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Abstract We study numerically the contact mechanics of

a flat and a curved solid. Each solid bears laser-induced,

periodic grooves on its rubbing surface. Our surface

topographies produce a similar load and resolution

dependence of the true contact area as nominally flat, but

randomly rough, self-affine surfaces. However, the contact

area of laser-textured solids depends on their relative ori-

entation. The estimated true contact areas correlate with

kinetic friction measurements.
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1 Introduction

The tribological properties of solids with structured surfaces

differ from those of untreated solids. Gears could be seen as

an extreme example, where the surfaces of cylinders are

modified such that they interlock macroscopically. How-

ever, two gear wheels lose their grip when brought out of

orientation. Similar behavior occurs at the atomic scale: the

friction between two identical crystals can be vanishingly

small when they are misaligned, and no contaminants are

present at the sliding interface [1–3]. One would certainly

expect related trends at mesoscopic scales, i.e., better

interlocking of two solids in contact and thus higher static

friction between them if their surface corrugation matched

on micrometer scales. It is nevertheless not obvious how

kinetic friction Fk would change, because (geometric)

interlocking does not necessarily induce (mechanical)

instabilities or enhanced dissipation during sliding [4].

Laser surface texturing (LST) [5] allows one to inves-

tigate how kinetic friction is affected by roughness on

micrometer scales. LST exploits the interference patterns

of nanosecond laser pulses producing texture periods kt of a

few microns. In detail, a temperature gradient between

positions of maximum and minimum laser intensity indu-

ces a surface tension gradient, which leads to a transfer of

molten material away from the hot spots. A sinusoidal

surface topography remains after resolidification.

The tribological properties of laser-textured surfaces

often turn out to be improved, which is commonly attrib-

uted to their sealing ability and the presence of lubrication

pockets [5–7]. However, friction also turns out to be

reduced for unlubricated, textured solids as demonstrated

by Sung et al. [8], who studied the friction between a

‘‘smooth’’ sphere placed on top of a lithographically

structured substrate.

A possible explanation of reduced dry—perhaps even

reduced wet—friction between textured surfaces is that the

laser-induced corrugation reduces the true contact area Ac

as compared to untreated solids. Assuming a local consti-

tutive relation between shear stress s and normal pressure

p of the form

s ¼ s0 þ l0p; ð1Þ

where s0 and l0 are system-dependent constants, smaller

contact area implies smaller friction. The reason is that

integrating Eq. (1) over the contact area yields
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Fk ¼ s0Ac þ l0L; ð2Þ

where L is the normal load.

Although Eq. (1) has been argued to hold from the

macroscopic scale [9] all the way down to the atomic scale

[10, 11], its use is not unproblematic. This is because

contact is not well defined. In continuum mechanics, the

true contact area depends on the resolution of the spatial

features [12, 13]. Even when including the smallest, that is,

the atomistic features, the precise definition of true contact

remains ambiguous, because there is no more clear sepa-

ration of surface and body forces. As a consequence, s0

and l0 cannot be uniquely determined. If it were possible

to reconcile brave but otherwise disparate attempts of

defining contact at the atomic scale [14–17], one would

still be faced with the discontinuity of the shear stress in the

constitutive Eq. (1). In contrast to continuum descriptions,

real interatomic forces are continuous functions of atomic

coordinates. For this latter reason, we will remain in the

realm of continuum mechanics and treat s0 and l0 as

scale- or resolution-dependent.

Even after restricting ourselves to a scale-dependent

interpretation of Eq. (1), one could argue that materials with

different kt have different values for s0 and l0. However,

for fixed kt, these two numbers should be well defined in the

case of dry friction, which allows us to change the contact

area at fixed load by changing the orientation.

In this work, we investigate how the contact area of two

laser-textured surfaces as well as the contact pressure distri-

bution depend on load and resolution. For this purpose, we

present some simple analytical considerations as well as

numerical contact mechanics simulations, which are based on

experimentally measured height profiles. Finally, we analyze

if there is a correlation between (magnification-dependent)

contact area and dry friction of laser-textured surfaces.

2 Theory

Most technical surfaces have roughness on wavelengths

spanning many decades. Archard recognized that this

property makes it difficult to define contact area rigorously

[12]. The simplest picture of multi-scale roughness is to

have ‘‘bumps on a bump,’’ that is, a clear separation of

wavelengths on which roughness lives. Recent tribometer

experiments [18] of a ball on a nominally flat substrate,

where both surfaces were laser textured, mimic that situ-

ation. The ball in these experiments (see also ‘‘Experi-

mental Details’’ for more details) had a macroscopic radius

of curvature of Rc = 0.75 mm, while period and amplitude

of the laser texturing were kt ¼ Oð10 lmÞ � Rc and

ht ¼ Oð1 lmÞ; leading to a characteristic curvature of

ð2p=ktÞ2ht ¼ Oð1 lm�1Þ � 1=Rc:

A contact mechanics problem with similar geometry as

that of the just-described experiments was analyzed by Yao

et al. [19] by finite-element methods. They studied a sys-

tem with one lateral and one normal direction. The gap of

their undeformed surfaces can be written as

gðxÞ ¼ x2

2Rc

þ hf1� cosðqxÞg; ð3Þ

which corresponds to the set-up of the experiments men-

tioned above if the two surfaces are perfectly aligned and

textured with the same wavelength (q = 2p/k). The pres-

sure profile had spikes exceeding the values deduced from

Hertzian contact mechanics (for h = 0), while pressure

was zero within most of the contact area, see Fig. 13 in Ref.

[19]. However, they did not provide simple guidelines for

how to estimate the true area of contact or the pressure

distribution. Moreover, they could not consider two sur-

faces with non-aligned textures, because they only used

one lateral dimension. In this section, we describe how to

overcome these shortcomings.

In our theoretical approach, we first pursue the idea for-

malised by Persson [13, 20] of solving the contact mechanics

at the coarse scale and of refining the calculations, as spatial

features on smaller and smaller wavelengths kres are

resolved. However, it would be naı̈ve to use the original

Persson formalism, which necessitates the height spectra to

be continuous so that the perceived changes in relative

contact area depend continuously on kres.

The macroscopic geometry is Hertzian. In order to keep

the discussion of the local geometry simple and brief, we

first restrict our attention to an orthogonal orientation of the

(undeformed) laser texture lines. Their gap geometry is that

of two crossed cylinders, which can again be described as

Hertzian contacts. Moreover, we assume that there is no

phase shift between the roughness at the coarse and the fine

scales, i.e., we generalize Eq. (3) to

gðx; yÞ ¼ x2 þ y2

2Rc

þ hf2� cosðqxÞ � cosðqyÞg: ð4Þ

Thus, we have a macroscopic surface curvature of Rc and

one at the laser-structuring scale of Rt & q2/2h. The central

‘‘bump on a bump’’ lies at r = (x, y) = 0, while the

‘‘nearest bumps’’ lie at (x, y) = (±k, 0) and

(x, y) = (0, ±k), and the ‘‘next-nearest bumps’’ at

(x, y) = (±k, ±k), where k = 2p/q.

In the macroscopic description of a Hertzian contact,

contact radius a and the local pressure p(r) with r ¼ jrj satisfy

a3 ¼ 3LR

4E�
; ð5Þ

pðrÞ ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2=a2
p

; ð6Þ
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where L is the normal load and p0 = 3L/2pa2 is the

maximum interfacial pressure.

Using Eq. (5) one can estimate the load at which the

contact radius is as large as the laser texturing wavelength

k, that is, Lk = 4E*k3/3R. The numerical result for Lk

differs substantially between macroscopic and microscopic

curvatures. Using E� ¼ Oð100 GPaÞ and the other values

as introduced above, one obtains Lck = 0.1 N and

Ltk = 100 N, respectively. Thus, from a macroscopic per-

spective, we would need a load of 0.1 N to have not only

the central but also the nearest bump in contact. Moreover,

within linear elasticity, we can estimate the load where the

central contact patch coalesces with the nearest patches to

be 100 N. The corresponding values for the interfacial peak

pressures are pc0 ¼ Oð1 GPaÞ and pt0 ¼ Oð103 GPaÞ:
Given that the hardness of the softer material in our ref-

erence experiments [18] is close to 2 GPa, one can con-

clude that merging contact patches associated with the

central and the nearest bump requires pressures exceeding

the hardness by two to three orders of magnitude. One is,

therefore, safe to assume that this can only happen under

major plastic deformation.

One might even conclude that plastic deformation is

likely to occur in the central bump before the nearest bumps

form contact, see also Fig. 2 in Ref. [18]. This, however, is

not the case, because the central bump gets shifted upward

more strongly than predicted in the continuum treatment.

The depth of indentation d = a2/R related with the small-

scale bump is roughly 1 lm. However, the gap of the

undeformed surfaces at r = k is only 1 nm. Thus, the nearest

bump must come in contact much earlier than one would

assume from continuum mechanics. Using the same equa-

tions and parameters as above, one obtains a required load of

L ¼ Oð0:3 lNÞ; where the small-scale indentation of the

central bump reaches an indentation ofOð1 nmÞ: Therefore,

miniscule forces are sufficient to bring the nearest bumps

into contact as well.

When trying to bring the next-nearest bumps located at k
(± 1, ± 1) into contact, higher forces are needed: now one

needs twice the previous displacement, implying that the

central bump carries 23/2 times the load than before. More-

over, the four nearest bumps (assuming they have identical

height) will already carry half the load as the central bump,

i.e., bringing the ‘‘third shell’’ into contact requires almost 10

times higher loads or L ¼ Oð3 lNÞ than bringing the second

shell into contact. One could easily continue the calculation

for the next few shells, but this would not be meaningful,

because the real geometry of the small-scale asperities is

different from the smooth profiles considered in this toy

model. One may yet conclude that (a) miniscule loads suffice

to form contact not only in the central bump but also on

adjacent bumps, i.e., contact is formed outside the nominal

Hertzian contact area, while inside of it, the real relative

contact area is small. (b) The normal load must increase quite

dramatically to induce contact in additional shells when the

number of shells in contact is small.

In the remainder of this section, we address the question

how the contact area changes as a function of the orien-

tation angle a of the grooves. Intuitively, one might expect

much larger contacts when the grooves are perfectly

aligned, because of line contacts. Once the grooves are

brought out of alignment, for instance when oriented at

right angles, we are left with a few individual contact

patches which have two small spatial dimensions rather

than a large one and a small one. We will resort to regular

Persson theory to show that this intuition might be

misleading.

In Persson theory [13, 20], the pressure distribution

broadens approximately by an amount DpðqÞ; which is

proportional to the height spectrum at the wavevector that

is just being resolved, i.e., for discrete height spectra

Dp2ðqÞ ¼ qE�

2

� �2

j~hðqÞj2: ð7Þ

An increase in the width of the pressure distribution then

leads to a reduction in the contact area.

One can now estimate the broadening of the pressure

distribution for two different orientations of ridges,

h?ðx; yÞ ¼ h cosðqxþ DuxÞ þ cosðqyþ DuyÞ
� �

; ð8Þ

hjjðx; yÞ ¼ h cosðqxþ Du1Þ þ cosðqxþ Du2Þf g; ð9Þ

where the various phase shifts Du should be almost uniformly

distributed during sliding. The subscripts \ and jj identify

perpendicular and parallel orientation, respectively. The

corresponding non-zero Fourier coefficients read

~h?ð�q; 0Þ ¼ h

2
e�iux ; ð10Þ

~h?ð0;�qÞ ¼ h

2
e�iuy ; ð11Þ

~hjjð�q; 0Þ ¼ h

2
e�iu1 þ e�iu2
� �

: ð12Þ

Squaring the individual contributions and taking their

expectation values by sampling all phases Du with equal

probability then yields that both orientations of the grooves

lead to the same pressure distribution broadening of

Dp2
?;jj ¼

qhE�

2

� �2

ð13Þ

independent of the relative orientation. This result implies

similar contact areas in both cases.

As mentioned above, Persson theory cannot be expected

to give quantitative answers when height spectra have
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pronounced peaks. However, the current calculation

reveals that the effect of orientation might be small. A

more reliable quantitative assessment is made in ‘‘Results’’

section.

3 Methods

3.1 Experimental Details

In this section, we sketch the relevant details of the

experiments providing us with the surface roughness

measurements and the mechanical properties of the two

solids in contact. For a more complete list of details, we

refer to the original publication [18].

In the experiments, a commercially available austenitic

stainless steel (1.4301) was used as substrate material with

a typical yield strength ranging between 360 and 680 MPa.

Its hardness, as determined by nanoindentation, is

approximately 2.2 GPa and the effective elastic modulus is

167 GPa [21]. The lateral dimensions of the nominally flat

specimens are 20 9 20 mm. The samples were delivered

with a highly polished mirror-like surface finish having a

root-mean-square roughness of about 30 nm. The counter

body consists of a 100Cr6 steel bearing ball with a diam-

eter of 1.5 mm. Effective elastic modulus and yield

strength are 140 and 1.4 GPa, respectively [21].

A pulsed Nd:YAG laser (Spectra Physics, Quanta Ray

PRO 290) with a pulse duration of 10 ns was used for the

laser patterning. The laser fluence was set to 400 mJ/cm2

for all specimens. The periodicity (line-spacing) analyzed

in this work are 9 and 18 lm. The topography was mea-

sured using a white light interferometer WLI (Zygo New

View 100) equipped with a 3D imaging surface structure

analyzer. This is an established method of characterizing

surfaces in a fast non-contact mode. The vertical resolution

is typically in the range of sub-nanometer and the lateral

resolution up to the Rayleigh limit (usually 0.5 lm) [22]. It

is noteworthy that surface errors such as ghost steps or

spikes may appear due to an identification problem of the

fringe order thus leading to the so-called 2p-jumps for

textured surfaces [22].

3.2 Smoothing Surface Data

To a very good approximation, the true contact area of

regular solids with self-affine surface topography is

inversely proportional to the root-mean-square gradient of

the gap between the undeformed surfaces. Since roughness

tends to live predominantly at the smallest scales, short-

range fluctuations of the height, which are the most sus-

ceptible to experimental errors, determine what contact

area is predicted for a measured height topography. In most

cases, it will, therefore, be necessary to post-process and to

smooth experimentally determined surface heights. More-

over, smoothing helps one to rationalize results in terms of

Persson theory, which is based on analyzing contacts at

different ‘‘magnifications.’’ Specifically, smoothing over a

large domain corresponds to small resolution or small

magnification.

In this work, we analyze how various smoothing oper-

ations on surface topographies affect our data of interest.

Two common techniques are investigated, namely Gauss-

ian filtering and Fourier smoothing. In Gaussian filtering,

the smoothed hight profile is given by

hGaussðrÞ ¼
1

2pr2

Z

d2r0hðr0Þ exp �ðr� r0Þ2

2r2

( )

; ð14Þ

where r is a measure of the spatial resolution. When

smoothed in Fourier space, the original height spectrum is

Fourier transformed. All Fourier coefficients ~hðqÞ with a

wavelength k\ 2p/q are set to zero and the remaining

coefficients are transformed back to real space. The effect

of the two smoothing filters are shown in Fig. 1.

At locations where height profiles are repetitive and do

not suffer from erratic measurement errors, the Fourier

filtering reproduces more clearly that the tops of asperities

are flattened. However, in the vicinity of errors, or nearby

steep gradients, we found the local Gaussian filters to be

advantageous, because Fourier leads to ringing near sharp

corners. It is also noteworthy that the worn surfaces can be

described very accurately as sinusoidal with cut-off caps.

We, therefore, believe that the highest point of the hard

Fig. 1 Surface height of a substrate along a selected scan line. The

experimental data of a worn laser-textured surface are shown in black
circles. Gaussian filter with blue triangles representing resolutions

r = 1 lm (triangle up), 2 lm (triangle right), and 4 lm (triangle
down), and Fourier smoothing with resolution k = 2 lm (red triangle
left). The green diamonds indicate a simple cosine profile of a 9.7 lm

wavelength (open diamonds) and a cosine profile which is cut at a

specified height (closed diamonds)

44 Tribol Lett (2013) 50:41–48
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counterface (at a given scan line) determines the resulting

asperity height of the substrate.

3.3 Computational Method

For our calculations, we use the Green’s function molec-

ular dynamics method (GFMD) [23] as described in Ref.

[24]. Specifically, we use the small-slope approximation,

which allows one to map elasticity and roughness to one

side of the interface and to reduce the deformation to a

scalar. The elastic energy then reads

E ¼ E�

4

X

q

qj~uðqÞj2; ð15Þ

where the in-plane wave vector q is always chosen such

that �p=L� qa\p=L; where L is the linear dimension of

the contact. Dynamics are integrated in reciprocal space,

i.e., we solve the equation of motion for the Fourier

transforms of the displacements ~uðqÞ :

m€~uðq; tÞ þ mc _~uðq; tÞ þ qE�

2
~uðq; tÞ ¼ �pd0q; ð16Þ

where m is an inertia and c reflects an inverse damping

time. The externally imposed pressure p is supposed to

only live on a zero wavelength as indicated with the

Kronecker d symbol. When the interaction between the two

surfaces is expressed as a continuous force, it is possible to

choose m and c as a function of q. However, we use non-

holonomic boundary conditions of the form

uðrÞ þ gðrÞ	 0; ð17Þ

where g(r) is the gap between the original surfaces before

they touch, in which case m and c may not depend on q.

The smallest wavenumber in the system is associated

with the mode having the largest wavelength. Since the

stiffness of the displacement is proportional to q, a

reduction of the smallest frequency scaling with
ffiffiffiffiffiffiffiffiffi

p=L
p

seems unavoidable. In order to reach fast convergence, the

damping should be chosen such that the slowest mode, i.e.,

the center of mass motion, is close to being critically

damped, which can be recognized particularly well when

the center-of-mass mode is slightly underdamped. Since

the stiffness of the contact grows roughly proportional with

the normal pressure [25, 26], the optimum choice for

damping satisfies c /
ffiffiffiffiffiffiffiffiffi

p=L
p

: In this case, the number of

GFMD time steps required to reach convergence only

growths with
ffiffiffiffi

L
p

independent of pressure. Refinement of

this procedure are only needed when the relative contact

area is much less or close to one, e.g., Ar \ 10-3, or 1–

Ar \ 10-3.

For the integration of motion, we employ the standard

Verlet algorithm. The boundary conditions are imposed

after new positions are determined. Specifically, we set

u(r) = - g(r) if u(r) was predicted to be smaller than

-g(r).

4 Results

Before the computing contact area as a function of load,

resolution, and orientation, it is instructive to analyze the

effect of the smoothing operations on the contact patch

geometry first. In Fig. 2, contacts are shown in real space

for the various smoothing procedures presented before in

Fig. 1. In these calculations, we have increased the load by

a factor of 100 with respect to the reference experiments,

because those loads are much too small to allow for a

meaningful visualization. Moreover, the trends do not

depend sensitively on the precise value of the load.

When smoothing surfaces with Gaussian filters (shown

in the left part of Fig. 2), one can recognize that the contact

area increases with decreasing resolution, which is pro-

portional to 1/r. However, it is also noticeable that the

contact area for the larger resolution, or small r, is more

spread out than for the smaller resolution. This confirms the

picture laid out in ‘‘Theory.’’ The r = 4 lm surfaces

produce a single, connected domain, almost reminiscent of

a circular Hertzian contact. Conversely, the highest reso-

lution, i.e., r = 1 lm, has contact at larger radii although

its total contact area is relatively small. The reason is that

the normal displacement is accommodated by the small-

scale asperities at high resolution.

When smoothing surfaces with Fourier filters, the con-

tact looks more erratic than in the other cases, which is

shown in the right part of Fig. 2. We attribute this obser-

vation to the fact that the Fourier smoothing is less for-

giving to experimental uncertainties than the Gaussian

(a) (b)

Fig. 2 Elastic contact for a worn kt = 9 lm surface at 100 times the

experimental load for different smoothing operations. a Gaussian

filter (applied to both surfaces) with r = 4 lm (light gray), 2 lm

(brown), and 1 lm (black). b Surfaces in which the substrate

topography is a truncated cosine (light gray), simple cosine (brown),

and a Fourier filter with k = 2 lm. The counterface consists of a hard

100Cr6 bearing steel ball, smoothed with a Gaussian filter of

r = 2 lm. The gray circles are drawn to guide the eye

Tribol Lett (2013) 50:41–48 45
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smoothing. However, surprisingly small differences in the

contacts are found for the truncated cosine and the original

cosine data. The features observed in both cases are similar

to those revealed in the Gaussian smoothing.

While we have focused so far on the orthogonal orien-

tation of the texture lines, our interest lies in correlating

friction and contact area, which both depend on the relative

alignment of the two surfaces. In this context, it is worth

pointing out that parallel grooves have larger fluctuations

than orthogonal grooves. This is demonstrated in Fig. 3.

The results shown in Fig. 3 can be easily rationalized.

At mesoscopic scales, where spatial features are resolved to

roughly the laser texturing wavelengths but not much

beyond, all configurations with an alignment of 90� are

equivalent if sliding occurs parallel to the grooves of one of

the two surfaces. One would, therefore, expect small

variations with slid distance. Conversely, when the grooves

are aligned, and the surfaces are slid in a right angle to the

texturing, the extreme configurations would be that peaks

on one surface face the peaks on the other surface or that

peaks are opposite to valleys.

If more features at smaller scales are resolved, the

sensitivity of the relative contact area with orientation

decreases. This is because local contact can be interpreted

as the contact between two rough surfaces. In the extreme

case, i.e., when resolving roughness down to the atomic

scale, true contact area will, as usual, be miniscule. The

question arises if roughness on wavelengths close to kt still

matters. As discussed above, contact area (for unstructured

surfaces) is roughly inversely proportional to the root-mean

square slope. The contribution of each wave vector is

proportional to the mean square gradient, which is g2 ¼
q2hj~hðqÞj2i: For the simple sinusoidal surface profiles

shown in Fig. 1 with a height variation of DhðktÞ 
 1:2 lm

at kt & 18 lm, one obtains a value for g ¼ ð2p �
Dh=kÞ2=2 ¼ Oð0:1Þ: This constitutes a non-negligible

contribution to the overall roughness. Thus, one will

probably have to go to very high resolution before height

fluctuations at much smaller scales than kt start to be

relevant.

In Fig. 4, we show the estimated contact area as a

function of load for the kt = 9 lm surfaces with parallel

and orthogonal alignment after smoothing with a

r = 2 lm Gaussian filter. One can see that the area scales

well with L0.9, which is half way between the standard Areal

� L and Archard’s Areal � L4/5 prediction for a system

similar to ours [12]. In the regime where error bars are

small, we find that the contact area in an interface with

parallel grooves is 4/3 times larger than that with orthog-

onal grooves. However, it is remarkable that at the smaller

scales, we would predict a mean pressure of 1 mN/

2 lm2 = 0.5 GPa, which is already one fourth of the

macroscopic hardness of the substrate. This means that the

tail of the pressure distribution easily exceeds the hardness

of the substrate. Consequently, one should expect some

plastic deformation of the surfaces, in particular when they

are in relative sliding motion.

Finally, we wish to note that the pressure probability

distribution inside our contacts does not change signifi-

cantly over a broad range in normal forces, i.e., from 4 to

512 mN, except that a small load implies large stochastic

scatter, see Fig. 5. Likewise, the relative orientation of the

surfaces does not appear to matter much either for the

pressure distribution. However, once the resolution chan-

ges, the pressure distribution changes in a quite remarkable

way. This is precisely the behavior, which one would

expect from Persson theory for randomly rough surfaces

[13, 20].

(a)

(b)

Fig. 3 a Real contact area Areal divided by the resolution r and bAreal

divided by load L as function of the lateral shift Dx: Surfaces are

smoothed with Gaussian filters having resolution r = 4 lm (blue
circles) and r = 2 lm (red squares). Closed and open symbols
indicate parallel and orthogonal grooves, respectively. The calcula-

tions are conducted for a an unworn kt = 18 lm and b a worn

kt = 9 lm surface

46 Tribol Lett (2013) 50:41–48
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Previous atomistic simulations of amorphous, single-

asperity tips had already revealed that the pressure-distri-

bition evaluated at the smallest scales may deviate strongly

from that obtained for a Hertzian tip in the continuum limit

[14, 15]. In this sense, our results are not surprising.

Yet, what might be unexpected is that the pressure

distribution has some remaining weight at values near the

estimated substrate hardness of nanoindentation of 2.2

GPa. This weight would raise substantially if we increased

our resolution. Unexpectedly large contact pressures have

also been identified in a recent discrete-dislocation simu-

lation of a rigid platen pressing against a sinusoidal alu-

minum surface [27].

5 Discussion and Conclusions

In this study, experimentally determined height profiles of

laser-textured steel surfaces are used in a computer simu-

lation addressing the question how the real contact area

Areal depends on the relative orientation a of the laser-

induced grooves. For the given surfaces, it turns out to be

very challenging to determine good estimates for the con-

tact area, because it is sensitive to the spatial resolution

with which the surfaces are represented. Unfortunately, the

smallest scales, where experimental uncertainties are the

largest, are the most relevant for the calculation of contact

area. However, it turns out that the ratio Areal(a = 90�)/

Areal(a = 0�) & 3/4 is relatively insensitive to the precise

choice of load and the smoothing operation.

The experimental differences observed for the kinetic

friction Fk are slightly larger, but similar in magnitude, as

those for the relative contact area, i.e., 1=3JfFkð90�Þ �
Fkð0�Þg=Fkð0�ÞJ1=4: The interpretation of this result in

terms of Eq. (1) is that the ‘‘offset term’’ s0 dominates, that

is, dissipation in these systems is essentially proportional to

the contact area. A possible explanation is that the dissi-

pation mechanism is predominantly plastic deformation,

the more so as the deduced shear stress (s = Fk/A &
0.025 mN / 2 lm2) is already roughly a quarter of the yield

of the substrate, although we are not yet at the full

resolution.

For the remaining values of kt, the experimental ratios

for the friction were similar as those for 9 lm. However,

due to the lack of surface topographies after rubbing, we

have not been in a position to post-analyze the data in the

same fashion as we did for the kt = 9 lm surface.

Unfortunately, this also prevented us from conducting a

meaningful comparison for similarly aligned surfaces with

different laser-texturing period. However, in this context, a

result obtained by Sun et al. [27] is worth mentioning. In

their study of plastic deformation of solids (aluminum)

with an initially sinusoidal surface pressed against a flat,

rigid platen, they found that longer periods lead to a larger

contact area. Thus, we expect the worn kt = 18 lm sur-

faces to have larger contact area than the ones with

kt = 9 lm, which would again correlate, at least qualita-

tively, with friction measurements.

An interesting side aspect of our analysis is the realization

that increasing the resolution of the surfaces does not simply

lead to the disappearance of local contact area. Instead,

sometimes new, small contact patches can be observed at

Fig. 4 Estimated real contact area Areal as a function of load for two

different orientations of kt = 9 lm surfaces: a = 0� (closed red
circles) and a = 90� (open blue squares). Broken lines reflect fits

with Areal � L0.9. The prefactor for a = 0� is 4/3 times larger than that

for a = 90�. The height topography are smoothed with a Gaussian

filter of a = 2 lm. Averages were taken over 10 periods

Fig. 5 Pressure probability distribution function Pr(p) for different

loads, orientations, and smoothing. Default values are load L = 32

mN, a = 0�, and r = 2 lm as reflected by the green right
triangles. Loads of 4 and 512 mN are indicated by red down and

blue up triangles, respectively. One calculation is based on an

orthogonal orientation of a = 90�, see the green open right triangles
and one calculation is based on a different smoothing with

a = 4 lm, which is indicated with green open circles. The function

values of the last dataset has been divided by three
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locations that had been completely out of contact in the

calculation on the coarser scale. This observation, which we

rationalized in a rather simple ‘‘two-scale Hertzian bump-on-

a-bump’’ approach, might be partly responsible for the slight

underestimation of contact area in Persson theory [28–30].

This insight might motivate attempts to introduce ‘‘reen-

trance correction’’ into the theory.
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