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Abstract This paper presents a multiscale approach to

solve the problem of mixed lubrication in mechanical seals.

In fact, the lubricating fluid film developed between the

faces of mechanical seals is usually a fraction of a micron

in thickness, leading to a mixed lubrication regime. How-

ever, over a velocity threshold the fluid film can completely

separate the faces because of the hydrodynamic effect due

to the surface roughness, even if the surfaces are nominally

parallel. To study this phenomenon, a deterministic model

is preferable because the stochastic theory based on flow

factors is unable to reproduce this effect. Unfortunately, a

deterministic approach needs a prohibitive amount of

nodes and computation time. This is why a multiscale

model is proposed. It is composed of a micro-deterministic

model working on a small area coupled with a macro

model giving the pressure distribution on a macro-mesh.

The results of the multiscale model are compared to those

of a pure deterministic model in terms of accuracy and

computation time when the area of the macro-cells is

varied.

Keywords Computational and math methods for

tribology � Fluid mechanics methods � Roughness effects

in hydrodynamics � Surface roughness � Face seals �
Mechanical seals

List of Symbols

Variables

a Major axis of elliptical contact area (m)

b Minor axis of elliptical contact area (m)

Bh Balance ratio

Cf Friction torque (N m)

Cf2 Dry friction torque (N m)

d Diameter (m)

D Universal variable

E Young’s modulus (Pa)

F Switch function

Fc Contact force in the summit of asperity (N)

Fclosing Closing force (N)

Fopening Opening force (N)

h Film thickness (m)

h0 Mean film thickness (m)

Ku Kurtosis coefficient

Nr Number of nodes in the radial direction

Nh Number of nodes in the circumferential direction

Nbl Number of macro-cells

p Pressure in the film (Pa)

pc Pressure in the contact area (pa)

pi Pressure imposed at the boundary of macro-cells

(Pa)

pcav Cavitation pressure (Pa)

q(�) Flow rate (kg/s)

R Radius (m)

(rr, rh) Curvature radii at the summit of asperity (m)

Rh Hydraulic radius (m)

Sk Skewness coefficient

Sq Roughness standard deviation (m)

Su Source term

W Force (N)

Wh Hydrodynamic lift (N)
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Whs Hydrostatic lift (N)

Wt Total load (N)

z Height distribution of the simulated surfaces (m)

C Curvature difference

Dp Macro-pressure variation (Pa)

l Fluid viscosity (Pa s)

q Fluid density (kg/m3)

m Poisson’s ratio

d Interference (m)

x Rotation speed (rpm)

Dimensionless Parameter

f Friction coefficient 2Cf
RoþRið ÞFclosing

G
Duty parameter

lx R2
o�R2

ið Þ
2Fclosing

Index

1 Stator

2 Rotor

i, j Array index

eq Equivalent

o Outer

i Inner

ref Referential

1 Introduction

Mechanical seals are a kind of sealing component for

rotating shafts. They are basically composed of two flat

rings (rotor and stator) maintained in close contact and

constituting the sealing dam between the pressurised fluid

and the atmosphere. In spite of the fact that the two rings

are initially in contact, they are generally separated by a

very thin fluid film during operation. Indeed, in some

experimental investigations [1], it has been shown that

during operation, mechanical seals exhibit a Stribeck curve

(the friction coefficient versus the duty parameter G) typ-

ical of the transition from mixed lubrication to full

hydrodynamic lubrication regimes. Therefore, the seal

performance depends on the surface roughness that will

affect the lubrication process as well as the contact between

asperities. The mixed lubrication can be modelled by two

different methods:

1.1 Stochastic modelling

This method uses selected statistical parameters to deal

with the influence of roughness on lubrication. Tzeng and

Saibel [2] and then Christensen [3] developed this concept

in the case of one-dimensional roughness. Patir and Cheng

[4, 5] proposed a new theory able to deal with all types of

roughness. They introduced flow factors, which indicate

the effect of roughness on the flow, in the Reynolds

equation. This method has been widely used in lubrication

but is unfortunately unable to reproduce the hydrodynamic

lift with nominally parallel surfaces configuration as in

mechanical seals.

1.2 Deterministic modelling

The principle of deterministic modelling consists in rep-

resenting as accurately as possible the surface topography

and solving the usual Reynolds equation with this fine

surface description. This type of approach needs a very fine

mesh and was first used in line or point contacts that have a

small area extent [6–8]. More recently, Dobrica et al. [9]

presented some results for partial bearing having a more

extended lubricated interface. The case of nominally flat

surfaces was studied by Minet et al. [10], who presented a

model of mixed lubrication for mechanical seals. They

showed that surface roughness is able to generate a

hydrodynamic lift-off leading to a full hydrodynamic

lubrication regime above a velocity threshold. This

hydrodynamic load generation is correlated to the appear-

ance of micro-cavitation as experimentally observed by

Hamilton et al. [11].

However, the main drawback of deterministic approa-

ches is the tremendous amount of computer memory and

central processing unit (CPU) time required, which could

exceed modern computing resources limits when real sur-

face areas are considered. In the literature, different tech-

niques have been developed for similar problems, but the

general idea behind all these methods is the multiscale

treatment. The main goal of this approach is to obtain the

macroscopic scale solution both accurately and efficiently,

while including the effect of the micro-scale (e.g. the

roughness effect).

The literature on multiscale methods is very large, and

we focused our attention on the numerical models devel-

oped for flow in porous media where the average flow

depends on the local micro-scale permeability distribution.

Hou and Wu [12] were among the first to propose a mul-

tiscale finite element method followed by Jenny et al. [13]

with the multiscale finite volume method. These methods

are based on the construction of special element base

functions that are adaptive to the local property of the

problem. The coefficients of these functions are determined

by solving a micro-scale problem. These solutions are

generally globally but not locally mass-conserving.

This paper presents a multiscale model for the numerical

calculation of the pressure distribution. The principle of

this approach is to express pressure on a macro-mesh by

using a mass-conservative law whose coefficients are

computed on a micro-scale mesh. The results are then

compared to the ones obtained with the pure deterministic

model of Minet et al. [10].
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2 Theoretical Considerations

A typical face seal configuration is presented in Fig. 1. For

this study, the rotor is considered to be smooth, whereas the

stator is rough. The nominal surfaces are flat and parallel.

The study is performed on a small radial band of the seal

interface, as shown in Fig. 1.

2.1 Micro-scale Fluid Model Description

Minet et al. [10] presented a model of mixed lubrication in

mechanical seals based on a deterministic approach. This

approach uses very fine and regular meshes in the inves-

tigated area. In addition to the usual fluid film lubrication

assumptions, the following additional hypotheses were

used:

• The problem is stationary and isothermal,

• Periodic conditions are imposed at the circumferential

boundaries,

• Pressure is imposed at the radial boundaries (inner and

outer radii of the sub-domain)

The lubricant flow was modelled by using the finite

volume method. The flow rates resulting from the pressure

distribution and the faces displacement must vanish in each

considered mesh element. Thus, the obtained mass flow

balance in a micro-cell (Fig. 2) can be written as follows:

q
ðrÞ
W þ q

ðrÞ
S � q

ðhÞ
E � q

ðhÞ
N ¼ 0: ð1Þ

The expression of the mass flow is

q
ðrÞ
w ¼� h3

w

12l RwDh o
or ðFDÞw

q
ðhÞ
e ¼� h3

e

12l ReDh o
or ðFDÞe

q
ðhÞ
n ¼� h3

n

12l
DR

RnDh
o
oh ðFDÞnþ 0:5hnDRRnx 1�DP 1�Fnð Þ½ �

q
ðrÞ
s ¼� h3

s

12l
DR

RsDh
o
oh ðFDÞsþ 0:5hsDRRsx 1�DS 1�Fsð Þ½ �

8
>>>>><

>>>>>:

ð2Þ

In Eq. (2), h represents the local film thickness, l the

fluid viscosity, and DR and Dh are the sampling interval of

the mesh. Each derivative is approximated by a first-order

finite difference:

o
or FDð Þw� FPDP�FWDW

DR ; o
oh FDð Þs� FPDP�FSDS

Dh
o
or FDð Þe� FEDE�FPDP

DR ; o
oh FDð Þn� FNDN�FPDP

Dh

�

: ð3Þ

In this expression, F is a switch function, and D a universal

variable which can represent the pressure p or the fluid

density q depending on whether the cell is cavitated or

active:

F ¼ 0 D ¼ q
q0

� 1 p ¼ pcav

F ¼ 1 D ¼ p� pcav q ¼ q0:
ð4Þ

By reporting expressions (2, 3) in Eq. (1), the following

expression is derived:

APDP þ ANDN þ ASDS þ AWDW þ AEDE þ Su ¼ 0: ð5Þ

The micro-pressure distribution is obtained by solving

Eq. (5) numerically on a fine mesh, by means of a fast LU

Stator
(rough)

Fluid film

Rotor
(smooth)

Sealed
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(po)

Atmosphere (pi)

Studied area

Ro

Ri

Periodicity

Angular velocity ω
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(rough)

Fluid film

Rotor
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Periodicity
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Fig. 1 Mechanical seal configuration

Fig. 2 Typical investigated area with micro and macro-scale description
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decomposition technique for sparse matrices. This model

will be used here to obtain pressure field at the micro-scale.

2.2 Macro-scale Fluid Model Description

The macro-scale mesh is obtained by subdividing the

studied area into a number of macro-cells in the radial

direction, as illustrated in Fig. 2. The aim of this model is

to determine the macro-pressure at the boundaries of each

macro-cell. The macro configuration is assumed to be

axisymmetric and the macro-pressure is thus a radial dis-

tribution. This is the main simplification induced by this

multiscale model: the microscopic pressure distribution is

assumed to be constant in the circumferential direction at

each macro-cell boundary. The effect of this assumption on

the accuracy of the solution will be analysed in the fol-

lowing sections of the paper. The radial flow rate across

macro-cells can be expressed as a nonlinear function of the

pressure applied at the cell boundaries, i.e.

qðiÞ ¼ qðiÞr ðpi; piþ1Þ; ð6Þ

where q
ðiÞ
r is the radial flow rate in the macro-cell number

i. Equation (6) can be further developed by using a first-

order Taylor transformation. Therefore, the flow rate

approximation q
ðiÞ
r is given as follows:

qðiÞr pi þ Dpi; piþ1 þ Dpiþ1ð Þ ffi qðiÞr pi; piþ1ð Þ þ aðiÞDpi

þ bðiÞDpiþ1 þ o Dp2
� �

; ð7Þ

where a and b are first-order derivatives:

aðiÞ ¼ oq
ðiÞ
r

opi

bðiÞ ¼ oq
ðiÞ
r

opiþ1

:

ð8Þ

These three coefficients (a(i), b(i) and qr(pi, pi?1)) are

computed with the micro-scale model for each macro-cell. qr

is the mass flow obtained when a given pressure differential

is applied at the boundaries of the macro-mesh, whereas

a and b are obtained by applying a small pressure variation at,

respectively, inner and outer radii. They can be calculated

independently for each macro-cell and determined through

parallel computation. When the coefficients are known for

all the macro-cells, it is possible to compute a radial macro-

pressure distribution that ensures the mass flow rate

conservation between contiguous macro-cells:

qðiÞr � qðiþ1Þ
r ¼ 0 ð9Þ

giving thus:

aðiÞDpi þ bðiÞ � aðiþ1Þ
h i

Dpiþ1 � bðiþ1ÞDpiþ2

þ qðiÞr pi; piþ1ð Þ � qðiþ1Þ
r piþ1; piþ2ð Þ ¼ 0; ð10Þ

where Dp are the unknown pressure variations leading to

mass conservation. Since Eq. (10) is nonlinear, the process

should be repeated until convergence is reached on the

macro-pressure distribution.

2.3 Constitutive Model for Asperity Contact

The contact between the smooth rotor and rough stator first

took place at the highest asperity points. The contact loads

are weak and the rings are generally obtained from brittle

elastic materials. They cannot undergo plastic deformation.

Moreover, it is assumed that only the normal component of

the contact stress supported by the asperities contributes to

their deformations. The tangential component is considered

by means of a friction coefficient.

The rough surface topography being known, the peaks of

the asperities, which are the local maxima of the roughness

height (Fig. 3), are identified. The curvature radii of the

summits can be calculated from the neighbour nodes’ height

distribution. The dimensions of the contact areas are

assumed to be small compared to the radii of the asperities

because of the light loads supported by the seal interface.

The contact model presented herein adheres to the one

developed by Hamrock and Dowson [14]. It described an

elliptic and planar contact. Thereby, the maximal elastic

pressure in ellipsoidal contact is defined as follows:

pc ¼
3

2

Fc

pab
; ð11Þ

where Fc is the contact load, a and b, the respective major

and minor semi-axis of the contact ellipse. The relation

between a and b is defined by the elliptic parameter of

contact, i.e. k = a/b. The contact load Fc is related to the

interference d through the following relation:

Fc ¼ pkEeq

2Ereq

9

d
F

� �3
" #1

2

; ð12Þ

Curvature radii from neighbour nodes

δ

2a

2b

R θ

Rr

Fc

Fig. 3 Contact characteristics of an asperity
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where Eeq is the equivalent Young’s modulus, and E and

F are the elliptic integrals of the first and second kinds,

respectively [15].

2.4 The Equilibrium Condition

The opening force consists of the pressure force in the fluid

film and total contact force due to asperity contacts. It is

expressed as:

Fopening ¼ Wt þWh; ð13Þ

where Wt and Wh are, respectively, the total contact force

and the fluid force on all the Nbl macro-cells:

Wt ¼ 2p
ht

Pnbl

i¼1

W
ðiÞ
t ¼ 2p

ht

Pnbl

i¼1

P

ncðiÞ
W
ðiÞ
c

Wh ¼ 2p
ht

Pnbl

i¼1

W
ðiÞ
h ¼ 2p

ht

Pnbl

i¼1

Rriþ1

ri

Rht

0

prdrdh:

ð14Þ

Furthermore, the force that is supposed to balance the

opening force and maintain the seal surfaces as close as

possible is due to the action of the pressure of the sealed

fluid on the back side of the floating ring. It is called the

closing force, and it is defined as:

Fclosing ¼ p R2
o � R2

h

� �
po þ p R2

h � R2
i

� �
pi; ð15Þ

where Rh is the hydraulic radius. It allows the balance ratio

Bh of the seal to be defined as:

Bh ¼
R2

o � R2
h

R2
o � R2

i

: ð16Þ

The average distance between the rings is adjusted by a

Newton algorithm, so that the hydrodynamic lift and the

contact force balance the closing force applied on the

floating ring.

3 General Solution Procedure

The flowchart shown in Fig. 4 depicts the overall procedure

and the way the solution is checked for convergence. The

computation starts with the initial input including: the sur-

face topography, the material properties, and the operating

and design parameters. Afterwards, the overall micro-mesh

Non

Check convergence
on forces balance

Calculate hydrodynamic and,
contact forces

Solve macro-pressure equation

Calculate qr, a(i) , b(i)

For each cell

Film thickness adjustment

Calculate flow rate, des forces and
friction coefficient 

Macro-scale mesh

Input data

Solve macro-pression equation

Yes

Micro-scale mesh

Output data

Microscopic description

Macroscopic description

No

No

Yes

Parallel computation

Check convergence
on pressure

Fig. 4 Flowchart describing the multiscale solution procedure
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is divided into a given number Nbl of macro-cells. This step is

followed by an iterative procedure, where the coefficients qr,

a and b are calculated for each macro-cell. These coefficients

are evaluated with the micro-scale model, where the micro-

pressure and flow rate are calculated using the finite volume

method and a fast LU matrix decomposition technique. The

macro-pressure distribution is computed by solving the tri-

diagonal system given by Eq. (6). The process is repeated

until the macro-pressure field is converged, meaning that the

average variation of p is lower than 10-6 times the average

p value. The nonlinearity arises from the micro-cavitation

occurring within each macro-element. Next, the forces are

calculated and the opening force is compared with the

closing force. If the forces are not balanced, the film thick-

ness is further adjusted via the Newton algorithm until the

final solution achieves convergence. The convergence cri-

terion on the relative force error was set at 10-5.

Since the coefficients qr, a and b can be calculated

independently for each macro-cell, the numerical algorithm

can easily be parallelized. The Open MP library is used to

distribute the work on the different processors of the

computer. This approach is very efficient to reduce com-

putation time. The parallel computations zones are indi-

cated by a thick line in Fig. 4.

4 Results and Discussion

As noted herein, the possibility of reducing the computa-

tion time is one of the main driving factors for using the

multiscale approach to model mixed lubrication in face

seals. The mechanical seal characteristics used in the

numerical analysis are presented in Table 1.

The rough surfaces (Figs. 5, 6) used in the algorithm

were generated numerically [15] and their characteristics

are shown in Table 2. The surfaces are non-Gaussian

because of the polishing process and the running-in of the

seals. Moreover, they are periodical in the circumferential

direction, to be in line with the assumptions of the model.

Table 1 Operating and design parameters of the mechanical seal

Inner radius, Ri 0.029 m

Outer radius, Ro 0.033 m

Balance ratio 0.75

Rotation speed, x 10–1,000 rad/s

Outer pressure, po 1 Mpa

Inner pressure 0

Fluid viscosity, l 10-3 Pa s

Fluid density, q0 1,000 kg/m3

Cavitation pressure, pcav -0.01 MPa

Dry contact friction coefficient 0.2

Stator material Silicon carbide

Rotor material Carbon

Fig. 5 Top view and lateral

view of surface 1

Fig. 6 Top view and lateral

view of surface 2
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In the studied case, 4,000 nodes in the radial direction, and

200 in the circumferential direction are considered well

suited and efficient [10].

4.1 Model Validation

The results from the present multiscale solution are com-

pared with the pure deterministic model of Minet et al.

[10]. The objective is not to analyse the physical signifi-

cance of the results, but to study the performance of the

multiscale approach compared to a deterministic method.

For convenience, the results are presented as a function of

the duty parameter G, which controls the magnitude of the

hydrodynamic effect in the fluid film:

G ¼
lx R2

o � R2
i

� �

2Fclosing

: ð17Þ

In this section, the number of macro-cells is varied from

five, which is expected to give a more accurate solution, to

20 which is expected to give a faster solution (reduced

computation time).

The Stribeck curve is an overall view of the friction

variation for the entire range of the lubrication regimes,

including the hydrodynamic and mixed lubrication

regimes. Figure 7a, b presents the Stribeck curves that

were numerically obtained for the mechanical seal and the

rough surfaces previously described when the operating

velocity was varied. The friction coefficient f was com-

puted from the total friction torque Cf:

f ¼ 2Cf

Ro þ Rið ÞFclosing

: ð18Þ

A decreasing friction zone corresponding to mixed

lubrication and an increasing friction zone at higher speeds

which is typical of the hydrodynamic regime are observed.

It can be seen that for all the tested values of the macro-

cells numbers, the Stribeck curves obtained with the mul-

tiscale model are correlated with the one computed with

the deterministic model. However, a slight difference can

be observed in the mixed lubrication regime.

The evolution of the cavitation area within the sealing

interface is presented in Fig. 8a, b as a function of G. The

results obtained with different numbers of macro-cells are

presented, as well as the results from the deterministic

model. The figures show that the percentage of cavitation

increases with the duty parameter G, but the ratio depends

on the characteristics of each surface. Generally speaking,

the multiscale model tends to underestimate the cavitation

fraction compared to the deterministic solution. The error

is increased when the number of macro-cells is higher. This

is not surprising because at each macro-cell boundary, a

constant pressure and thus a full fluid film are imposed,

Table 2 Characteristics of the rough surface and of the mesh

Surface 1 Surface 2

Roughness standard deviation, Sq 0.1 lm

Skewness coefficient, Sk -2.7 -3

Kurtosis coefficient, Ku 35.4 58

Number of cells in radial dir. 4,000

Number of cells in circ. dir. 200

Radial correlation length at 80 % (lm) 8

Circumference correlation

length at 80 % (lm)
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Fig. 7 Comparison of the Stribeck curves obtained with the multi-

scale and pure deterministic models
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whereas a cavitation zone can develop through this

boundary in the deterministic solution.

The variations of the hydrodynamic lift and the contact

force with the duty parameter G for different numbers of

macro-cells are presented in Fig. 9a, b and compared to the

deterministic results. It can be observed that the generated

hydrodynamic lift increases with the duty parameter. The

hydrodynamic effect that contributes to the seal rings

separation unloads the asperities in contact. Consequently,

the contact force tends to zero when the duty parameter

G is increased. The curves obtained with the different

numbers of macro-cells do not perfectly overlap in the

mixed lubrication zone before reaching the critical value of

G, where the transition to the hydrodynamic lubrication

regime takes place and the contact force vanishes. How-

ever, the multiscale model exhibits a reasonable agreement

with the deterministic approach and can quite accurately

define the transition between the lubrication regimes.

Figure 10a, b presents the average distance of separation

between the seal rings versus the duty parameter G calcu-

lated with the deterministic and the multiscale models.

Obviously, the film thickness increases with G because of
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Fig. 8 Cavitation fraction curves obtained with the multiscale and

pure deterministic models
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Fig. 9 The fluid force and contact force curves obtained with the

multiscale and pure deterministic models
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the hydrodynamic lift enhancement. The film thickness

obtained with surface 1 is thinner than the one corre-

sponding to surface 2. This is correlated with the cavitation

fraction (Fig. 8) and the calculated friction (Fig. 7). The

results show that the multiscale model leads to an accurate

estimation of the film thickness for all the macro-mesh

tested here.

4.2 Model Performance

This objective of the present approach is to reduce the

computation time compared to a deterministic solution.

This is why the microscopic domain was divided into sub-

domains. Moreover, from the programming point of view,

the multiscale approach presented here offers a very simple

and reliable way for parallelization, since the computation

on the micro-scale can be performed simultaneously for

each macro-cell. Figure 11a, b gives, as a function of the

number of macro-cells, the computation time necessary to

obtain the entire Stribeck curves previously presented. The

first point (i.e. one macro-cell) corresponds to the deter-

ministic simulation. First of all, when the number of

macro-cells is higher than five, the total CPU time is sig-

nificantly reduced compared to the deterministic solution.

Secondly, because of the parallel computation, the total

computation time is shared between the processor, thus

reducing the real computation time. The simulations have

been carried out on a dual processor system, which is why
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Fig. 10 The film thickness curves obtained with the multiscale and

pure deterministic models
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Fig. 11 Computation time for different cell numbers
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the real computation time indicated in Fig. 11a, b is

approximately divided by two. If a more efficient computer

with four or eight processors is used, the real computation

time can be more significantly reduced.

However, the decrease in computation time is also fol-

lowed by a loss in results accuracy. The average relative

errors, compared to the deterministic solution, of the friction

coefficient, the mean film thickness and the cavitation area are

presented in Fig. 12a, b. The results were calculated over the

entire duty parameter range previously presented and depend

on the characteristics of the surface. Generally speaking, the

average error on these parameters increases with the number

of macro-cells (except for one marginal case). The error arises

from the boundary condition used between the sub-domains,

where a constant pressure is imposed. This pressure ensures a

global mass conservation but not a local mass conservation.

Even if the error on cavitation fraction can reach values as high

as 20 %, the error on film thickness is comparatively very

small (lower than 5 %). The averaged values used to compute

the error are presented in Tables 3 and 4.

4.3 Local Deterministic and Multiscale Comparison

The main simplification used in the multiscale model is to

conserve the mass flow globally (from macro-cell to macro-

cell), but not locally. This allows a reduction in computation

time, but also induces a certain error compared to a pure

deterministic solution, as previously discussed. The objec-

tive of this section is to observe the local pressure distribution

and to analyse the effect of this assumption.

The pressure distribution for the both models with the

same operating condition (G = 2.12E-8) and surface are

plotted in Fig. 13. As previously stated, the simulations are

carried out with 4,000 nodes in the radial direction and 200

in the circumferential direction. The macro-mesh is

obtained by dividing the total micro-mesh in the radial

direction by the number of macro-cells. Here, the simula-

tion was performed with 20 macro-cells.
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Fig. 12 Errors on the average friction coefficient, cavitation fraction

and mean film thickness

Table 3 Data obtained from

surface 1
Deterministic case 5 macro-cells 10 macro-cells 20 macro-cells

Friction coefficient 2.769E-02 2.901E-02 2.897E-02 2.514E-02

Film thickness (m) 3.052E-07 3.093E-07 3.114E-07 3.156E-07

Cavitation (%) 8.958 8.609 8.715 8.060

Table 4 Data obtained from

surface 2
Deterministic case 5 macro-cells 10 macro-cells 20 macro-cells

Friction coefficient 2.020E-02 2.098E-02 2.117E-02 2.030E-02

Film thickness (m) 3.598E-07 3.591E-07 3.604E-07 3.685E-07

Cavitation (%) 6.674 6.177 6.029 5.129
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The pressure fields presented in Fig. 13 indicate a good

correlation between the two models. The transition from

one macro-cell to another is difficult to detect. For conve-

nience, a part of the figure has been zoomed into show the

way the studied area is subdivided and more clearly see the

effect of constant pressure at the boundaries. Moreover,

pressure profiles obtained from the deterministic and mul-

tiscale simulations are compared in Fig. 14. This shows that

even if the multiscale model locally affects the pressure

distribution in the vicinity of the macro-cell boundaries

(node 3600 and 3200 for 10 and 3800, 3600, 3400 and 3200

for 20 macro-cells), it has a relatively weak effect on the

whole local distribution. This illustrative example is devel-

oped further to support the multiscale model assumptions.

4.4 Macroscopic Pressure Distribution

Figure 15a, b presents the macroscopic pressure distribution

for both surfaces when G is varied. As expected, when

G increases, the global level of fluid pressure rises because of

the hydrodynamic pressure generation. An interesting point is

the following: the leakage flow occurs from the high pressure

zone (outer radius) to the low pressure zone (inner radius).

However, the macroscopic pressure gradient can be inverted

to the general pressure gradient and the resulting leakage flow.

This means that a kind a radial fluid pumping must be

Fig. 13 Pressure distribution

obtained with the deterministic

and multiscale models with

Nbl = 20 (surface 1)
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generated within each macro-cell when one surface is moving.

The amount of pumping is different from one cell to the other,

leading to different pressure gradients at the boundaries of the

element. This effect is at the origin of the pressure build up

which can lead to macroscopic pressure values higher than the

feeding pressure and finally to faces separation.

The influence of the number of macro-cells on the

macroscopic pressure distribution is illustrated in Fig. 16a,

b. A good agreement between the results is obtained even if

an increase in the number of sub-domains leads to an

increase in the error.

5 Conclusion

A multiscale approach for mixed lubrication has been

presented. It is based on a micro-deterministic model

working on a small area, coupled with a macro-scale model

providing the pressure distribution on a macro-mesh.

The results from the multiscale model are correlated

with those obtained by a deterministic model. Since the

studied area is subdivided into macro-cells, the numerical

resolution can be carried out by means of parallel com-

putation. This approach allows a significant reduction of

the computation time, while maintaining reasonable accu-

racy compared to a full deterministic approach. The mac-

roscopic pressure provides comprehensive information

explaining the roughness-induced pressure generation,

which is not easily obtained with a full deterministic

solution.
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Fig. 15 Evolution of the macroscopic pressure distribution

(Nbl = 20)
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Fig. 16 Influence of the number of macro-cells on the macroscopic

pressure distribution (G = 1.96E-07)

428 Tribol Lett (2012) 47:417–429

123



The presented multiscale approach can be extended to a

two-dimensional configuration, in order to deal with large

domains.
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