H3d ¼ 1þ Hd þ K 1� L3ð Þ ð27Þ
H3 ¼ 1þ K 1� L3ð Þ ð28Þ

The dimensionless shear stress on the moving surface is as

follows.

Sc ¼
1

H
0�X� 1 ð29Þ

Sp ¼ 3
1

H
� 2Q

H2

� �
0�X� 1 ð30Þ

S ¼ Sc þ Sp ð31Þ

The dimensionless Couette and Poiseuille flow rates—Qc

and Qp, respectively—are calculated as follows:

Qc ¼
H

2
0�X� 1 ð32Þ

QP ¼ �
H3

2

1

H2
� 2Q

H3

� �
0�X� 1 ð33Þ

Q ¼ Qc þ QP ð34Þ

The dimensionless load W, dimensionless friction F, and

dimensionless moment M are found as follows.

W ¼ 1

K2

�
� ln

H2

H1

� �
� K

L2

H1

� �
Þ � Q

K2
�K

L2

H2
1

� ��

þ 1

H2

� 1

H1

� ��
þ 1

K2
� ln

H3d

H2d

� �
� K

L3 � L2

H2d

� �� �

� Q

K2
�K

L3 � L2

H2
2d

� �
þ 1

H3d

� 1

H2d

� �� �
þ P2 L3 � L2ð Þ

þ 1

K2
� ln

1

H3

� �
� K 1� L3ð Þ

� �

� Q

K2
�K 1� L3ð Þ þ 1� 1

H3

� �� �

ð35Þ

F ¼ 4
1

K
ln

H2

H1

� �
þ 6

Q

K

1

H2

� 1

H1

� �

þ 4
1

K
ln

H3d

H2d

� �
þ 6

Q

K

1

H3d

� 1

H2d

� �

þ 4
1

K
ln

1

H3

� �
þ 6

Q

K
1� 1

H3

� �
ð36Þ
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M ¼ � 1

K2
1þ 1

K

� �
ln

H2

H1

� �
þ L2 þ

KL2
2

2H1

� �

þ Q

K2
� 1

H2

� 1

H1

� �
� 1

K
ln

H2

H1

� �
� 1

K

1

H2

� 1

H1

� ��

þKL2
2

2H2
1

�
� 1

K2
1þ ð1þ HdÞ

K

� �
ln

H3d

H2d

� ��

þðL3 � L2Þ þ
KðL2

3 � L2
2Þ

2H2d

�

þ Q

K2
� 1

H3d

� 1

H2d

� 1

K
ln

H3d

H2d

� �� ��

�ð1þ HdÞ
K

1

H3d

� 1

H2d

� �
þ KðL2

3 � L2
2Þ

2H2
2d

�

þ 1

2
P2 L2

3 � L2
2

� �
� 1

K2
1þ 1

K

� �
ln

1

H3

� ��

þð1� L3Þ þ
Kð1� L2

3Þ
2

�
þ Q

K2
� 1� 1

H3

� ��

� 1

K
ln

1

H3

� �
� 1

K
1� 1

H3

� �
þ Kð1� L2

3Þ
2

�

�WLpv ¼ 0

ð37Þ

For the above equations of pressure, load, friction, and

moment, the numerical errors increase as the convergence

ratio decreases to 0. Additionally, the equations cannot be

calculated at K = 0, because K is included in the

denominators. However, substituting the equations for the

film thickness and Maclaurin expansion for the log terms

into the equations can eliminate K in the denominators. The

derivation of these equations is described in the Appendix.

The equations for the pressure, load, friction, and moment

are arranged as follows.

P ¼ X

H1H
1� 1

H1

þ 1

H

� �
Q

� �
0�X� L2 ð38Þ

P ¼ ðX � L2Þ
H2dH

1� 1

H2d

þ 1

H

� �
Q

� �
þ P2 L2�X� L3

ð39Þ

P ¼ ð1� XÞ
H

1� 1

H
þ 1

� �
Q

� �
L3�X� 1 ð40Þ

where P2 and Q are expressed as follows.

P2 ¼
L2

H1H2

1� 1

H1

þ 1

H2

� �
Q

� �
ð41Þ

Q ¼
L2

H1H2
þ ðL3�L2Þ

H2dH3d
þ ð1�L3Þ

H3

� �
L2ðH1þH2Þ

H2
1
H2

2

þ ðL3�L2ÞðH2dþH3dÞ
H2

2d
H2

3d

þ ð1�L3Þð1þH3Þ
H2

3

� � ð42Þ

W ¼ L2
2

2H2
1

� Q
L2

2

H2
1H2

þ
X1
n¼3

Ln
2

nHn
1

Kn�2

þ ðL3 � L2Þ2

2H2
2d

� Q
ðL3 � L2Þ2

H2
2dH3d

þ P2ðL3 � L2Þ

þ
X1
n¼3

ðL3 � L2Þn

nHn
2d

Kn�2 þ ð1� L3Þ2

2H2
3

þ Q
ð1� L3Þ2

H3

� ð1� L3Þ2

H3

þ
X1
n¼3

ð1� L3Þn

nHn
3

Kn�2 � 1\
KL2

H1

\1;

� 1\
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These equations can be used in a low convergence ratio

region, including the parallel contact case (K = 0), because

K is eliminated in the denominators. In the parallel contact

case (K = 0), the dimensionless pressure P, flow rate Q,

load W, friction F, and moment M become.

P ¼ X 1� 2Qð Þ 0�X� L2 ð46Þ
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P ¼ ðX � L2Þ
1þ Hdð Þ3

1� 2
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� �

þ P2 L2�X� L3
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Figure 2 shows comparisons for dimensionless load W and

moment M between the exact form and explicit form with the

maximum number nmax = 20 of the power series terms. It

can be seen that the numerical errors of the exact forms for

the load and moment increase with decreasing convergence

ratio K. For the solution of moment M, the numerical error

appears at higher convergence ratios of about 10-4 compared

to that for the solution of the load. The solution calculated

by the explicit form asymptotically approaches the value

at K = 0 with a decreasing convergence ratio for both the

load and moment. In the current simulation, the explicit

forms were used at convergence ratios K \ 0.01. Above this

value, the solutions were obtained by calculating the exact

forms.

4 Results

Figure 3 shows the variation in the dimensionless load

W for various dimensionless dimple depths Hd with

L2 = 0.1 and L3 = 0.2. This graph has a logarithmic axis

for the dimensionless dimple depth Hd to show the varia-

tion over a wide range. It can be seen that there is an

optimum value for the dimensionless dimple depth for the

dimensionless load. At Hd = 0.001, the load has already

been produced. As Hd increases, the load increases to reach

a maximum value of 0.0145 at Hd = 0.5. Beyond the

maximum point, the load drops significantly and is

1.51 9 10-3 at Hd = 10.0, which is similar to the value at

Hd = 0.001.

Figure 4 shows the variation in the convergence ratio

K for various dimensionless dimple depths Hd, with the

same dimple specifications as shown in Fig. 3. The curve

for the variation in the convergence ratio K has a shape

similar to that of the variation in the dimensionless load, W,

in Fig. 3. The maximum value of the convergence ratio is

obtained at Hd = 0.5, which is the same as the maximum

point for the dimensionless load. By comparing the results

for dimensionless load W and convergence ratio K, it is

found that the dimensionless load increases in accordance

with the increase in the convergence ratio.

(a)

(b)

Fig. 2 Comparisons of dimensionless load W and moment M between

exact form and explicit form at L2 = 0.1, L3 = 0.2, and Hd = 1.0.

a Dimensionless load W, b dimensionless moment M
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Figure 5 shows the variation in the dimensionless fric-

tion, F, for various dimensionless dimple depths Hd. The

curve for the dimensionless friction, F, has a different

shape than those for the dimensionless load W and con-

vergence ratio K. The friction decreases gradually with

increasing dimensionless dimple depth from 0.001. At

Hd = 0.5, the friction has a minimum value of 0.9238 and

then begins to immediately increase with a further increase

in Hd. The friction reaches a maximum value of 0.9355 at

Hd = 3.0 and then starts to drop beyond the maximum

point.

Figure 6 shows the variation in the dimensionless flow

rate Q with the dimensionless dimple depth Hd. It can be

seen that the flow rate is higher than the Couette flow rate

in the case of parallel contact for all dimple depths. It is

found that the flow rate has a high value when the con-

vergence ratio is high. Thus, the incorporation of a single

dimple on the pad opens the inlet of the contact area more

widely to promote the drag of lubricant into the contact

area.

Figures 7, 8, 9, 10, and 11 show a series of dimen-

sionless results for film thickness H, pressure P, shear

stress S, and flow rate Q for various dimensionless dimple

depths Hd.

The variation in the film profile shows that the inlet of

the contact area is gradually opened from Hd = 0.1–0.5.

Then, the inlet is gradually closed from Hd = 1.0–10.0, in

which the bottom of the dimple is out of the range of the

graphs, in accordance with the variation in the convergence

ratio shown in Fig. 3. At Hd = 10.0, the contact area

becomes nearly parallel.

Hydrodynamic pressure is generated over the contact

area as a result of the wedge film action, as shown in

Figs. 7, 8, 9, 10, and 11. The pressure increases linearly in

Fig. 4 Convergence ratio for various dimensionless dimple depths at

L2 = 0.1 and L3 = 0.2

Fig. 5 Dimensionless friction for various dimensionless dimple

depths at L2 = 0.1 and L3 = 0.2

Fig. 6 Dimensionless flow rate Q for various dimensionless dimple

depths at L2 = 0.1 and L3 = 0.2

Fig. 3 Dimensionless load W for various dimensionless dimple

depths Hd at L2 = 0.1 and L3 = 0.2
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the left land zone and within the dimple, whereas in the

right land zone, it shows a parabolic curve, which domi-

nates most of the contact area. The pressure distribution

has a lower gradient in the left land zone and a higher

gradient in the dimple than elsewhere. The pressure dis-

tribution maintains the same shape with a lower gradient in

the left land zone and a higher gradient in the dimple,

although the magnitude of the pressure has a maximum

peak at Hd = 0.5, as shown in Fig. 8.

One of the most important findings in the shear stress

distributions is that the shear stress in the dimple is higher

than elsewhere in the cases of shallower dimple depths of

Hd = 0.1, 0.5, and 1.0. This is because the shear stress pro-

duced by the Poiseuille flow Sp is high, even though the shear

stress produced by the Couette flow Sc decreases as a result of

the greater thickness of the dimple. In the right land zone, the

shear stress decreases along the sliding direction because the

pressure gradient decreases and has negative values beyond

the maximum pressure point. This action caused by the

Poiseuille flow reduces the friction from Hd = 0.001–0.5. At

more than Hd = 0.5, the Poiseuille flow decreases in

accordance with the decrease in the convergence ratio. Thus,

(c)(b)(a)

Sc

Sp

S

Qp

Qc
H

P

Fig. 7 Profiles of dimensionless film thickness, pressure, shear stress, and flow rate at L2 = 0.1 and L3 = 0.2 and Hd = 0.1. a Film thickness

and pressure, b shear stress, c flow rate

(c)(b)(a)

Sc

Sp

S

Qp

Qc

P

H

Fig. 8 Profiles of dimensionless film thickness, pressure, shear stress, and flow rate at L2 = 0.1 and L3 = 0.2 and Hd = 0.5. a Film thickness

and pressure, b shear stress, c flow rate

(c)(b)(a)

Sp

Sc

S

Qp

Qc
P

H

Fig. 9 Profiles of dimensionless film thickness, pressure, shear stress, and flow rate at L2 = 0.1 and L3 = 0.2 and Hd = 1.0. a Film thickness

and pressure, b shear stress, c flow rate
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the friction begins to increases until Hd = 5.0. However, at

deeper dimple depths, the shear stress is significantly

reduced because both the Couette and Poiseuille flows

decrease significantly. The reduction in the shear stress in the

dimple contributes to the second decrease in friction.

It is found that the magnitude of the Poiseuille flow rate

increases in the dimple with increasing dimple depth,

although the pressure drops at a high Hd. This is because

the thick film in the dimple results in a significant decrease

in the resistance to flow. Therefore, even a small pressure

generation is sufficient to compensate for the great varia-

tions in the Couette flow at deep dimple depths.

Figure 12 shows the influence of the dimple position on

the load for various dimple depths with a dimple width of

0.1. L2 = 0 implies that the dimple is opened to the out-

side, which corresponds to the step of the Rayleigh step

bearing. It is found that the film shape of the Rayleigh step

bearing (L2 = 0) is the greatest for a dimensionless load.

The dimensionless load W decreases as the position of the

dimple moves closer to the centre of the contact area. At

around L2 = 0.15, the load decreases considerably and thus

no equilibrium solution can be found.

Figure 13 shows the influence of the dimple width on

the load for various dimple positions, with dimple depth

Hd = 0.5. It is found that at L2 = 0, which corresponds to

the Rayleigh step bearing, the dimensionless load W is the

greatest and can be obtained in the widest range of dimple

widths. A Rayleigh step bearing with a wide width of 0.52

has the greatest dimensionless load W of 2.88 9 10-2. At

greater dimensionless widths of more than 0.58, no equi-

librium solution can be found. As the position of the

Sc

Sp

S Qc

Qp

(c)(b)(a)

P

H

Fig. 10 Profiles of dimensionless film thickness, pressure, shear stress, and flow rate at L2 = 0.1 and L3 = 0.2 and Hd = 5.0. a Film thickness

and pressure, b shear stress, c flow rate

Sp

Sc

S

Qp

Qc

(c)(b)(a)

H

P

Fig. 11 Profiles of dimensionless film thickness, pressure, shear stress, and flow rate at L2 = 0.1 and L3 = 0.2 and Hd = 10.0. a Film thickness

and pressure, b shear stress, c flow rate

Fig. 12 Influence of dimple position on load for various dimension-

less dimple depths
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dimple moves closer to the centre, the dimensionless load

decreases. The dimple width range in which an equilibrium

solution can be obtained also decreases as the dimple

position approaches the centre.

5 Discussion

The above theoretical analysis shows that the incorporation

of a micro-feature on a stationary surface could produce

pressure over a parallel contact area, which was modelled

as a centrally pivoted pad bearing with flat surfaces and

thus could generate no pressure according to the hydro-

dynamic lubrication theory. The mechanism suggested in

the current study considers variations in the convergence

ratio by the incorporation of a micro-feature, at which the

equilibrium of the moment applied to the pad is achieved,

and thus is totally different from those suggested and

investigated in past studies [2–19]. A representative

mechanism for the textured surface is based on the micro-

hydrodynamic lubrication bearing concept, having an

unsymmetrical pressure distribution with a cavitation zone

[2–5]. However, the current results show no negative

pressure generation in the dimple. Variations in the con-

vergence ratio, which increase in most cases, promote the

wedge action of the film to generate hydrodynamic pres-

sure over the contact area, as well as at the dimple.

When the convergence ratio is small, with the surfaces

close to parallel, a negative pressure can be produced in the

dimple [6–8]. The negative pressure in the dimple causes

suction of the lubricant into the contact area to produce a

higher load capacity [6–8]. Cavitation around textured

patterns has experimentally been observed in parallel pad

bearings [16, 17], mechanical face seals [14], and seal-like

rings [3, 4, 13, 15]. Figure 14 shows the pressure distri-

butions at various convergence ratios in the case where a

single dimple is created at the leading side of the contact

area. It can be seen that the pressure decreases linearly

from the inlet when the convergence ratio K is small. In

addition, the total pressure decreases, which results in a

decrease in the load capacity, with a decreasing conver-

gence ratio. Figure 15 shows the variations in dimension-

less load W and minimum pressure Pmin for various

convergence ratios. It can more clearly be seen that the

load capacity at higher convergence ratios is higher than

that at lower convergence ratios, in which the inlet suction

appears. The dimensionless load increases and then begins

to decrease with increasing K. For convergence ratios

below 0.03, the minimum pressure is negative, resulting in

the appearance of inlet suction. For convergence ratios

higher than 0.03, the balancing wedge action is effective,

as shown in Figs. 14 and 15. In a comparison of the load

capacities between low convergence ratios and high con-

vergence ratios, the dimensionless load is found to be

smaller at low convergence ratios compared with that at

higher convergence ratios. Yang et al. [17] showed higher

load-carrying capacity of inclined pad bearings compared

to that of parallel pad bearings when grooves were textured

on the pad. They described that incorporating of grooves

generated cavitation to less contribute to enhancement of

load-carrying capacity.

As shown in Figs. 14 and 15, the inlet suction appears at

low convergence ratios of less than 0.03. However, such a

small convergence ratio appears to be impossible for actual

machine elements because the equilibrium of the moment

should be considered. For example, in a case where the

convergence ratio K is 0.168, at which the maximum load

capacity can be obtained as shown in Figs. 3 and 4, the film

thickness difference between the sides is about 168 nm at

h0 = 1 lm. In actual machine elements, the surfaces are

supported by parts with some rigidity. There are also many

machine elements such as mechanical face seals, piston-

Fig. 13 Influence of dimple width on load for various dimensionless

dimple positions

Fig. 14 Dimensionless pressure distributions for various conver-

gence ratios at L2 = 0.1 and L3 = 0.2 and Hd = 0.5
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skirt systems, and vanes in rotary compressors, in which

the surfaces are not rigidly supported or can be moved.

Incorporation of textured patterns onto the surface of non-

rigidly supported lubricated areas is expected to change the

moment balance, developing a wedged film shape. There-

fore, the suggested mechanism may act in general cases, as

well as in the case of pivoted pad bearings.

The ‘balancing wedge action’ mechanism reduces the

friction and generates pressure, as shown in Figs. 7, 8, 9,

10, and 11. In the mechanism of a micro-hydrodynamic

lubrication bearing, the shear stress can be ignored in the

dimples because of cavitation. It has been believed that

reducing the shear stress in dimples is an important con-

tribution to reduce friction. However, in the case of shal-

lower dimples, in which the maximum dimensionless load

is obtained, the shear stress is greater in the dimple than

elsewhere because of the greater positive pressure gradient,

as shown in Figs. 7, 8, and 9, which produces a shear stress

in the same direction as that produced by the Couette flow.

The main contribution to the reduction in friction is the

decrease in the shear stress in the right land zone, which

does not seem to be focused. Actually, the load capacity is

also enhanced, which leads to an increase in film thickness

by the incorporation of the dimple.

The trends for the load in relation to the dimple’s width,

depth, and location have complex behaviours. One of the

important findings is that the left land zone reduces the

effectiveness of the wedge action promotion, as shown in

Fig. 12, although the land zone plays a significant role in

inlet suction [6–8]. The film shape of the Rayleigh step

bearing has the highest load capacity, with a wide range of

dimple sizes, and the possible size of the dimple decreases

when the dimple is not opened to the outside. Yang et al.

[17] also showed higher load-carrying capacity of the

Rayleigh step bearing shape compared to those of groove-

textured pad bearings. Pressure generation in a Rayleigh

step bearing can also be obtained by the partial incorpo-

ration of multiple micro-features at the inlet side [18, 19,

25]. Therefore, a multiple dimple pattern may improve the

load capacity in a Rayleigh step bearing.

In summary, the suggested mechanism, called ‘balanc-

ing wedge action’, was found to play a significant role in

the enhancement of tribological performance such as in the

generation of load capacity and the reduction in friction.

The current study is the first step for ‘balancing wedge

action’ because the current model is simple, consisting of a

one-dimensional centrally pivoted pad bearing. Further

investigation of this mechanism appears to be required to

obtain a better understanding of the capacity of textured

surfaces.

6 Conclusions

This paper suggested and investigated a new mechanism

called ‘balancing wedge action’, which is produced by

textured surface. The authors focused attention on the

equilibrium of the moment applied to the mating surfaces.

Incorporation of a textured feature on one of the mating

surfaces increases the convergence ratio between the sur-

faces, resulting in the promotion of the whole wedge action

in the contact area. The current study analysed a centrally

pivoted bearing model, which is initially parallel in the flat

case and thus produces no hydrodynamic pressure. The

obtained conclusions are as follows.

1. As a single dimple is created at the inlet side on the

stationary pad, the pad is inclined to form a converging

film shape. This converging film generates hydrody-

namic pressure distributed over the contact area.

2. The pressure distribution has three specific shapes: a

lower gradient in the left land zone, a higher gradient in

the dimple, and a parabolic curve in the right land zone.

(a)

(b)

Fig. 15 Variations in dimensionless load W and minimum pressure

Pmin with convergence ratio at L2 = 0.1 and L3 = 0.2 and Hd = 0.5.

a Dimensionless load W, b Dimensionless minimum pressure Pmin
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3. The dimensionless load is the highest at dimensionless

dimple depth Hd = 0.5. This value for the dimension-

less dimple depth agrees with that for the maximum

convergence ratio.

4. The friction in the textured case is smaller than that in the

parallel case. This reduction in friction is not attributed

to the thicker film in the dimple, in which the shear stress

is higher than elsewhere. The decrease in shear stress in

the right land zone contributes to the reduction in friction

at around the optimum value of Hd.

5. When the dimple is opened to the outside, the dimple

feature changes the Rayleigh step bearing, which gener-

ates the highest load capacity. As the location of the

dimple approaches the centre of the contact area, the load

capacity decreases considerably. When the dimension-

less position of the left step point L2 is more than about

0.15, there is no equilibrium solution for the moment.

6. The load capacity increases with increasing dimple

width. However, there is a maximum width at which

an equilibrium solution can be obtained. As the

location of the dimple approaches the centre, the

width range decreases.

Appendix: Expansions of Load, Friction, and Moment

for Accurate Calculation in Region of Low

Convergence Ratios

Load

Dimensionless load W is given by integrating the pressure

distribution over the contact area.

W ¼
ZL2

0

PdX þ
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PdX þ
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PdX ð54Þ

Integrating the pressure distribution in the left land zone,

dimple zone, and right land zone gives
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where P2 is the dimensionless pressure at the left step point

and Q is the dimensionless flow rate given by

P2 ¼
L2

H1H2
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ð56Þ
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After further expansion, Eq. (55) can be modified to
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Substituting the Maclaurin expansion of the log terms and

the film thickness equations into Eq. (58), Eq. (58) is

further modified to
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The elimination of K in the denominators gives the

following arranged expression

W ¼ L2
2

2H2
1

� Q
L2

2
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þ
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n¼3
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2
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3

þ Q
ð1� L3Þ2

H3

� ð1� L3Þ2

H3

þ
X1
n¼3

ð1� L3Þn

nHn
3

Kn�2 � 1\
KL2

H1

\1;

� 1\
KðL3 � L2Þ

H2d

\1;�1\
Kð1� L3Þ

H3

\1
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In the parallel case (K = 0), the dimensionless flow rate

Q becomes

Q ¼
L2 þ ðL3�L2Þ

ð1þHdÞ2
þ ð1� L3Þ

� �

2 L2 þ ðL3�L2Þ
ð1þHdÞ3

þ ð1� L3Þ
� � ð61Þ

P2 ¼ L2 1� 2Qð Þ ð62Þ

Equation (59) becomes

W ¼ L2
2

2
� QL2

2 þ
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� Q
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2
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Friction

Dimensionless friction F is given by integrating the shear

stress over the contact area

F ¼
ZL2

0

SdX þ
ZL3

L2

SdX þ
Z1

L3

SdX ð64Þ

The integrated expression is as follows:

F ¼ 4
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After further expansion in the same manner as the

dimensionless load W, Eq. (65) can be modified to

F¼4
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An arranged form is given by

F¼�4
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In the parallel case (K = 0), Eq. (67) becomes

F ¼ �4 L2 þ
ðL3 � L2Þ
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þ ð1� L3Þ
� �
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Moment

Dimensionless moment M is given by

M ¼
ZL2

0
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The integrated expression is as follows.
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Substituting the Maclaurin expansion of the log terms into

Eq. (70), M can be calculated as follows:

An arranged form is expressed as follows.
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In the parallel case (K = 0), Eq. (72) becomes
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