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Abstract We discussed the role of the long-range elastic

interaction between the contacts inside an inhomogeneous

frictional interface. The interaction produces a character-

istic elastic correlation length kc = a2E/kc (where a is the

distance between the contacts, kc is the elastic constant of a

contact, and E is the Young modulus of the sliding body),

below which the slider may be considered as a rigid body.

The strong inter-contact interaction leads to a narrowing of

the effective threshold distribution for contact breaking and

enhances the chances for an elastic instability to appear.

Above the correlation length, r [ kc, the interaction leads

to screening of local perturbations in the interface, or to

appearance of collective modes—frictional cracks propa-

gating as solitary waves.

Keywords Boundary lubrication � Nanotribology �
Viscosity � Master equation � Stick–slip

1 Introduction

Studies of sliding friction, a subject with great practical

importance and with rich physics, attracted an increased

interest during the last two decades [1, 2]. Tip-based

experimental techniques as well as atomistic molecular

dynamics (MD) computer simulations describe with con-

siderable success the processes and mechanisms operating

in atomic-scale friction. Much less is known with regard

to meso- and macro-scale frictions, where one has to take

into account that the frictional interface is inhomogeneous

and generally complex. An immediate example is dry

friction between rough surfaces. Even when the sliding

surfaces are ideally flat but, for example, the substrates

are not monocrystalline, or there is an interposed solid

lubricant film consisting of misoriented domains, the

frictional interface is again inhomogeneous. The same

may be true even for liquid lubrication, if, under applied

load, the lubricant solidifies making bridges due to

Lifshitz–Slözov coalescence. In these cases, the so-called

earthquake-like (EQ)-type models can be successfully

applied [2–13]. In the EQ model, the two (top and bot-

tom) mutually sliding surfaces are coupled by a set of

contacts, representing, e.g., asperities, patches of lubri-

cant, or 2D crystalline domains. A contact is assumed to

behave as a spring of elastic constant kc so long as its

length is shorter than a critical value xs = fs/kc; above this

length, the contact breaks, to be subsequently restored

with lower stress. The sliding kinetics of this model may

be reduced to a master equation (ME), which allows an

analytic study [8, 11, 12].
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In the simplest approach, the slider is treated as a rigid

body. Owing to the non-rigidity of the substrates, however,

several length scales naturally appear in the problem. First,

different regions of the interface will exhibit different

displacements. If the length kL is such that, for distances

r � kL, the displacements are independent, then it is

known as the Larkin–Ovchinnikov length [14]. It was

shown [15] that, for the contact of stiff rough solid sur-

faces, kL may reach disproportionately large values

*10100,000 m. Second, deformations of the solid substrates

lead to the elastic interaction between the contacts. Elas-

ticity will correlate variations of forces on the nearest

contacts over some length kc known as the elastic corre-

lation length [16]. Third, displacements in one region of the

slider will be felt in other regions on the distance scale set

by of a screening length ks. Finally, the breaking of one

contact may stimulate neighboring contacts to break too

(the so-called concerted, or cascade jumps), following

which an avalanche-like collective motion of different

domains of the interface may appear [5].

In this article, we discuss collective effects in the fric-

tional interface and propose approaches to treat them from

different viewpoints. In particular, our aim is to clarify the

following questions: (i) what is the law of interaction

between the contacts? (ii) at which scale can the slider be

considered as a rigid body, or what is the coherence dis-

tance kc within which the motion of contacts is strongly

correlated? (iii) whether the interaction effects can be

incorporated in the ME approach? (iv) how does the

interaction modifies the interface dynamics? (v) what is the

screening length ks? and (vi) when do avalanche motion of

contacts (a self-healing crack) appear, and what is the

avalanche velocity?

The article is organized as follows. The EQ model, its

description with the ME approach, and the elastic insta-

bility responsible for the stick–slip motion are introduced

in Sect. 2. The interaction between contacts is studied in

Sect. 3. An approach to incorporate the interaction between

contacts into the ME approach in a mean-field fashion is

described in Sect. 4. The role of interaction at the meso/

macro-scale is considered in Sect. 5. Finally, discussions in

Sect. 6 conclude the article.

2 EQ Model, ME, and Elastic Instability

2.1 The EQ Model

In the EQ model, the sliding interface is treated as a set of

N contacts which deforms elastically with the average

rigidity kc. The ith contact connects the slider and the

substrate through a spring of shear elastic constant ki.

When the slider is moved, the position of each contact

point changes, the contact spring elongates (or shortens), so

that the slider experiences a force -F =
P

fi from the

interface, where fi = kixi and xi(t) is the shift of the ith

junction from its unstressed position. The contacts are

assumed to be coupled ‘‘frictionally’’ to the slider. As long

as the force |fi| is below a certain threshold fsi, the ith

contact moves together with the slider. When the force

exceeds the threshold, the contact breaks and a rapid local

slip takes place, during which the local stress drops. Sub-

sequently, the junction is pinned again in a less-stressed

state with fbi, and the whole process repeats itself. Thus,

with every contact, we associate the threshold value fsi and

the backward value fbi, which take random values from the

distributions ePcðf Þ and eRðf Þ respectively. When a contact

is formed again (re-attached to the slider), new values for

its parameters are assigned. The EQ model was studied

numerically in a number of studies [3–10], typically with

the help of the cellular automaton numerical algorithm.

2.2 The ME Approach

Rather than studying the evolution of the EQ model by

numerical simulation, it is possible to describe it analyti-

cally [8, 11, 12]. Let Pc(x) be the normalized probability

distribution of values of the stretching thresholds xsi at

which contacts break; it is coupled with the distribution of

threshold forces by the relationship PcðxÞdx ¼ ePcðf Þdf ;

i.e., the corresponding distributions are coupled by the

relationship PcðxÞ / x ePc½f ðxÞ�; where f � x2 [11]. We

assume that the distribution Pc(x) has a dispersion Dxs

centered at x = xc.

To describe the evolution of the model, we introduce the

distribution Q(x; X) of the contact stretchings xi when the

sliding block is at position X. Evolution of the system is

described by the integro-differential equation (known as

the ME, or the kinetic equation, or the Boltzmann equation)

[8, 11]

o

oX
þ o

ox
þ PðxÞ

� �

Qðx; XÞ ¼ RðxÞCðXÞ; ð1Þ

where

CðXÞ ¼
Z1

�1

dnPðnÞQðn; XÞ ð2Þ

and

PðxÞ ¼ PcðxÞ=JcðxÞ; JcðxÞ ¼
Z1

x

dnPcðnÞ: ð3Þ

Then, the friction force (the total force experienced by the

slider from the interface) is given by ðkc ¼ hkiiÞ
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FðXÞ ¼ Nkc

Z1

�1

dx xQðx; XÞ: ð4Þ

In the steady state corresponding to smooth sliding, the ME

reduces to

dQðxÞ=dxþ PðxÞQðxÞ ¼ RðxÞC; ð5Þ

which has the solution:

QsðxÞ ¼ NEPðxÞ 1þ C
Zx

0þ

dnRðnÞ=EPðnÞ

2

4

3

5; ð6Þ

where N is the normalization constant,
R1

0
dx QsðxÞ ¼ 1;

and

EPðxÞ ¼ exp �UðxÞ½ �; UðxÞ ¼
Zx

0

dnPðnÞ: ð7Þ

2.3 Elastic Instability

The solution of the ME [8, 11] shows that, when a rigid

slider begins to move adiabatically, _X [ 0; it experiences

from the interface a friction force F1ðXÞ\0: Initially,

jF1j grows roughly linearly with X, jF1j � KsX where

Ks = Nkc is the total elastic constant (‘‘rigidity’’) of the

interface, until it reaches a value �Fs � DFs; where Fs &
Ksxc and DFs � KsDxs: Gradually, however, contacts begin

to break and reform, slowing down the increase of jF1j
and then inverting the slope through a displacement Dxs

until almost all contacts have been reborn. Successively,

the process repeats itself with a smaller amplitude until,

owing to increasing dispersion of breaking and reforming

processes, the force asymptotically levels off and attains a

position-independent steady-state kinetic friction value

with smooth sliding.

According to Newton’s third law, the external driving

force Fd = K(vt - X), which causes the displacement X

(where K is the slider rigidity and v is the driving velocity),

is compensated by the force from the interface, Fd = F(X).

Smooth sliding is always attained with a rigid slider. It

persists for a nonrigid slider as well, so long as the pulling

spring stiffness is large enough, K [ K*, where

K� ¼ maxF01ðXÞ; F01ðXÞ 	 dF1ðXÞ=dX: ð8Þ

When conversely the slider or the pulling spring elastic

constant are soft enough (K \ K*), there is a mechanical

instability. The driving force Fd cannot be compensated by

the force from the interface, and the slider motion becomes

unstable at Xc, where Xc is the (lowest) solution of

F01ðXÞ ¼ K (for details see Refs. [8, 11]). The mechanical

instability yields stick–slip frictional motion of the slider.

Thus, the regime of motion—either stick–slip for K 

K* or smooth sliding for K � K*—is controlled by the

effective stiffness parameter: K� �Ksxc=Dxs: When all

contacts are identical, Dxs ¼ 0 so that K� ¼ 1; then one

always obtains a stick–slip motion.

2.4 Material Parameters

It is useful here, before proceeding with the analytic and

numerical developments necessary to answer the questions

posed in the Introduction, to review the practical signifi-

cance and magnitude of the model parameters.

2.4.1 Elastic Constant of the Slider

The slider (shear) elastic constant K is equal to K = [E/

2(1 ? r)][LxLy/H], where Lx, Ly, and H are the slider

dimensions, E and r are the substrate Young modulus and

Poisson ratio, respectively [17]. For example, for a steel

slider of Young’s modulus E = 2 9 1011 N/m2, Poisson’s

ratio r = 0.3, and the size Lx 9 Ly 9 H = 1 cm 9

1 cm 9 1 cm, we obtain K = 109 N/m.

2.4.2 Rigidity of the Interface Contacts

Now, we characterize the typical magnitudes of the contact

stretching length xc and stiffness kc. Assume the slider and

the substrate to be coupled by N = LxLy/a
2 contacts, and

that the contacts have a cylindrical shape of (average)

radius rc with a distance a between the contacts. It is useful

to introduce the dimensionless parameter c2 = rc/a, which

may be estimated as follows [1]. Consider a cube of linear

size L on a table. The weight of the cube Fl = qL3g (q is

the mass density and g = 9.8 m/s2) must be compensated

by forces from the contacts, Fl = Nrc
2rc, where rc is the

plastic yield stress. Then, c2
2 = (Nrc

2)/(Na2) = (qL3g)/

(rcL
2), or c2 = (qLg/rc)

1/2. Taking L = 1 cm, q = 10 g/

cm3, and rc = 109 N/m2 (steel), we obtain c2 = 10-3 which

should be typical for a contact of rough stiff surfaces. For

softer materials, and especially for a lubricated interface,

the values of c2 would be much larger, e.g., c2 = 0.1.

The second dimensionless parameter c1 = kc/Ea char-

acterizes the stiffness of the contacts. To estimate c1,

assume again contacts with the shape of a cylinder of

radius rc and length h (h is the thickness of the interface).

Suppose in addition that one end of a contact (‘‘column’’) is

fixed, and a shear force f is applied to the free end. This

force will lead to the displacement x = f/kc of the end,

where kc = 3EcI/h
3, Ec is the Young modulus of the con-

tact material, and I = p rc
4/4 is the moment of inertia of the

cylinder [17]. In this way, we obtain kc = (3p/4)(Ecrc)

(rc/h)3, so that c1 ¼ ð3p=4Þ Eca3=Eh3ð Þ rc=að Þ4¼ c0c
4
2 with
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c0 = (3p/4)(Ec/E)(a/h)3. For the contact of rough surfaces,

where Ec = E and aJh; we have c0J1; while for lubri-

cated interfaces where Ec 
 E, one would expect c0.1:

An estimate of characteristic values [1] leads to

rc�ð10�3 � 10�2Þa: Thus, for the steel slider considered

above, taking rc = h = 1 lm and intercontact spacing

a = 3 9 102rc, we obtain N = 103 and kc = 5 9 105 N/m,

so that the global stiffness of the interface is Ks =

5 9 108 N/m.

2.4.3 Stick–Slip Versus Smooth Sliding

As mentioned above in Sect. 2.3, the regime of motion

(either stick–slip or smooth sliding) is controlled by the

parameter K� �Ksxc=Dxs: For the steel slider considered

above, estimates gave K = 109 N/m and Ks = 5 9 108 N/m.

Thus, if the surfaces are rough so that Dxs� xc; then

K [ K* and one should typically get smooth sliding. Stick

slip appears further disfavored if we consider a realistic

Pc(x) distribution. For all cases mentioned in Introduc-

tion—the contact of rough surfaces (both for elastic or

plastic asperities), the contact of polycrystal (flat) sub-

strates, and the case of lubricated interface, when the

lubricant melted during a slip, solidifies and forms bridges

at stick—the distribution Pc(x) is rather wide with a large

concentration of small-threshold contacts [11], which

makes the value of K* very small. Thus, the theory predicts

that most systems do not undergo an elastic instability and

should not therefore exhibit stick–slip. This conclusion

contradicts everyday experience as well as careful experi-

ments, where stick–slip is pervasive. As suggested by EQ

simulations [13], the discrepancy is most likely caused by

ignoring the elastic interaction between the contacts.

The role of interaction is considered in the next sections.

First, however, we need to define the form and parameters

of the interaction between contacts.

3 Interaction Between Contacts

Friction is not a simple sum of individual contact proper-

ties. The collective behavior of the contacts is important.

Recently, Persson [18–22] developed a contact mechanics

theory based on the fractal structure of surfaces to deter-

mine the actual contact area at all length scales, which

determines the friction coefficient. This approach includes

the presence of multiple contacts and leads to the correct

low-threshold limit: ePcðf ! 0Þ ¼ 0: Persson found that

the distribution of normal stresses r (r[ 0) at the inter-

face may approximately be described by the expression

PrðrÞ / exp �ðr� �rÞ2=Dr2
h i

� exp �ðrþ �rÞ2=Dr2
h i

;

where �r is the nominal squeezing pressure, the distribution

width is given by Dr ¼ E�R1=2 (E* is the combined Young

modulus of the substrates, E*-1 = E1
-1 ? E2

-1 where E1,2

are the Young modula of the two substrates), and the

parameter R is determined by the roughness of the con-

tacting surfaces, R ¼ ð4pÞ�1 R
dq q3

R
d2x hhðxÞhð0Þie�iqx:

Assuming that a local shear threshold is directly propor-

tional to the local normal stress, f � r, we finally obtain the

distribution, which is characterized by a low concentration

of small shear thresholds, ePcðf Þ / f at f ? 0, and a fast

decaying tail, ePcðf Þ / expð�f 2=f �2Þ at f !1; i.e., now

the peaked structure of the distribution is much more

pronounced.

However, an important aspect which has to be included

is the redistribution of the forces when some contacts

deform or break. A concerted motion of contacts may

emerge only due to interaction between the contacts which

occurs through the deformation of the bulk in the directions

parallel to the average contact plane. It is this aspect that

we want to consider here. For the elastic interaction, a

qualitative picture is presented in Fig. 1 (left). When a

contact acts on the surface at r = 0 with a force f, it pro-

duces a displacement field u(r) � r-1 which affects other

contacts (Fig. 1a)—similar to the Coulomb potential for a

point charge [17]. However, if there are two surfaces, then

the same contact acts on the second surface with the

opposite force -f and, if the two surfaces are in contact, the

resulting displacement field should fall as u(r) � r-3

(Fig. 1b)—similar to the dipole–dipole potential for a

screened point charge near a metal surface [23]. The

question thus is the form of the interaction for the multi-

contact interface (Fig. 1c). We will show that the interac-

tion between the contacts has a crossover from the r-1 slow

Coulomb decay at short distances to the faster dipole–

dipole one at large distances.

(a)

(b)

(c)

Fig. 1 Left decaying of the displacement field at the interface

(schematic): (a) for a single contact u(r) � r-1, (b) for a single hole

u(r) � r-3, and (c) for the array of contacts. Right change of forces on

contacts when the central contact is removed (c1 = 0.06)

14 Tribol Lett (2012) 48:11–25
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3.1 Analytics

Let us consider an array of N elastic contacts (springs) with

coordinates ri 	 fxi; yi; 0g; i ¼ 1; . . .;N; between the

two (top and bottom) substrates. If the interface is in a

stressed state, the contacts act on the top substrate with

forces fi : {fix, fiy, fiz}. These contact forces produce

displacements ui
(top) of the (bottom) surface of the top

substrate. The 3N-dimensional vectors U(top) : {ui
(top)}

and Ft : {fi} are coupled by the linear relationship

U(top) = G(top)Ft. Elements of the elastic matrix G(top)

(known also as the elastic Green tensor) for a semi-infinite

isotropic substrate were given by Landau and Lifshitz [17]:

Gix;jx ¼ gðrijÞ½2ð1� rÞ þ 2rx2
ij=r2

ij�
Gix;jy ¼ 2gðrijÞrxijyij=r2

ij

Gix;jz ¼ �gðrijÞð1� 2rÞxij=rij

Giz;jx ¼ �Gix;jz

Giz;jz ¼ 2gðrijÞð1� rÞ;

ð9Þ

where xij = xi - xj, g(r) = (1 ? r)/(2pEr), and r and E

are the Poisson ratio and Young modulus of the top sub-

strate, respectively.

In the equilibrium state, the forces that act from the con-

tacts on the bottom substrate, must be equal to Fb = -Ft

according to Newton’s third law. These forces lead to dis-

placements of the (top) surface of the bottom substrate,

U(bottom) = -G(bottom)Ft. The elements of the bottom Green

tensor G(bottom) are defined by the same expressions (9)

except the xz elements for which Gix,jz
(bottom) = -Gix,jz

(top) (if the

substrates are identical, the z displacements are irrelevant).

Thus, the relative displacements at the interface due to

elastic interaction between the contacts are determined by

U 	 UðtopÞ � UðbottomÞ ¼ �GF; ð10Þ

where F = -Ft and G = G(top) ? G(bottom).

On the other hand, the forces and displacements are

coupled by the diagonal matrix (the contacts’ elastic

matrix) K, Kia,jb = kia dij dab (a, b = x, y, z):

F ¼ KðU0 þ UÞ; ð11Þ

where U0 defines a given stressed state (because of linearity

of the elastic response, final results should not depend of U0).

The total force at the interface, f =
P

ifi, must be compen-

sated by external forces applied to the substrates, e.g., by the

force f(ext) = f applied to the top surface of the top substrate

if the bottom surface of the bottom substrate is fixed.

Combining Eqs. 10 and 11, we obtain F = K(U0 - GF),

or

F ¼ BKU0; where B ¼ ð1þKGÞ�1: ð12Þ

If one changes the contact elastic matrix, K ?
K ? dK, then the interface forces should change as well,

F ? F ? dF. From Eq. 12 we have dF =

(dB)KU0 ? B(dK)U0. Then, dB may be found from the

equation d[B(1 ? KG)] = (dB)(1 ? KG) ? B(dK)G = 0.

Therefore, finally, we obtain as follows:

dF ¼ BdKð1�GBKÞU0: ð13Þ

Above we have assumed that dK is small. If it is not small,

we have to use the expression dF ¼ BdKð1�GB eKÞU0;

where eK ¼ 1þ dKGBð Þ�1 Kþ dKð Þ:
Now, if we remove the i*th contact by putting dkia ¼

�kiadii� and then calculate the resulting change of forces on

other contacts, we can find a response of the interface to the

breaking of a single contact as a function of the distance

r ¼ ri � ri� from the broken contact.

3.2 Numerics

Equation 13 may be solved numerically by standard

methods of matrix algebra. We explore an idealized array

of identical contacts, kia = kc and (U0)ia = u0dax for all

i, organized in a square 89 9 89 lattice with spacing

a = 1, with the broken contact i* at the center of the lat-

tice. For singular terms of the Green function (9) we apply

a cutoff at rii = rc. Numerical results depend on two

dimensionless parameters. The first is c1 = kc/E*a, which

determines the stiffness of the array of contacts relative the

substrates (here E*
-1 = Etop

-1 ? Ebottom
-1 ). The second

parameter c2 = rc/a characterizes a single contact (or the

density of asperities). For the Poisson ratio we took a

typical value r = 0.3. A typical distribution of breaking

induced force changes is shown in Fig. 1 (right).

The numerical results for the x-component of dimen-

sionless force df = dFx/(kcu0) are presented in Fig. 2. The

function df(r) exhibits a crossover from a slow Coulomb

like decay df(r) � r-1 at short distances r 
 kc to the fast

dipole–dipole like decay df(r) � r-3 at large distances r�
kc. The near and far zones are separates by the elastic

correlation length kc first introduced by Caroli and Nozi-

eres [16]. It may be estimated in the following way: the

stiffness of the ‘‘rigid block’’ K * Ekc should be com-

pensated by that of the interface, K * kc(kc/a)2 (stiffness of

one contact times the number of contacts). This leads to

kc � a=c1 ¼ a2E=kc: ð14Þ
The rigid slider corresponds to the limit E !1; or

c1 ? 0. Therefore, the slider may be considered as a rigid

body (e.g., in MD simulation), if its size is smaller than kc.

For the steel slider considered in Sect. 2.4, estimation gives

kc/a* 102. Up to distance kc the contacts strongly interact. If

the ith contact breaks and its stretching changes on | dxi | &
xc, then the force on the jth contact at a distance rij \ kc

away, changes by dfj � ~jkcadxi=rij;where the dimensionless

parameter ~j\1 characterizes the strength of interaction

Tribol Lett (2012) 48:11–25 15
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(numerics gives ~j� 10�3). In the near zone, r 
 kc, the

interaction between the contacts may be accounted for within

the ME approach in a mean-field fashion as described in the

next Sect. 4. At larger distances, different regions of the

slider will undergo different displacements. Therefore, in the

far zone, r � kc, we must take into account the elastic

deformation of the slider.

4 Nearby Contacts: Mean Field Approach

4.1 EQ Model with Interaction Between the Contacts

Let us now include the dynamical interaction between the

contacts. When a contact breaks, the now unsustained shear

stress must be redistributed among the neighboring con-

tacts. We assume that, because of elastic interaction

between the contacts i and j, the forces acting on these

contacts have to be corrected as fi ! fi � Dfij and fj !
fj þ Dfij; where Dfij ¼ kijðxj � xiÞ in linear approximation.

For example, let at the beginning the contacts be relaxed,

xj(0) = xi(0) = 0. Due to sliding motion, all stretchings

grow together, so that still Dfij ¼ 0: At some instant t, let

the jth contact break, xj(t) ? 0, with the ith contact still

stretched, xi(t) [ 0. Clearly, as the jth contact breaks, the

force on the ith contact increases, DfijðtÞ ¼ �kijxiðtÞ\0:

The amplitude of interaction decreases with the distance r

from the broken contact as Df / r�1 at short distances

r \ kc. Neglecting the anisotropy of interaction, we assume

that kij ¼ ef =jrijj; where ef is a parameter.

We simulated a triangular lattice of N = 60 9

68 = 4080 contacts with periodic boundary conditions and

lattice constant a = 1, with an average contact spring

constant kc = 1, and radius of interaction kc = 3a or

kc = 5a. We assumed fbi = 0 and a rectangular shape of

the distribution Pc(x), i.e., PcðxÞ ¼ Pc0ðxÞ ¼ ð2DxsÞ�1
for

jx� xsj\Dxs and 0 otherwise, which admits an exact

solution for noninteracting contacts [11] (more realistic

distributions give the same results).

Figures 3 and 4 show the result of simulations for dif-

ferent values of the dimensionless strength of the

interaction

j ¼ ef =ðkcxcÞ; ð15Þ

where xc ¼
R

dx xPc0ðxÞ is the average stretching of the

initial threshold distribution (for the rectangular distribu-

tion xc = xs). These results yield the following conclu-

sions. First, in the steady state, the interaction causes a

narrowing of the final distribution Qs(x). At high interac-

tion strength j, the distribution approaches a narrow

Gaussian. Second, the drop of frictional force F(X) at the

onset of sliding (at X * xc) gets steeper and steeper as j
grows. Therefore, contact interactions reinforce elastic

instability. Third, above a critical interaction strength,

j C jc * 0.1, a multiplicity of contacts break simulta-

neously at the onset of sliding, and there is an avalanche,

where the force F(X) drops abruptly. The average ava-

lanche size may be estimated similarly as done in Ref. [5].

While the full EQ model may be only studied numeri-

cally, it is always useful to have analytical results, even if

only of qualitative level. In what follows we show that the

main EQ results may be reproduced within the ME

approach by using ‘‘effective’’ Pc(x) and R(x) distributions

Fig. 2 (Color online) Dependence of the change of forces d f (r) on

the distance x from the broken contact for three values of the interface

stiffness: c1 = 0.003 (blue down triangles, dashed line), 0.06 (red
solid circles, dotted line) and 0.8 (black up triangles, solid line) at

fixed value of c2 = 0.3 (r = 0.3). The lines show the corresponding

power laws

Fig. 3 (Color online) The steady–state distribution Qs(x) for the

rectangular threshold distribution Pc0(x) with xs = 1 and Dxs ¼ 0:25

and different values of the interaction strength j = 0, 0.02, 0.06, 0.1,

and 0.5. The EQ simulations (dotted) are compared with the ME

results (solid curves)
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defined in a mean-field fashion. In this section, the ME

equation is only used to reproduce the EQ results. This is,

however, useful because it provides an additional under-

standing of the results, as the effective distributions

obtained in this analysis, provide a description of the col-

lective effects affecting the contacts in terms of simple

functions.

4.2 Smooth Sliding

Using the steady–state solution of the ME, and Eqs. 6 and

7, one may approximately recover the functions Pc(x) and

R(x) if the stationary distribution Qs(x) is known. Indeed,

for small x, where P(x) is close to zero, the left-hand side

of Qs(x) allows us to find R(x) as RðxÞ / Q0sðxÞ (see Eq. 5),

while the right-hand side of Qs(x), where x * xc and the

contribution of R(x) to the shape of the steady–state dis-

tribution is negligible, gives us [11] PcðxÞ / PðxÞQsðxÞ /
�Q0sðxÞ: Thus, differentiating the function Qs(x) obtained

in the EQ simulation, we may guess shapes of the effective

distributions Pc(x) and R(x) which, when substituted in the

ME, would produce a solution Qs(x) close to that obtained

in the EQ simulation.

Using the simulation results, let us suppose that the detached

contacts form again with nonzero stretchings, i.e., that the

distribution R(x) is shifted to positive stretching values,

RðxÞ ¼ Gðx� axc; cxcÞ; ð16Þ

where G(x, r) is the Gaussian distribution with zero mean

and standard deviation r,

Gðx; rÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p exp � x2

2r2

� �

: ð17Þ

At the same time, we suppose that the effective threshold

distribution Pc(x) shrinks and shifts with respect to the

original (‘‘noninteracting’’) one,

PhðxÞ ¼ bPc0 bðx� axcÞ½ �: ð18Þ

Let us moreover take its convolution with the Gaussian

function (17), PcðxÞ ¼ Ph � G 	
R

dnPhðx� nÞGðn; c
ffiffiffi
2
p

xcÞ:
The results of this procedure for the rectangular distri-

bution Pc0(x) are shown in Fig. 3. We see that, with a

proper choice of the parameters a, b and c, the ME solu-

tions Qs(x) perfectly fits the numerical EQ results (for the

parameters a, b, and c in Fig. 3 we used expressions

b = 1 ? b1j, a = b2j/b, and c = b3a - b4a
2 with the

coefficients b1 = 18, b2 = 9.6, b3 = 0.142, and b4 = 0.232).

Results of similar quality were also obtained for other

simulated cases, e.g., for larger radius of the interaction or

for wider threshold distribution Pc0(x).

The dependences of the fitting parameters a, b, and c on

the dimensionless strength of interaction j may be found in

the following way. To begin with, for noninteracting con-

tacts initially a = c = 0 and b = 1. It is reasonable to

expect that in the lowest approximation a, c � j and b - 1

� j. Indeed, because the shift of the effective distribution

Pc(x) appears because of the interaction, afc ¼
P

j Dfij; at

small j we have approximately

a� 0:5a�2

Zkc

0

d2rjxc=jrj ¼ pjkcxc=a2: ð19Þ

At large j, however, a has to saturate, e.g., as a � j/b,

because the shift cannot be larger than xc, i.e., a\ 1.

Then, because the distribution Pc(x) shrinks from both sides,

we have b1 * 2b2.

Thus, the interaction makes the threshold distribution

Pc(x) narrower by a factor b and shifts its center to the left-

hand side, xc ? mxc, where m = a ? b-1 changes from 1 to

0.5 as the interaction strength j increases from zero to

infinity.

4.3 Onset of Sliding

The beginning of motion when started from the relaxed

configuration, Q(x; 0) = d(x), cannot be explained by the

approach used above, because the effective distribution

Pc(x) is ‘‘self-generated’’ during smooth sliding, i.e., it can

be applied only when the process of contacts breaking–

reattachment is continuously operating. Nevertheless, the

initial part of the F(X) dependence may still be described

Fig. 4 (Color online) Onset of sliding: the initial part of the

dependence of the friction force F on the slider displacement X for

different strength of interaction j = 0.005 (black), 0.01 (cyan), 0.03

(red), 0.05 (blue), and 0.07 (magenta). Dotted curves show the results

of EQ simulation, and solid curves, the mean-field ME approach. The

threshold distribution Pc0(x) has the rectangular shape with xs = 1

and Dxs ¼ 0:25
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by the effective ME approach, but with the modified

‘‘forward’’ threshold distribution given by the expression

PciðxÞ ¼ N x�0 Pc0 b0ðx� a0xcÞ½ �; ð20Þ

where N is a normalization factor,
R1

0
dxPciðxÞ ¼ 1: The

parameter a0 is now defined so as to keep the lowest

boundary unshifted, b0 (xfix0 - a0xc) = xfix0 with xfix 0 ¼
xL ¼ xs � Dxs; so that a0 = (xfix0/xc) (1 - b0

-1). The

‘‘backward’’ distribution R(x) is still defined by Eq. 16 with

the same parameters as above.

Numerics shows that, with a proper choice of the fitting

parameters b0 and �0 for a given value of j, the initial part of

the function F(X) may be reproduced with quite high accu-

racy. Moreover, for a rather wide range of j values, the EQ

simulation results may be reproduced by the ME approach

with a reasonable accuracy using only three fitting parameter

c1, c2 and jc, if the parameters b0 and �0 in Eq. 20 are given

by the expressions b0 = 1 ? c1j/(1 - j/jc) and �0 ¼
c2ðb0 � 1Þ; where the parameter jc corresponds to the crit-

ical ‘‘breakdown’’ interaction strength when many contacts

begin to break simultaneously. For j[ jc, the drop of F(X)

becomes jump-like, so that K� ¼ 1 and stick–slip will

appear for any stiffness of the slider K\1: Note that the

value of jc may be estimated from the equation axc�Dxs:

For the rectangular shape of the distribution Pc0(x) the

result of this procedure is demonstrated in Fig. 4 (the fitting

parameters are c1 = 33.9, c2 = 3.0 and jc = 0.074).

Of course, the Pci(x) function, Eq. 20, can describe only

the initial part of the F(X) dependence, when F(X) grows,

reaches the first maximum and then decreases. To simulate

the whole dependence F(X), one would have to involve the

evolution of Pc(x) with sliding distance, e.g., as some

‘‘aging’’ process Pci(x) ? Pc(x) (see Ref. [11]) with

the initial distribution Pc, ini(x) = Pci(x) and the final one

Pc,fin(x) = Pc(x).

4.4 Stick–Slip Versus Smooth Sliding

As was mentioned above, stick–slip appears as a result of

elastic instability which is controlled by the relation

between the slider stiffness K and the effective interface

stiffness K*. For noninteracting contacts K� � Ksxc=Dxs;

because typically Dxs� xc; estimates give K�.K so that

stick–slip should never appear. The interaction between

contacts strongly enhances the elastic instability thus

making stick–slip much more probable. Indeed, because of

the effective shrinking of the threshold distribution, the

parameter K* increases roughly as K* ? K*eff * b0K*,

i.e., the effective interface stiffness K*eff grows with the

strength of interaction j, and the elastic instability can now

appear. For example, for a realistic threshold distribution

the dependence of K*eff on the strength of interaction j is

shown in Fig. 5.

The strength of interaction between the contacts may be

found as j � �ja=xc; where realistic values of the dimen-

sionless parameter �j are of the order �j� 10�3; taking

a�ð102 � 103Þrc and xc = rc, we obtain j� 0:1� 1 which

gives b0� 3� 13 according to Fig. 5.

5 Far Zone: Meso/macroscale Friction

At the mesoscopic scale, i.e., on distances r � kc, the

substrate must be considered as deformable. Let us split the

frictional area into (rigid) blocks of size kc. In a general 3D

model of the elastic slider, the nth kc-block is characterized

by a coordinate Xn, and its dynamics is described by the

ME for the distribution functions Qn(un; Xn). A solution

of these MEs gives the interface forces Fn(Xn). Then,

the transition from the discrete numbering of blocks

to a continuum interface coordinate r is trivial: n!
r;Qnðun; XnÞ ! Q½u; XðrÞ; r�;PnðuÞ ! Pðu; rÞ;CnðXnÞ !
C½XðrÞ; r�;FnðXnÞ ! F½XðrÞ; r� (here r is a two-dimen-

sional vector at the interface), and the ME now takes the

form:

oQ½u; XðrÞ; r�
oXðrÞ þ oQ½u; XðrÞ; r�

ou
þ PðuÞQ½u; XðrÞ; r�

¼ dðuÞC½XðrÞ; r�; ð21Þ

where we assumed that, for the sake of simplicity, the

contacts are reborn with zero stretching, R(u) = d(u), and

C½XðrÞ; r� ¼
Z

dnPðnÞQ½n; XðrÞ; r�: ð22Þ

Equations 21, 22 should be completed with the elastic

equation of motion for the sliding body (we assume

isotropic slider)

Fig. 5 The effective interface stiffness K*eff (normalized on the

noninteracting value) as a function of the strength of interaction j for

the realistic threshold distribution Pc0(x) = (2/xs) u3e�u2

, u : x/xs

with xs = 1, when K*/Ks = 0.179
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€uþ g _u ¼ G1r2uþ G2rðr � uÞ; ð23Þ

where u(R) is the 3D displacement vector in the slider

(R = {x, y, z}), g is the intrinsic damping in the slider,

G1 = E/2(1 ? r)q = ct
2 and G2 = G1/(1 - 2r)q = cl

2 - ct
2,

E, r and q are the Young modulus, Poisson ratio and

mass density of the slider correspondingly, and cl(ct) is

the longitudinal (transverse) sound speed. Equation 23

should be solved with corresponding boundary and initial

conditions. In particular, at the interface (the bottom plane

of the slider, where z = 0 and {x, y} = r) we must have

ux = X(r), uy = uz = 0, and the shear stress should equal

F[X(r); r]/kc
2, where the friction force acting on the

kc-block from the interface,

F½XðrÞ; r� ¼ Nkkc

Z

duuQ½u; XðrÞ; r�; ð24Þ

should be obtained from the solution of Eq. 21 [here

Nk = (kc/a)2].

Equations 21–24 form the complete set of equations

which describes evolution of the large scale tribological

system; in a general case it has to be solved numerically.

However, a qualitative picture may be obtained analyti-

cally. The interface dynamics depends on whether or not

the kc-blocks undergo the elastic instability, i.e., on the

ratio of the stiffness of the kc-block Kk & (2cl
2 ? 3ct

2)qkc

(as follows from the discretized version of Eq. 23) and

the effective critical stiffness parameter of the interface

K*k, eff = b0K*k, where K�k �Kksxc=Dxs and Kks = Nkkc. If

the elastic instability does not appear, then a local pertur-

bation at the interface relaxes, spreading over an area of

size ks—the screening length considered below in Sect. 5.1.

In the opposite case, when the elastic instability does

emerge (locally), it may propagate through the interface.

Below in Sect. 5.2 we consider a simplified one-dimen-

sional version, which allows us to get some analytical

results and a rather simple simulation approach (such a

model is also supported by the fact that the largest forces

near the broken contact are just ahead/behind it according

to Fig. 1). Recall that the interaction between the kc-blocks

is weaker than in the short-range zone, it follows the law df

� r-3 which determines, e.g., the block–block interaction

strength jk in Eq. 26 below (although the interaction is

power-law, we may consider the nearest neighbors only,

because excitations at the interface, such as ‘‘kinks’’

introduced in Sect. 5.2, are localized excitations, and the

role of long-range character of the interaction reduces to

modification of their parameters [24]).

5.1 Elastic Screening Length

Let us assume that the slider is split in kc-blocks (rigid

blocks) and consider the block–block interaction in a

mean-field fashion (analogously to methods used in soft

matter, see Refs. [25–27]). Due to sliding of neighboring

blocks, the forces acting on contacts in the nth kc-block get

an additional shift. This effect may be accounted with the

help of a substitution fn ! fn þ Dfn;Dfn ¼
P

m 6¼n fm 

Probðm! brokenÞ 
Pmn � xc

P
m6¼n fmCmPmn (recall

that the sum is over the kc-blocks here), or approximately

fn ! 1þ xc

X

m 6¼n

CmðXmÞPmn

" #

fn; ð25Þ

where CmðXmÞ ¼
R

duPmðuÞQmðu; XmÞ so that NkCmðXmÞ is

the number of broken contacts in the mth kc-block per its

unit displacement, and

Pmn � Nkjkðkc=rmnÞ3 ð26Þ

describes the dimensionless (i.e., normalized on fs) elastic

interaction between the kc-blocks separated by the distance

rmn. In this way the force is given by fsP; the numerical

constant jk� �ja=kc depends on the substrate and interface

parameters.

Let us introduce the dimensionless variable en ¼
xc

P
m 6¼n CmðXmÞPmn: The shift of forces in the nth block

due to broken contacts in the neighboring blocks may be

accounted by a renormalization of the rate:

PnðuÞ ! Pn ð1þ enÞu½ �: ð27Þ

Indeed, when contacts in the neighboring blocks break,

then the forces in the given block increase, en [ 0; and the

contacts in the given block should start to break earlier, i.e.,

their threshold distribution effectively shifts to lower

values.

Making the transition from discrete sliding blocks to a

continuum sliding interface, Pmn ! Pðr0 � rÞ and en !
eðrÞ; we obtain a ME of the form:

oQ½u; XðrÞ; r�
oXðrÞ þ oQ½u; XðrÞ; r�

ou
þ P ½1þ eðrÞ�uð ÞQ½u; XðrÞ; r�

¼ dðuÞC½XðrÞ; r�;
ð28Þ

where we again assumed that the contacts are reborn with

zero stretchings, R(u) = d(u),

eðrÞ ¼ xck
�2
c

Z

jr0�rj � kc

d2r0C½Xðr0Þ; r0�Pðr0 � rÞ ð29Þ

and

C½XðrÞ; r� ¼
Z

dnP ½1þ eðrÞ�nð ÞQ½n; XðrÞ; r�: ð30Þ

In the long-wave limit, when jdeðrÞ=drj 
 eðrÞ=kc; we

may assume that the interface is locally equilibrated,

i.e., the distribution of forces on contacts is close to the
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steady-state solution of the ME, Q[u; X(r); r] & Qs(u;

r), which depends parametrically on the coordinate r

through the function eðrÞ entered into the expression for

the rate P ½ð1þ eðrÞ�uð Þ: The stationary solution of the ME

is known analytically [11], and we may find the function

(30), CðrÞ ¼ ½1þ eðrÞ�=xc: Together with Eq. 29 this gives

a self-consistent equation on the function eðrÞ :

eðrÞ ¼ k�2
c

Z

jr0�rj � kc

d2r0½ð1þ eðr0Þ�Pðr0 � rÞ: ð31Þ

Taking into account the interaction of the nearest

neighboring kc-blocks only and expanding eðrÞ in Taylor

series, we obtain the equation:

eðrÞ ¼ P0 1þ eðrÞ þ 1

2
k2

ce
00ðrÞ

� �

; ð32Þ

where P0 ¼ mPðkcÞ ¼ mNkjk� m�jkc=a and m ¼ 2� 4 is

the number of the nearest neighbors. Writing eðrÞ ¼ e0 þ
DeðrÞ; where e0 ¼ P0=ð1�P0Þ; Eq. 32 may be rewritten

as

k2
s De00ðrÞ ¼ DeðrÞ; ð33Þ

where ks ¼ kcðe0=2Þ1=2
is the characteristic screening

length in the sliding interface.

From the known analytic steady–state solution of the

ME [12], we may predict the dependence of screening

length on temperature and sliding velocity. In particular, if

T [ 0, then ks / v�1=2 !1 as v ? 0 in agreement with

the results of Ref. [28].

5.2 Frictional Crack as a Solitary Wave

In the frictional interface, sliding begins at some weak

place and then expands throughout the interface. Such a

situation is close to the one known in fracture mechanics as

the mode II crack, when the shear is applied along the

fracture plane. In friction, a crack first opens, evolves

(propagates, grows, extends) during some ‘‘delay’’ time

s, but then it either expands throughout the whole inter-

face, or it will close because of the load. Below we con-

sider the latter scenario, when one solid slips over another

due to motion of the so-called self-healing crack [29–32]—

a wave or ‘‘bubble’’ of separation moving like a crease on

rug [33]. Our plan is to adopt ideas from fracture

mechanics, adapt them to the friction problem, and then

reduce it to the Frenkel–Kontorova (FK) model [24] to

describe collective motion of contacts in the frictional

interface.

When one of the ‘‘collective contacts’’ (the kc-block)

breaks, it may initiate a chain reaction, with contacts

breaking domino-like one after another. This scenario may

be described accurately by reducing the system of contacts

to a FK-like model. Recall that the FK model describes a

chain of harmonically interacting atoms subjected to the

external periodic potential Vsub(x) of the substrate. If the

atoms are additionally driven by an external force f, then

the equations of motion for the atomic coordinates un take

the form:

m€un þ mg _un � gðunþ1 þ un�1 � 2unÞ þ V 0subðuiÞ ¼ f ;

where m is the atomic mass, g is the strength of elastic

interaction between the atoms, and g is an effective

damping coefficient which describes dissipation phenom-

ena such as the excitation of phonons etc. in the substrate.

The main advantage of using the FK model is that its

dynamics is well documented [24]. Mass transport along

the chain is carried by kinks (antikinks)—local compres-

sions (extensions) of otherwise commensurate structure.

The kink is a well-defined topologically stable excitation

(quasiparticle) characterized by an effective mass mk which

depends on the kink velocity vk,mk = mk0 (1 - vk
2/c2)-1/2

(the relativistic Lorentz contraction of the kink width when

its velocity approaches the sound speed c). Therefore, the

maximal kink velocity vk,max = c. In the discrete chain,

kinks move in the so-called Peierls–Nabarro (PN) poten-

tial, whose amplitude is much lower than that of the pri-

mary potential Vsub(x). Therefore, the kink motion is

activated over these barriers, and its minimal velocity

vk,min is nonzero. The steady-state kink motion is deter-

mined by the energy balance: the incoming energy

(because of action of the external driving force f) should go

to creation of new ‘‘surfaces’’ (determined by the ampli-

tude of the substrate potential) plus excitation of phonons

by the moving kink (described by the phenomenological

damping coefficient g), so that vk(f) = f/(mkg).

5.2.1 FK–ME Model

Thus, let us consider a chain of kc-contacts (‘‘atoms’’ of

mass m = qkc
3), coupled harmonically with an elastic

constant g, driven externally through a spring of elastic

constant K with the end moving with a velocity v. Using

the discretized version of Eq. 23, the elastic constants may

be estimated as g & 2kcqcl
2 and K & kcqct

2. The kc-con-

tacts are coupled ‘‘frictionally’’ with the bottom substrate;

the latter is described by the nonlinear force Fs(u). The

equation of motion of the discrete chain is

m€un þ mg _un � gðunþ1 þ un�1 � 2unÞ þ FsðunÞ þ Kun ¼ f ;

ð34Þ

where the driving force is given by f(t) = Kvt. The sub-

strate force Fs(u) is found from the solution of the ME for
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the rigid kc-block. A typical evolution of the chain is

shown in Fig. 6.

The general case may only be investigated numerically.

Let us first consider a simplified case, when Fs(u) has the

sawtooth shape, i.e., it is defined as

FsðuÞ ¼ kcu for 0� u\uc ð35Þ

and periodically prolonged for other values of u. We

assume that f is approximately constant during kink motion

(otherwise, the kink will accelerate during its motion along

the chain); this is correct if the change of the driving force

Df ¼ KvDt during kink motion through the chain, Dt ¼
L=vk (L is the chain length and vk is kink velocity), is much

lower than kcuc, or K/kc 
 (vk/v)(uc/L).

Let us define the function FðuÞ ¼ FsðuÞ þ Ku� f : The

degenerate ground states of the chain are determined by the

equation FðuÞ ¼ 0. Let the right-hand side (n!1) of the

chain be unrelaxed, kcuR ? KuR = f, or

uR ¼ f=ðkc þ KÞ; ð36Þ

while the left-hand side ðn! �1Þ has already undergone

relaxation, kc(uL - uc) ? KuL = f, or

uL ¼ ðf þ kcucÞ=ðkc þ KÞ: ð37Þ

Thus, the FK-like model of friction (the FK–ME model)

is described by Eqs. 34 and 35 with the boundary

conditions given by Eqs. 36 and 37.

5.2.2 Continuum-Limit Approximation

Let the system be overdamped ð€u ¼ 0Þ; later on, we shall

remove this restriction. In the continuum-limit approxi-

mation, n ? x = na(a = 1), the motion equation takes the

form:

mgut � a2guxx þ FðuÞ ¼ 0; FðuÞjx!�1 ¼ 0: ð38Þ

We look for a solution in the form of a wave of stationary

profile (the solitary wave), u(x, t) = u(x - vkt), so that

ut = - vku
0 and uxx = u00. In this case Eq. 38 takes the

form:

mgvku0 þ a2gu00 ¼ FðuÞ; ð39Þ

which may be solved analytically by standard methods [34].

A solution of Eq. 39 with these boundary conditions

exists only for a certain value of the kink velocity vk,

defined by the equation

ðmgvkÞ2 ¼ ga2ðkc þ KÞð2� bÞ2=ðb� 1Þ; ð40Þ

where b = kc/(k* - K) and k* = f/uc. The solitary-wave

solution exists for forces fmin \ f \ fmax only. The minimal

force which supports the kink motion—the Griffith

threshold—is given by

fmin ¼
1

2
kc þ K

� �

uc: ð41Þ

The maximal force, for which a kink may exist, is given by

fmax ¼ ðkc þ KÞuc; ð42Þ

at higher forces, the barriers of Fs(u) are degraded, the

stationary ground states disappear, and the whole chain

must switch to the sliding state.

From Eq. 40, we can find the kink velocity as a function

of the driving force. At low velocities,

vk � ðf � fminÞ=mkg; ð43Þ

where we introduced the effective kink (crack) mass

mk ¼ m
4a

uc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

kc

1þ K

kc

� �s,

; ð44Þ

while at f ? fmax the velocity tends to infinity,

mgvk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gkcðkc þ KÞa2uc

ðfmax � f Þ

s

: ð45Þ

The latter limit should be corrected by taking into account

inertia effects. The term m€u in Eq. 34 gives mvk
2u00 for the

solitary-wave solution, so it can be incorporated if we

substitute in the above equations g ? geff = g(1 - vk
2/c0

2),

where c0 = (ga2/m)1/2 is the sound speed along the chain.

The high-velocity limit now takes the form:

Fig. 6 (Color online) Color map of atomic velocities for a typical

evolution of the chain of contacts. The nearest neighboring contacts

interact elastically with the constant g = 25. The interaction with the

substrate is modeled by the function FsðuÞ ¼ kc½tanhðuÞ þ
1:5e�u sinð3uÞ� with kc = 1 defined for 0 B u \ uc = 1 and period-

ically prolonged for other values of u. All contacts are driven through

the springs of the elastic constant K = 0.07, their ends moving with

the velocity v = 10-4. The motion is overdamped (m = 1, g = 100).

To initiate the breaking, two central contacts interact with the

substrate with smaller values of the elastic constant, kc = 0.5
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vk � c0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ mg2ðfmax � f Þ
kcðkc þ KÞuc

s

: ð46Þ

5.2.3 Simulations

The continuum-limit approximate is accurate for the case

of strong interaction between the contacts, g � 1; in the

opposite limit one has to resort to computer simulation. We

solved Eq. 34 by the Runge–Kutta method. As the initial

state, we took the chain of length N (typically N = 3 9 103

or 3 9 104) with periodic boundary conditions and all

contacts relaxed, but the threshold breaking value for two

central contacts was taken lower than for the other con-

tacts. Then the driving force increases because of stage

motion, two central contacts break first and initiate two

solitary waves of subsequent contact breaking which

propagate in the opposite directions through the chain. The

value k0c of the lower threshold of the central contacts

determines the driving force and therefore the kink veloc-

ity; the lower this threshold, the lower the threshold force

for the motion to start [34]. As soon as the kink motion is

initiated, the kc-values of the central contacts are restored

to the same value as for other contacts (otherwise these

contacts will act as a source of creation of new pairs of

kinks), and we begin to move the stage in the opposite

direction, v [ 0 ? vb \ 0, so that the driving force linearly

decreases with time (see Fig. 7b), the average chain

velocity h _uii ¼ N�1
P

i _ui decreases as well (Fig. 7c) until

the motion stops (Fig. 7a). Also, such an algorithm allows

us to find the dependence of the kink velocity determined

as

vk ¼ n�1
k N h _uii � �vð Þ; ð47Þ

where nk = 2 is the number of moving kinks in the chain

and �v ¼ _uL;R ¼ vbK=ðkc þ KÞ is the background velocity,

on the driving force f. These dependences are presented in

Fig. 8; they agree well with that predicted by Eqs. 40 and

43.

Contrary to the continuum-limit approximation, in the

discrete chain of contacts the kink oscillates during motion

(see Fig. 7d)—the well-known discreteness effect of the

FK model due to existence of the PN barriers fPN. The

stronger the elastic interaction between the contacts, the

larger the kink ‘‘width’’ and the smaller the kink oscilla-

tions (compare Fig. 8a and b). The amplitude of oscilla-

tions also depends on the shape of the ‘‘substrate potential’’

[24]—it is larger for a sawtooth potential Fs(u), but smaller

for a smoother shapes. Recall that the kc-contacts are

characterized by a smooth dependence Fs(u) as follows

from the ME. The PN oscillations determine the lowest

average kink velocity. Therefore, the lowest velocity

allowed for the frictional crack propagation, vk,min, is

(a)

(b)

(c)

(d)

Fig. 7 (Color online) Evolution of the chain of N = 3,000 contacts.

The nearest neighboring contacts interact elastically with the constant

g = 25, the interaction with the substrate is modeled by the sawtooth

function (35) with kc = 1 and uc = 1. All contacts are driven through

the springs of the elastic constant K = 0.07, their ends moving with

the velocity v = 10-4. The motion is overdamped (m = 1, g = 100).

To initiate the breaking, two central contacts interact with the

substrate with smaller spring constants, k0c = 0.5. When the kinks

motion begins, the elastic constants of the central contacts restore

their values to kc = 1, and the driving velocity changes its sign, v ?
vb = -2 9 10-4. a shows the kinks centers (defined as places where

the atomic velocity is maximal), b shows the driving force f(t),

c shows the average chain velocity h _uii ¼ N�1
P

i _ui; and d demon-

strates oscillation of the velocity due to PN barriers

(a)

(b)

Fig. 8 (Color online) Kink velocity versus the driving force for

a g = 5(vb = -4 9 10-5) and b g = 25(vb = -2 9 10-4);

N = 3 9 104, other parameters as in Fig. 7. Blue solid and red
dashed lines correspond to Eqs. 40 and 43, correspondingly

22 Tribol Lett (2012) 48:11–25

123



determined by the parameters g and kc—the larger are g

and kc, the smaller is vk,min.

5.2.4 Discussion

The FK–ME model used here is rather close to the well-

known 1D Burridge–Knopoff (BK) model of earthquakes

with a velocity-weakening friction law [35]. The difference

is in the interface force Fs(u): we use the function derived

from the ME-EQ model (with well-defined parameters

which may be extracted from experiments or calculated

from first principles), whereas the BK model adopts a

phenomenological velocity-dependent function for Fs.

Nevertheless, the qualitative behavior of the two models is

similar, the BK model also exhibits solitary-wave dynam-

ics as was demonstrated numerically in Ref. [36]. In our

case, however, by reducing the model to the FK–ME one,

we can describe the solitary waves analytically and

rigorously.

In the simulation we started from the well-defined initial

configuration, when all contacts are relaxed except the one

or two where kink’s motion is initiated. If one starts from a

random initial configuration, we expect that kinks will

emerge at random places, so that several kinks may prop-

agate through the system simultaneously, as was observed

in simulation of the BK model [36].

Also we assumed that all kc-contacts are characterized

by the same Fs(u) dependence and thus have the same

threshold values Fth. This is correct if the number of ori-

ginal contacts within a single kc-contact, Nk ¼ kc=acð Þ2; is

infinite. Otherwise, different kc-contacts will have different

threshold values Fn, however, the distribution of their

thresholds is narrower that the distribution of thresholds of

single asperities by a factor
ffiffiffiffiffiffi
Nk
p

: A narrow distribution of

thresholds will nevertheless have a qualitative effect

because rupture fronts may stop when they meet kc-con-

tacts with a threshold above the driving force. When the

interface is disordered, the avalanches will have finite

lengths and may become short for forces near fini, for

which the rupture fronts propagate at the minimal velocity.

Our approach may also incorporate the existence of

disorder and defects always present in real materials. On

the one hand, defects may nucleate kinks (cracks); on the

other hand, the kink propagation may be slowed down up

to its complete arrest due to pinning by the defects. For

example, the slowing down of the 1D crack propagating

through a 2D system with quenched randomly distributed

defects was considered in Ref. [37].

Thus, reducing the EQ-ME model of friction to the

FK–ME one, we described avalanche-like dynamics of the

frictional interface—the solitary wave of contacts breaking.

If the force Fs(u) has a sawtooth shape, then the interface

dynamics may be described analytically; otherwise one has

to use numerics. The analogy with the FK model may be

extended even further:

• The driven FK model exhibits hysteresis when the force

increases and then decreases [24, 38]. The same effect

was observed in the large-scale crack simulation [39],

and thus could be observed in the frictional interface

too.

• Effects of nonzero temperature may be considered. One

may predict that at T [ 0 the sliding kinks will

experience an additional damping, while the immobile

(e.g., arrested) kinks will slowly move (creep) due to

thermally activated jumps.

• As shown in Refs. [24, 40], a fast driven kink begins to

oscillate due to excitation of its shape mode, and then,

with the further increase of driving, the kink is

destroyed. This effect is similar to what is observed

in fracture mechanics, where cracks begin to oscillate

and then branch [41].

• If the interaction between the atoms is nonlinear and

stiff enough, then the FK model admits the existence of

supersonic kinks [42] which are similar to solitons of

the Toda chain. It would be interesting to study if

similar waves may appear in the frictional interface, as

was predicted in crack propagation [43].

• One may suppose that the damping coefficient g in the

equation of motion (34) depends on the kink velocity,

g(v). In fracture mechanics, this coefficient defines the

rate at which the energy is removed from the crack

edge, thus it plays a crucial role.

• A large number of studies are devoted to different

generalizations of the FK model to 2D system (e.g., see

[24]). For example, if kinks attract one another in the

y (transverse) direction, then they unite into a line

(dislocation) which moves as a whole (or due to

secondary kinks).

6 Conclusion

We discussed the crucial role in sliding friction of the

elastic interaction between the contacts at the inhomoge-

neous frictional interface and proposed various approaches

to treat this problem from different viewpoints. The inter-

action produces a characteristic elastic correlation length

kc = a2E/kc. At distance r \ kc, the slider may be con-

sidered as a rigid body but with a strong contacts’ inter-

action, which leads to a shrinking of the effective contact-

breaking threshold distribution and an enhanced possibility

for a mechanical elastic instability to appear, which is

conducive to stick slip. At large distances r [ kc, the

contact–contact interaction leads to screening of local
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perturbations in the interface, or to appearance of collective

modes (frictional cracks) propagating as solitary waves.

In this study, we assumed that the external stress (the

driving force) is uniform across the system. In a general

case, however, stress is nonuniform and may moreover

change with (adjust itself to) interface dynamics, so that the

problem should be considered self-consistently. For given

boundary conditions, determined by the experimental

setup, one should calculate the stress field, e.g., by finite

element technique, which provides the driving force f (r) in

the FK–ME model. The latter defines the displacement

field at the interface through the solution of the FK–ME

master equations. The displacement field in turn is to be

used as the boundary condition for the elastic-theory

equations at the frictional interface (from other sides of the

slider, the boundary conditions should correspond to a

given experimental setup).
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