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Abstract This paper is concerned with the squeal noise of

a wiper/windscreen contact. It is shown that squeal noise

stems from friction-induced self-excited vibrations in the

context of Stribeck’s law for friction coefficient. The study

is specifically focussed on the instability range of velocities

and not on the amplitude of limit cycles. The studied

dynamic system consists of a single degree-of-freedom

mass-spring-damper oscillator submitted to a velocity-

dependent frictional force which follows the Stribeck law.

The local stability is analyzed by the first Lyapunov method

and results in a stability criterion. Experiments have been

performed on a glass/elastomer contact lubricated with

water. The tribometer ‘LUG’ provides measurements of the

vibrational velocity and friction force versus sliding speed.

It is found that the instability appears during the transition

between boundary and elastohydrodynamic regimes where

the negative gradient of the friction versus velocity curve is

steep. The apparition and vanishing of instability are cor-

rectly predicted by the steady-state stability criterion.

Keywords Elastomers � Glass � EHL (General) �
Stick-slip

1 Introduction

Car windscreen wiper blades are widely used in the auto-

motive industry. The main function of such a system is to

remove water (or bugs) from a car windscreen by a

reciprocating motion. A rubber blade with a specific shape

acts as a moving seal on the glass with a surface contact

area of only few tens of microns. The mechanisms gov-

erning the tribological interaction between rubber wiper

blades and vehicle windscreens are relatively complex [1]

in comparison to their primary function (removing water

from glass). Optimizing the performance of wiper blades

[2] and decreasing their friction [3, 4] are still important

challenges. Moreover, as automobiles become more and

more soundless, with electrical motors for example, an

emerging request from customers is to produce rubber

wiper blades with reduced noise emission.

Among the large variety of frictional noises that may be

encountered in nature and industrial mechanisms [5], the

squeal noise and its initiation have received special atten-

tion from researchers [6]. For example, in [7] the squeal

noise of a waist seal of the lateral door of a car is studied by

a finite element approach. Indeed, self-excited vibrations in

frictional oscillators have been widely studied in the lit-

erature, as typical examples of nonlinear oscillators [8, 9].

The usual system is modelled as a mass attached to a frame

by a spring and a damper which slides on a conveyor belt.

This classical approach leads one to notice that the pres-

ence of a transition in friction can make the steady-state

unstable. The most studied example is the stick-slip phe-

nomenon [10–13] which occurs in systems where the static

friction coefficient is greater than the kinematic friction

coefficient.

Even though the nature of the stick-slip oscillations and

the transition from stable sliding to unstable sliding are

very different according to the nature of the contact, they

have common characteristics. Their dynamics is deter-

mined by intrinsic properties of the surface layers. Most of

the experiments reported in the literature are carried out
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within over-damped conditions in which the response time

of the mechanical system is much shorter than character-

istic slip time of the interface itself. Their friction trace is

governed by long memory distances. This first indicates the

presence of slip domains or long-range cooperativity

extended over lateral distances huge compared with

molecular dimensions. As the associated relaxation times

are much retarded by the effect of pressure, a detailed

description of the sliding history is required to obtain a

complete picture of the physical shear processes and to be

able to predict how the system will accommodate a change

of tribological conditions. These memory effects that link

the microscopic and the macroscopic scales in friction

processes are the basis of the so-called phenomenological

rate and state models to describe the frictional response of

dry/boundary lubricated single or multi-asperity contacts as

initiated by Ruina for friction of rocks [14]. The rate var-

iable refers to the instantaneous sliding velocity and the

state variable is meant to capture all the history dependent

effects. This approach assumes that the interfacial area is

large enough to be self-averaging. Therefore, the mean-

field state variable is sufficient to model collective

dependence of friction both on the internal degrees of

freedom of the interfacial materials and on the dynamical

variables characteristic from the shear motion. That is why

by relating the state variable to the average lifetime of

individual contacts, Ruinas constitutive equations have

been successfully applied to dry friction between solids

with micron scale roughness [15–18] but are not relevant in

wet or lubricated contact.

Although the transition from static to kinetic friction

always raises some questions [19], the mathematical

description of the instability is well understood. Rubber

wiper blades are known to produce different noises that can

be classified in three main groups, squeal, chattering and

reversal noise. In Ref. [20], the noise is linked to the

reversal behaviour of the blade. In Ref. [21], the origin of

the squeal noise of a wiper blade is attributed to the

velocity weakening of friction coefficient induced by a

geometrical effect. But in Ref. [22] the role of lubricated

regime on the occurence of the instability is underlined.

This is also highlighted in other tribological systems [23].

In this paper, the squeal noise of windscreen wiper

blades is studied with an emphasis on the tribological

origin of the instability. Specific attention is paid to squeal

noise apparition and vanishing in wet conditions as a

function of steady-state Stribeck’s law. Indeed, over the

past decades, many authors have shown that steady-state

velocity-friction laws are not valid in dynamic measure-

ments as soon as self-excited vibrations appear [24–27].

Nevertheless, the paradoxal approach used here is to derive

the steady-state Stribeck’s law when the system is still

stable (and Stribeck’s law valid) to predict the Hopf

bifurcation. It has been shown in Ref. [22] that for a given

sliding velocity, the lifetime, the size and the number of the

contacting spots does not depend on the stability of the

friction regime. This experimental result supports the use

of our approach. Our objective is then to predict the range

of unstable velocities even if the limit cycles cannot be

estimated.

The paper is organized as follows. In Sect. 2 the stability

of a damped-spring-mass oscillator subjected to a frictional

force following Stribeck’s law is studied. In particular, the

stability criterion is derived. In Sect. 3 an experiment on a

wiper blade / glass disc is described. The contact is lubri-

cated with water. Experimental results were performed to

verify the theoretical prediction of the stability range.

Stribeck curves are obtained while instabilities are

observed thanks to vibration measurements. The theoretical

prediction of the stability range is compared with experi-

mental observation of the squeal noise.

2 Modelling

2.1 Dynamical System

Let us consider a solid of mass m at position x attached to a

rigid foundation by a spring of stiffness k and viscous

damping ratio c. The solid is sliding on a conveyor belt

with speed V as shown in Fig. 1.

At the conveyor-mass interface, a friction force T(v)

which depends on the relative velocity v ¼ V � _x is

applied. The governing equation for the transverse motion

of the oscillator is

m€xþ c _xþ kx ¼ TðV � _xÞ for _x 6¼ V ð1Þ
_x ¼ V for kxj j � Tð0Þ ð2Þ

The first equation applies whenever the relative velocity is

non-zero _x 6¼ V (slip condition) whereas the second

equation applies if the elastic force kx is lower than the

static friction force T(0) (stick condition). However, in the

case of a wiper-windscreen contact, the instability is

observed about a non-zero sliding velocity and the

Fig. 1 Friction-induced vibration of a mass spring oscillator
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vibrational velocity _x never reaches the sliding velocity V

so that j _xj\V : This condition will be checked in the

experiment (as stick-slip type friction-induced vibration

never occurs in our experiments). The equality _x ¼ V is,

therefore, never fullfilled and we confine the study to the

first equation. The friction force may be written as the

product lk N where N is the normal load and lk(v) the

kinetic friction coefficient,

TðvÞ ¼ lkðvÞNsgnðvÞ ð3Þ

where sgn(v) denotes the sign of the relative velocity v.

Since we have assumed v ¼ V � _x [ 0; the sign function

may be removed from the above.

2.2 Dimensionless Equation

By setting the natural frequency x2 = k/m and the damp-

ing ratio f ¼ c=2mx; one can introduce the dimensionless

time s = x t and displacement q = kx/N. Equations (1)

and (3) then become,

q00 þ 2fq0 þ q ¼ lð~vÞ whenever jq0j\ ~V ð4Þ

where prime denotes the derivative with respect to the

dimensionless time s. The dimensionless velocities are

given by ~v ¼ kv=xN and ~V ¼ kV=xN: They are related by,

~v ¼ ~V � q0 ð5Þ

lð~vÞ ¼ lkðxN~v=kÞ is the friction coefficient function of the

dimensionless velocity.

2.3 Stability Analysis

For a given dimensionless sliding velocity ~V; the equilib-

rium state is,

q000 ¼ 0; q00 ¼ 0; q0 ¼ lð ~VÞ ð6Þ

This equilibrium state (stable node or focus) is associated to a

stationary slip where the conveyor belt moves at speed ~V but

not the oscillator (q0
0 = 0). The equilibrium may be stable or

unstable. As it is well known for this kind of friction-induced

self-excited oscillator that the equilibrium state can undergo

instability through a Hopf bifurcation leading to a cycle

solution, i.e. a periodic vibration. This stability problem may

be analyzed by the first Lyapunov method.

To this end, the problem is reconsidered in the phase

space by introducing the momentum p,

p ¼ q0 ð7Þ

Equation (4) then reduces to the first order differential

equation,

q0

p0

� �
¼ 0 1

�1 �2f

� �
q
p

� �
þ 0

lð ~V � pÞ

� �
ð8Þ

The Jacobian matrix evaluated at (q0, p0 = 0) is

J½ � ¼ 0 1

�1 �2f� dl
d~v ð ~VÞ

� �
ð9Þ

Stability is ensured when all eigenvalues of [J] lie in the

complex half-plane <(z) \ 0 and the system is unstable if

at least one eigenvalue belongs to the half-plane <(z) [ 0.

But the eigenvalues ki, i = 1, 2 of [J] are

ki ¼ � fþ 1

2

dl
d~v

� �
� ı

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fþ 1

2

dl
d~v

� �2
s

if fþ 1

2

dl
d~v

����
����� 1 ð10Þ

ki ¼ � fþ 1

2

dl
d~v

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ 1

2

dl
d~v

� �2

�1

s
otherwise

ð11Þ

where the derivative dl=d~v is taken at ~V: The positions of

the eigenvalues in the complex plane are plotted in Fig. 2.

It is clear from these expressions that if 2fþ dl=d~v\0

then <(ki) [ 0 for i = 1,2 (unstable) but if 2fþ
dl=d~v [ 0 then <(ki) \ 0 for i = 1,2 (stable). Further-

more, the passage from the left half-plane <(z) \ 0 to the

right half-plane <(z) [ 0 occurs through the imaginary axis

=ðzÞ ¼ 0 simultaneously by the two complex conjugate

eigenvalues, this is a Hopf bifurcation.

In conclusion, if

dl
d~v
ð ~VÞ\� 2f ð12Þ

the equilibrium is unstable and leads to a periodical

response, i.e. a limit cycle. The equilibrium is stable if

dl=d~vð ~VÞ[ � 2f:

2.4 The Case of Stribeck’s Law

The previous stability analysis is valid for any model of the

friction force T(v) but in this study we consider the case of

Stribeck’s law. As it is hard to estimate the derivative of

friction from measured raw data, using an analytical

Re(z)

Im(z)

Fig. 2 Qualitative evolution of eigenvalues of Eqs. (10, 11) in

complex plane for increasing values of fþ 1=2� dl=d~v
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expression to fit the curve is more accurate. Several models

can be found in the literature, including cubic polynomial

or exponential models [28] but the more efficient results in

our case have been obtained with Bongaerts et al.[29] fit.

Following Bongaerts et al., the Stribeck law is expres-

sed as follows,

lkðvÞ ¼ lEðvÞ þ gTðvÞðlBðvÞ � lEðvÞÞ ð13Þ

where lE(v) represents the elasto-hydrodynamic lubrica-

tion (EHL) regime, lB(v) is the boundary regime while the

function gT(v) connects these two regimes (i.e. the transi-

tional mixed regime). At low velocities, the friction coef-

ficient is high and varies very little with velocity (boundary

regime). Contacts between asperities are possible and solid/

solid interactions are predominant in the friction. The

mixed regime characterises the velocity range during

which the friction coefficient quickly decreases with

increasing speed. At high velocities the EHL regime finally

arises with a low friction coefficient, where a liquid film is

formed between the surfaces.

As can be observed experimentally, the friction coeffi-

cient for both EHL and boundary regimes may be descri-

bed by a simple power law,

lBðvÞ ¼ G � ðvgÞl ð14Þ

and

lEðvÞ ¼ H � ðvgÞn ð15Þ

In these relationships, g is the lubricant viscosity, G and

l are, respectively, the boundary power-law coefficient and

exponent, and H and n similar coefficients for the EHL

regime. Finally, the transition function gT(v) may be

introduced as,

gTðvÞ ¼
1

1þ ðvg=UÞr ð16Þ

where U is the value of vg under which the boundary

regime dominates and r is the exponent characterising the

mixed regime. The Stribeck law then reads

lkðvÞ ¼ HðvgÞn þ 1

1þ ðvg=UÞr GðvgÞl � HðvgÞn
� �

ð17Þ

In a dimensionless form, the friction coefficient

becomes

lð~vÞ ¼ ~H~vn þ 1

1þ ð~v= ~UÞr
� �

~G~vl � ~H~vn
� 	
 �

ð18Þ

An example of this type of curve is shown in Fig. 3. The

three regimes are clearly apparent in this figure. The

boundary regime is a flat curve of constant level (l = 0).

The constant G can be read from this figure as the value

of l for a zero sliding speed.

The first derivative of l with respect to ~v; which can be

easily obtained from the fit curve, is shown in Fig. 4. The

unstable regime is reached when the slope dl=dvð~vÞ is

lower than a fixed level, worked out by the appartion of

instability (for example, f ¼ 0:1 in Fig. 4).

Knowing the viscous damping coefficient f; it is then

easy to predict the velocity range of ~v for which the

equilibrium state is unstable, leading to a periodical limit

cycle response.

3 Experiment

In order to check the relevance of the above theoretical

results, sliding friction tests of elastomer wiper blades

samples against glass disc lubricated with water have been

performed. Vibration velocity and displacement have been

recorded during friction tests.
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3.1 Experimental Setup

To study dynamic phenomena occuring in lubricated con-

tacts, LTDS has developed a specific apparatus called

‘LUG’ (Fig. 5). It is composed of a fixed aluminium plate

attached to a concrete bloc supported by 4 air springs. The

high mass (600 kg) obtained with this construction allows

low resonant frequencies of the whole bench. At the center

of the top plate, the sample holder is fixed to a high pre-

cision spindle. The rotation of this splindle is controlled

with a brushless synchronous motor allowing rotational

speeds from 0.001 to 1000 rpm. Speed and position of the

spindle are measured at high frequency with a high reso-

lution encoder from Renishaw allowing a resolution as low

as 0.001�. On the top plate, different modules can be

installed. For this study, the sample was attached to the free

extremity of a dual cantilever strain gage force sensor

(SUP1-100N), allowing direct measurements of the forces

applied to the sample without any losses in mechanical

joints. The sensors are connected to dedicated electronic

amplifiers (DAQ-P module Bridge-A from Dewetron). The

noise obtained with this system was as low as

0.05N@1kHz on both normal and tangential forces. This

system is positioned in height with a ball bearing screw

controlled with a brushless synchronous motor. Forces can,

therefore, be controlled through a computer in closed loop.

This automatic control of the applied normal force allows

good and fast runs. The sample vibration can be measured

by a vibrometer Polytech OFV 505 (wavelength of

633 nm, frequency range 0.5 Hz–250 kHz) targeted to the

fixed elastomer sample. This apparatus gives access to both

displacement and velocity of the sample.

Forces, displacement and velocities are recorded with a

computer using a 16 bit National Instrument acquisition

board (NI PCI-6221). Data can then be extracted from the

recorded file. Friction coefficient is directly obtained by

dividing the tangential force by the normal force.

3.2 Protocol

All experiments have been performed in air and at ambient

temperature. The sample length is 3 cm. Samples are not

cleaned in order to avoid any damage of the surface

treatment. Before each test, the disc is placed successively

in ultrasonic baths of heptane, isopropanol and acetone.

The wiper blade is put into contact against the silica disc

with a controlled static force of 0.5 N (which results in a 16

N/m distribution of force per unit of length in the blade

direction). The part of the blade in contact is the 90� edge

of the lip, where the surface treatment is usually applied

(Fig. 6). The tests are realised in wet condition. The

lubricant consists of distilled water which is regularly

injected into the contact during the test. The sliding

velocity V of the disc at the contact point increases incre-

mentally from 10 mm/s to 1 m/s. At each step, several

measurements are realised successively and averaged dur-

ing 5 s. The two force signals are recorded giving access to

the friction coefficient versus sliding velocity (friction

Fig. 5 Schematic diagram of

tribometer LUG
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coefficient is the 5 s average of tangential force divided by

the normal force). The Stribeck curve is then obtained. In

the same time, the laser vibrometer signal delivers the

magnitude of the friction-induced displacement (if any)

versus sliding velocity. The maximum amplitude of

vibration is considered for each velocity. All friction

measurements have been realised 5 times for each sample.

The presented values are averages.

4 Results

Three samples referenced by the letters A, B and C have

been tested. The measured friction coefficients versus

sliding speed are shown in Figs. 7a, 8a and 9a. The error

bars correspond to the highest and the lowest values

obtained in 5 measurements. The values of the master

curve parameters for the best fits of Stribeck’s curve

obtained with Matlab and Ezyfit toolbox are given in

Table 1. For each sample, the three regimes boundary,

mixed and hydrodynamic are clearly apparent. For low

sliding velocities from 10 mm/s up to over 100 mm/s, the

friction coefficient is almost constant about 0.5 (Ggl in

Table 1). The exponents l given in Table 1 have small

values compared with unit which leads to a very weak

dependance with the sliding speed in the boundary regime.

The transition speed is 120 mm/s for samples A and B but

225 mm/s for sample C (U/g in Table 1). The transition of

sample C is, therefore, shifted towards higher sliding

velocities. Despite the fact that samples A and B have the

same transition speed, the velocity range during which the

transition occurs is wider for sample B than it is for sample

A. This can be compared with the values of exponent r.

The lower r the wider the transition. For sample B r is

approximately 1, whilst it is 1.7 for sample A. Sample C

has the narrowest transition with r* 2.7. The third regime

(EHL) is not well explored. The complete observation of

this regime and in particular the velocity strengthening

would require measurements at large sliding velocities

which are beyond the range of application of the experi-

mental setup.

The amplitude of vibration measured by the laser vib-

rometer varies from several micrometres to some tens of

micrometres for the three tested samples. The frequency is

Fig. 6 Wiper blade/glass disc contact

(b)

(c)

(a)

Fig. 7 Sample A: filled circle measurements; dash best fit. a Friction

coefficient versus sliding velocity. b Vibration amplitude versus

dimensionless velocity. c Slope of the empirical fit translated by 2f
with f ¼ 0:006
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(a)

(b)

(c)

Fig. 8 Sample B: filled circle measurements; dash best fit. a Friction

coefficient versus sliding velocity. b Vibration amplitude versus

dimensionless velocity. c Slope of the empirical fit translated by 2f
with f ¼ 0:011

(a)

(b)

(c)

Fig. 9 Sample C: filled circle measurements; dash best fit. a Friction

coefficient versus sliding velocity. b Vibration amplitude versus

dimensionless velocity. c Slope of the empirical fit translated by 2f
with f ¼ 0:008
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about 700–900 Hz. For all samples, no vibration occurs at

low velocity and of course no noise is emitted. The system

is stable. At high velocities, the system is also stable and no

noise emission is recorded. But for all samples, a strong

vibration is observed for intermediate values of the sliding

velocity. Most of the time, the vibration is not constant

with time. The blade can vibrate for a short period, then

stop and vibrate again, depending on sample and velocity.

An example of the recorded displacement of sample A is

given in Fig. 10. The periodic apparition and extinction of

the limit cycle are related to the frequency of rotation of the

disc and can be explained by a change in normal load due

to a misalignment. One notices that the observed friction-

induced vibration never has a stick phase, as shown in

Fig. 11. The signal is almost perfectly sinusoidal. A similar

behaviour has been observed for all samples. The

amplitudes of the limit cycle in our case might be too small

to reach a stick-slip regime [30]. The power spectral den-

sity of the signal is shown in Fig. 12, where a strong peak

between 800 and 900 Hz is found.

The maximal vibration measurements as a function of

velocity for the three samples are displayed in Figs. 7b, 8b

and 9b.

In Figs. 7c, 8c and 9c, the derivative dl=d~v of the Stribeck’s

fit vertically shifted by the value 2f are shown. The corre-

spondence between physical velocities and dimensionless

velocities has been computed with the following parameters:

mass m = 1 g, x = 6383 rad/s, k = mx2 and N = 0.5 N.

The x-axis of figures (a), (b) and (c) are aligned such that

physical speeds of figures (a) and (b) are in correspondence

with dimensionless speeds of figure (c). A negative value of the

curve in Figs. 7c, 8c and 9c means that dl=d~v\� 2f and,

therefore, the system is expected to be unstable.

For each sample, apparition and vanishing points of

squeal noise occur for almost the same level of slope

dl=d~v: This can be observed by comparing the relevant

sliding velocities in Figs. 7b, 8b and 9b with the corre-

sponding values of dl=d~v in Figs. 7c, 8c and 9c. Further-

more, this common value of dl=d~v provides an assessment

of the parameter f: In Table 2 the range of velocities of the

squeal noise, the identified value of f and the strength of

the vibration are summarized. The fact that the squeal noise

appears and disappears at the same gradient of friction

confirms the relevance of the stability criterion given in

Eq. (12).

Table 1 Values of parameters for the fit of Stribeck’s curves

Sample Ggl Hgn U/g l n r

A 0.443 0.169 122.47 0.071 -0.041 1.706

B 0.385 0.023 119.64 0.104 0.137 0.948

C 0.517 0.249 225.68 -0.0028 -0.104 2.723
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Fig. 12 Power spectral density of the vibration signal of sample A

Table 2 Range and intensity of squeal noise

Sample Range

(mm/s)

Dimensionless

range

f Vibration

(lm)

A 20–300 0.25–4 0.006 18

B 10–300 0.1–4 0.011 16

C 30–

500

0.4–6 0.008 25
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For all samples, the vibration amplitude increases with

velocity, reaches a maximum and then decreases. It seems

significant that the maximum vibration corresponds to the

inflection point of the Stribeck curve, characterised by the

parameter U. Indeed, Stribeck’s law should not be relevant

as soon self-excited vibrations appear (except when aver-

aged over time) [31].

In Fig. 13a–c, the instability range of velocity is plotted

as a function of the damping factor f: For a fixed f; the

intersection of the curve with the line y ¼ f line gives the

boundary velocities of the unstable range. On the other

hand, if the lowest unstable velocity V1 is measured, the

Stribeck curve and the stability criterion give access to both

the damping factor f and the highest unstable velocity V2.

5 Conclusion

In this paper, it has been shown that the squeal noise of

wiper blades observed during the transition regime may be

explained by a simple mathematical model. The most

important result concerns the prediction of the velocity

range of instabilities. Based on the stability analysis of a

single degree of freedom submitted to a friction force

which follows the Stribeck law, the criterion given in Eq.

(12) has been derived. It shows that stationary measure-

ments of friction coefficient versus sliding velocity can be

employed to explain the apparition of squeal noise. A good

accuracy has been achieved thanks to the selection of a

suitable Stribeck curve fit taken from Bongaerts et al.

Instability occurs when the negative gradient of the curve is

steep enough. The threshold is fixed by the value f of the

modal damping factor, a parameter which is usually

unknown.

Several parameters control the shape of the Stribeck

curve. Their values are imposed by the physical state of the

contact. This suggests that it would be possible to control

the apparition of squeal noise or to reduce its level by

modifying the Stribeck curve. This could be achieved by

tuning the interface between glass and rubber, for instance

with an adapted surface treatment strategy, by choosing an

appropriate surface coating or by optimizing the roughness

of wiper lip [32]. Several strategies are possible such as

shifting the transition speed to a higher value or reducing

the maximum gradient of the curve.
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