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Abstract Surface texturing has a potential to become a

cost effective and easy way to improve the tribological

performance of lubricated interfacing surfaces. Effects of

surface textures on the performance of machine elements

as frictional pairs have been investigated over the past two

decades. However, despite this research only a limited

number of analytical solutions have been proposed as the

majority of studies have been experimental and results

obtained have not been optimal. This is because the com-

monly used surface characterization methods are not able

to quantify surface textures over a range of scales at dif-

ferent directions and the optimization methods used work

only for relatively simple textures and specific constraints

imposed on pressure, film thickness, sliding velocity and

lubricant rheology. Previous studies have addressed these

issues, to some degree, by developing directional fractal

signature methods and unified computational approach for

texture optimization. In this article, recent advancements in

the development of fractal methods and optimization of

surface textures are presented.

Keywords Textured surfaces � Surface characterization �
Multiscale analysis

1 Introduction

Surface textures are used as a means of reducing friction,

increasing load capacity and reducing wear, obtaining good

electrical contact, formability, paintability, specific optical

properties, and others [1, 2]. The beneficial effects of sur-

face textures have been long known. However, character-

ization and optimization of surface textures that are

essential to achieve the improvements still remain unre-

solved problems. This is because surface textures have

complex spatial arrangements of topographical features

ranging from hundreds of micrometers to sub-nanometers.

They can be grouped as follows:

• structured: geometric shapes/objects (e.g., dimple,

groove, chevron, pillar, finger, pyramids) are located

on the surface according to rules which are explicitly

defined to obtain particular patterns [1, 3],

• self-structured: features are arranged on the surface

through multiple interactions among components (mol-

ecules) according to certain self-organization rules

which are not explicitly tied to any particular pattern

[4, 5],

• stochastic: spatial relationships of features is governed

mainly by probability laws (e.g., Gaussian distribution

of heights) [6, 7],

• irregular: distribution of features is erratic. In other

words, it does not follow any known pattern, there are

no periodic sequences of ‘‘valleys’ and ‘‘peaks’’ and

texture has cloud-like appearance (e.g., after peening or

shot blasting) [6, 7].

1.1 Characterization

Because of the variety and multiscale nature of texture

patterns, there is no a uniform standard, universal, or

optimal method for the numerical characterization of

geometry of surface textures. Each method was developed

for a particular purpose and has its own advantages and
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disadvantages [2]. Existing methods for characterization of

texture images can be generally grouped as non-fractal and

fractal. Non-fractal methods characterize local changes in

texture and spatial interrelationships between them using

statistical and/or structural properties of the surface image.

They are roughness parameters such as average roughness,

Sa, peak-to-peak height, Smax, average roughness asperity

spacing, Sm (to name a few), that are routinely used in

surface quality control. Studies showed that these methods

can accurately characterize many surface textures [6, 8].

However, when surface textures do not have periodic/

quasi-periodic structure, for example, exhibit ‘‘strange’’

shapes such as lotus-leaf like [9], flora-like crystal [10],

fiber mat [11], self-organized nanolayers [4, 5] and mutu-

ally grafted nanolayers [12], or have roughness and direc-

tionality that vary with scales these methods do not work

well. The reasons are scale-dependency, i.e., values of

texture descriptors these methods produce depend on the

measurement scale, and lack of measurement of texture

anisotropy at different scales. Fractals are a promising

alternative approach [7]. Fractal methods are scale-inde-

pendent, i.e., they do not need periodicity in texture and

quantify texture roughness and directionality at different

scales. Recent developments are the calculation of fractal

dimensions (FDs) in different directions and at individual

scales and the construction and use of fractal models of an

entire surface texture.

1.2 Optimization

Current approach to the optimization of surface textures in

lubricated contacts with aims of minimizing friction or

maximizing load capacity is, in most cases, by ‘trial and

error’, i.e., changes are introduced and their effects are

studied. The optimization problem has been solved to some

extent using numerical optimization methods such as

conjugate sequential, sequential quadratic programming

(SQP) [13, 14], and genetic [15, 16] techniques for rela-

tively simple surface textures and specific constraints

imposed on pressure, film thickness, sliding velocity, and

lubricant rheology. These studies have also showed that

different methods handle the same constraints differently.

This leads to difficulties when the texture shape optimi-

zation is subject to new, complex, and/or more realistic

constraints. So far this problem has only been partially

addressed by modifying the existing methods or developing

a new one. Consequently, a proliferation of various ways of

solving the optimization problem has been observed and

there are great difficulties associated with the selection of

an appropriate method. A much needed solution is the

development of a general and systematic optimization

approach that works within a wide range of constraints for

arbitrary surface textures.

In this article, recent developments and methods used in

fractal analyses and optimization of surface textures are

represented. Directional fractal signatures (DFS) and uni-

fied optimization approach are focal points.

2 Characterization of Surface Textures by Fractal

Methods

The use of fractal methods in the numerical characteriza-

tion is justified by the fact that topographical features of

surface textures exhibit to, some extent, similarities at

different length scales (self-similarity, multi-scale nature).

When the methods are applied into the surface image (for

example, a range image containing three-dimensional (3D)

information about surface topography), a single value of

FD for the entire texture is calculated. However, the single

FD provides limited information, i.e., the anisotropic nat-

ure of texture (changes in statistical characteristic with

direction) is not quantified. Therefore, DFS methods were

developed to rectify the problem by calculating FD at

individual scales and directions. Also, a partition iterated

function system (PIFS) was developed to encapsulate the

entire texture image data in a fractal model of the surface.

These two approaches will be discussed.

2.1 Surface Data Presentation

Surface texture data is represented by a digital image of

Nx 9 Ny pixels, where Nx and Ny are the number of pixels

in the horizontal and vertical directions, respectively.

Assuming that Lx ¼ f1; 2; . . .;Nxg and Lx ¼ f1; 2; . . .;Nxg
are spatial domains X and Y, respectively, and Lz ¼
f1; 2; . . .;Nzg is the gray-scale level domain Z, the image is

an elevation function z ¼ Iðx; yÞ defined on a horizontal

plane ðx; yÞ 2 Lx � Ly. z 2 Lz is the gray-scale value, x and

y are integer numbers representing coordinates of pixels in

X and Y spatial domains, respectively, and Nz is the number

of gray-scale level values.

2.2 DFS Methods

DFS methods have unique ability to characterize accurately

surface roughness and anisotropy in all possible directions

at individual scales. This is achieved by calculating a

fractal signature (FS) (i.e., a set of FDs at individual scales)

in different directions. The methods are divided into two

groups, i.e.,

• fractional Brownian motion (fBm) methods, and

• area measurement methods

on the basis of whether the surface texture image is fractal

Brownian.
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The texture image is Brownian fractal if its gray-scale

values change with scale, i.e.,

Var DIdj jð Þ dk k�2H¼ Var DId¼1j jð Þ;

where VarðjDIdjÞ is the variance value of the change over

distance d and H is a real number in (0,1), called the Hurst

coefficient [17]. The fractalness is confirmed if two criteria

are satisfied, i.e., (i) texture image data exhibit a normal

distribution and (ii) data points of a log–log plot of vari-

ances against pixel distances can be fitted with a line. To

check the normality of data distribution, first, quantile–

quantile (Q–Q) plots of expected normal values against

gray-scale level differences for all possible directions and

pixel distances are constructed. If the plots are approxi-

mately linear it can be assumed that the image data exhibit

a normal distribution. Variances of gray-scale level dif-

ferences are then calculated, and plotted against pixel

distances on a log–log scale for all possible directions. If

for each plot data points fall onto a line this implies that the

texture image is Brownian fractal. Non-Brownian and

Brownian fractal texture images together with two exam-

ples of their Q–Q and log–log plots are shown in Figs. 1

and 2. Directions used were ranging from 0� to 180� in step

of 5�. Thirteen distances used were from 4 to 16 pixels.

2.2.1 fBm Methods

fBm methods were developed, assuming that surface tex-

ture images are a close approximation of 2D fractal

Brownian motion functions over a range of scales [17]. If

the assumption is satisfied FD can be calculated as

FD = 3 - H, where H is the Hurst coefficient obtained

from a slope of log–log plots.

DFS methods that belong to the fBm group [19] are

• FS Hurst orientation transform (FSHOT), and

• variance orientation transform (VOT).

FSHOT Method The method calculates differences in

gray-scale values of all pairs of pixels within a ring region.

The inner and outer radii of the region are chosen by the

user according to image sizes and scales of interest. Typ-

ical values for 256 9 256 pixel images are 4 and 16 pixels,

respectively (Fig. 3a). As the region moves across the

entire image, one pixel at a time, all the gray-scale dif-

ferences, the corresponding directions and distances

between paired pixels are stored. The direction a is defined

as an angle between a line running through the pair of

pixels and the image horizontal axis (Fig. 3a).

FSHOT method uses the greatest absolute difference

between gray-scale values of all pairs of pixels in each

direction. The absolute differences are plotted against

between-pixel distances in log–log coordinates (Fig. 3b).

The log–log data points are divided into overlapping

five-data point subsets with a line fitted to each subset

(Fig. 3c). For a given direction, there are subsets/lines in

each log–log plot, and for each line the slope and the

between-pixel distance corresponding to the central log–

log data point are recorded. The between-pixel distance

represents the individual subset scale, and the slope of the

line being H. The FD is determined as FD = 3 - H.

The Hurst coefficients are plotted using polar coordi-

nates as a function of direction at each scale (image size)

and an ellipse is fitted to each plot (Fig. 3d). From the fitted

ellipses, the following FSs and texture aspect ratio signa-

ture (StrS) are calculated

• FSSta
is defined as the set of FDs calculated at

individual surface texture image sizes in a direction

along the roughest part of the texture (i.e., the direction

with the highest value FD). This direction is the angle

between a line parallel to the horizontal axis of the

image and the minor axis of the fitted ellipse, with FSSta

defined as 3 - Sta, where Sta is half the minor axis

length of the ellipse.

• FSH and FSV are defined as the sets of FDs calculated at

individual surface texture image sizes in the horizontal

or vertical directions, respectively.

• StrS is defined as the set of ratios of the minor axes to

the major axes of the fitted ellipses. This measures the

degree of surface texture anisotropy at different texture

image sizes. StrS values range from 0 to 1, with lower

values representing higher surface texture anisotropy.

VOT Method In VOT method, variances of the differ-

ence between gray-scale values of all pairs of pixels in each

direction are calculated instead of the absolute differences.

The FD is calculated as FD = 3 - H, where H is equal to a

half of the slope of line fitted to log–log plots.

The FSHOT and VOT methods have been applied to

images of artificial images of fractal surfaces and also to

trabecular bone textures obtained from healthy and osteo-

arthritic knee radiographs [19, 20]. The VOT method

showed lesser sensitivity to measurement conditions such

as image noise, blur, magnification and projection angle

and higher accuracy in measuring surface roughness and

anisotropy than those obtained for the other methods.

Because of this, the VOT method was used in subsequent

studies [18].

The VOT method has been applied to 3D real engi-

neering surfaces, i.e., sandblasted and grounded surfaces.

These surfaces cannot be reliably characterized by com-

monly used roughness parameters. This is because values

of an average roughness parameter, Ra, 3D average

roughness parameter (Sa) and fastest decay auto-correlation

rate (Sal) obtained for the surfaces are approximately equal

[18]. Using the VOT method, statistical significant differ-

ences in roughness were found between the surfaces at
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small and medium scales. It was also found that sand-

blasted surfaces have significantly lower anisotropy than

grounded surfaces at all scales. The VOT method has also

been applied to surface textures of adhesive wear particles.

Three sets of the wear particles were generated using a pin-

on-disk apparatus. The first set contained particles gener-

ated by wear occurring for ‘‘running in’’ (a period of high

friction coefficient) conditions under low load. The next set

had the particles, but generated at high load. The third set

contained particles generated by wear occurring under

‘‘steady-state’’ conditions (a period of low friction coeffi-

cient), and under low load. Surface characterization

methods used so far were not able to detect minute changes

occurring in the particle textures. This includes highly

capable methods such as a combination of Discrete

Wavelet Transform and statistical co-occurrence, which

had a classification error rate of 33 % [21]. The VOT

method, however, was able to differentiate between surface

textures of wear particles generated under different oper-

ating conditions. Differences were detected at small scales

and it was found that changes in load had the greatest effect

on particle textures [18].

2.2.2 Area Measurement Methods

These methods do not require that surface textures are

Brownian fractals. The reason is that they are based on

surface areas instead of the statistical properties of the

image data such as variances and greatest distances. These

methods use blankets (i.e., dilation and erosion of an

image) with either rotating grid or shearing-image.

Fig. 1 a Atomic force

microscope image of self-

structured surface texture

formed on a molecular azo glass

film (taken from Wang et al.

[4]). b, c Quantile–quantile

plots obtained in the vertical and

horizontal directions at scale 10

and 13 pixel distances. d,

e Log–log plots of variances of

gray-scale level values versus

pixel distances. The surface

texture is not Brownian fractal

as data points of the plots (solid
line) deviate from the lines

(dashed line)
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Blanket with Rotating-Grid (BRG) Method The method

is a generalization of the FS analysis (FSA) method [22]

into all possible directions [19]. For directions other than

vertical and horizontal, first, a grid of Ng 9 Ng pixels is

generated and superimposed on the image in such a way

that they are concentric and their borders are parallel. The

grid is then rotated by a given angle. The size Ng equals to

floorðminfNx;Nyg=
ffiffiffi

2
p
Þ. This size ensures that the whole

grid remains within the image area during rotation. All

image pixels covered by the grid constitute a new image of

Ng 9 Ng pixels. The new image data are dilated and eroded

using rod-shape structural elements (SE) of different

lengths. The lengths of SEs are chosen by the user

according to image sizes and scales of interest. For

example, for 256 9 256 pixel images, SE lengths ranging

from 6 to 14 pixels in step of 1 were chosen [23]. For each

length, the volume enclosed between the dilated and the

eroded images is calculated. Surface area is then obtained

as a difference divided by two between the volumes cal-

culated for two consecutive SE lengths. A log–log plots of

surface areas are plotted against SE lengths. The plot data

are divided into overlapping sets (five data points) shifted

by one data point. A line is fitted to each set and the ‘‘Hurst

coefficient’’ is calculated as a slope (B) of the line fitted

minus one, i.e., H = 1 - B. The length of SE associated

with the middle point of each set represents an individual

Fig. 2 a Scanning electron microscope image of abrasive wear

particle surface texture (taken from Wolski et al. [18]). b, c Quantile–

quantile plots obtained in the vertical and horizontal directions at

scale 9 and 12 pixel distances, d, e Log–log plots of variances of gray-

scale level values versus pixel distances. The surface texture is

assumed to be Brownian fractal as data points of the plots fall closely

onto a straight line
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scale. As a result, Hurst coefficients are obtained at dif-

ferent scales in the first direction. Next, the grid is rotated

around its center by predefined angles. For each grid

rotated the above procedure of the calculation of Hurst

coefficients is repeated. For vertical and horizontal direc-

tions, the difference is that the image dilation and erosion

are performed on the original image data using horizontal

and vertical SEs, respectively. Finally, Hurst coefficients

calculated at individual scales in different directions are

obtained.

Augmented BRG (ABRG) Method The method is an

augmented version of the BRG method in which sizes of

the rotating grid, i.e., Ng 9 Nh are dynamically adjusted for

each direction [23]. This adjustment is achieved using the

following formulas:

Ng ¼ abs floor Nx cos að Þ þ Ny sin að Þ
� �� �

;

Nh ¼ abs floor Nx sin að Þ þ Ny cos að Þ
� �� �

;

where the angle a lies within the intervals 0� B a\ 90�
and 180� B a\ 270�. For other directions, negative values

of the angle (i.e., -a) are used. Pixels covered by the

adjustable grid are dilated and eroded by the horizontal SE

in all possible directions. Because of this, the whole texture

image is used in calculations. The original BRG method

misses data located at corners as the rotating grid is too

small to cover the entire image.

Blanket with Shearing-Image (BSI) Method The method

is same as the BRG method, except that the new image data

are generated using an image shearing instead of the

rotating grid [23]. A skewed version of the original image

is obtained by shearing the image over calculated distance

using a cubic interpolation algorithm. Previous study

showed that dilation and erosion operations with horizontal

SEs on skewed images as compared to those using inter-

polated SEs on the original image are a good compromise

between accuracy and computational efficiency [24].

The area measurement methods have been evaluated for

the accuracy in measuring surface roughness and direc-

tionality and the capacity for quantifying multi-patterned

textures. This evaluation was performed using images of

self-structured surfaces that are (i) isotropic with

decreasing roughness (i.e., Ra = 0.025, 0.018, 0.011 lm; a

cut-off value of 0.8 lm), (ii) anisotropic with 20� and 110�
dominating directions, and (iii) multi-patterned with iso-

tropic and anisotropic texture components. The surface

images were produced by a specially developed motif

texture generator (MTG). The generator uses a half-ellip-

soid motif (i.e., a recurring surface element) that is

described by

Fig. 3 Schematic illustration of FSHOT and VOT methods (adapted from Wolski et al. [18])

184 Tribol Lett (2013) 49:179–191

123



mhðxl; ylÞ

¼ r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� xl cos a� yl sin að Þ2

r2
1

� xl sin aþ yl cos að Þ2

r2
2

s

;

where m is the motif surface height, r1, r2, and r3 are the

ellipsoid radii, x1 and y1 are local coordinates with their

origin located at the center of the ellipsoid (x1; y1), and a is

the orientation measured with respect to the image hori-

zontal axis (Fig. 4).

The motif is repeatedly placed over an empty image

(i.e., image with zero gray-scale levels) according to pre-

defined rules. For overlapping motifs, the maximum values

of heights in the common image area are taken. Examples

of isotropic, anisotropic, and multi-patterned surface ima-

ges generated with the motif and their rose plots of slopes

are shown in Fig. 5.

Results showed that the ABRG method is accurate and

performs better than the two other methods. The fractal

methods were also evaluated in the detection of differences

in texture between AFM images of self-structured surfaces

produced by circularly and linearly polarized laser beams.

It was found that the BRG and ABRG methods were the

most sensitive.

Future study will focus on the evaluation of effects of

AFM acquisition conditions (i.e., image resolution, tip size,

and noise) on values of Hurst coefficients.

2.3 Partitioned Iterated Function System (PIFS)

Another way of surface texture characterization is through

the use of fractal model which encapsulates an entire image

data [25, 26]. The fundamental basis of the model is the

self-transformability of surface texture, meaning that one

part of the texture image can be transformed into another

part of the image reproducing itself almost exactly. This

allows for an encapsulation of the image data into a set of

mathematical transformations, i.e., into a fractal model.

The set contains N contractive affine transformations, i.e.,

PIFS ¼
SN

j¼1 fjðDOMjÞ: Each transformation converts a

larger part of the surface texture image (called domain)

DOMj into a smaller part (called range) RANj located

elsewhere on the same image, i.e., fjðDOMjÞ ¼ RANj; j ¼
1; 2; . . .;N: An example of the transformation is shown in

Fig. 6. The fractal model constructed is called a PIFS. If

such a model is obtained for a surface texture image it will

contain detailed information including dimple shape,

dimple spacing, depth, size and orientation [26].

When an arbitrary image is applied iteratively to the

PIFS, a sequence of decoded images (called intermediate

images or transition frames) converging to the attractor is

obtained (Fig. 7).

A focus of our recent work is on use of PIFS models as a

surface characterization method for 3D analyses of tex-

tured surfaces in hydrodynamic bearings [27]. Decoded

image obtained from PIFS model is not an exact copy of

the original surface texture, resulting in loss of some tex-

ture details, i.e., the details that are not encapsulated in the

transformations. Subsequently, when the surface texture

encoded in PIFS model is used in the analyses of hydro-

dynamic bearings, errors occur in calculations of load

capacity and friction force. To minimize the errors, the

PIFS model needs to be optimized. In the recent study [27],

optimal models were found through an exhaustive search

for all possible combinations of parameters such as toler-

ance, recursive depth, scaling and offset. The models were

evaluated using a hydrodynamic parallel pad bearing tex-

tured with four different configurations of 64 elliptical

dimples (denoted by S1, S2, S3, and S4) having increasing

complexity (Fig. 8). Surface texture S1 exhibits dimples

aligned along the x-axis direction (Fig. 8a). All dimples on

S1 are identical. S2 differs from S1 in that one half of the

dimples is deeper than the second half (Fig. 8b). S3 is the

same as S1, except that half of the dimples is aligned along

the y-axis direction (Fig. 8c). S4 exhibits random dimples

of different shapes, depths and orientations (Fig. 8d). For

each surface texture, a range-image was encoded into the

optimal PIFS model and then the model was decoded. This

resulted in eight decoded range images of surface textures.

Each surface was separately used in the parallel square

slider bearing and pressure distributions were calculated.

Differences in pressure distribution between the original

image and the corresponding decoded image were calcu-

lated and they are shown as 256 gray-scale level images in
Fig. 4 A half-ellipsoid motif used to generate self-structured surface

textures (taken from Wolski et al. [23])
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Fig. 5 Examples of computer images of self-structured surfaces.

a Isotropic, b anisotropic with 20� and 110� dominating directions,

c partially isotropic multi-pattern and AFM images of g circularly and

h linearly polarized self-structured surfaces. Their corresponding rose

plots of slopes at 8 pixel scale obtained using the BRG ,

ABRG , and BSI methods are shown in (d–f) and

(i, j) (taken from Wolski et al. [23])
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Fig. 9. The black color represents the value of 0 (no dif-

ference) and the white color stands for the maximum

absolute difference equals to 0.2. Pressure values ranged

from 0 to 6.

Using the pressure generated in bearings, both load

capacity and friction force were calculated and percentage

differences between the original and the decoded images

were recorded. Results showed that the optimal PIFS

models produced the load and friction that were slightly

different (i.e.,\2 % and\0.04 %, respectively) from those

calculated for the original surface images [27]. This indi-

cates that PIFS is accurate and it would be useful for the

characterization of textured surfaces. Further studies,

however, are needed to confirm the performance of PIFS in

bearings textured with other patterns and working under

other lubrication regimes (e.g., elastohydrodynamic).

3 Optimization of Surface Textures

Geometry of surface textures in bearings and seals has been

optimized with aims of lowering friction, minimizing wear

and high load capacity. Finding the optimal textures is

complex and highly nonlinear problem. Dynamic behaviors

of bearings and seal-like structures are nonlinear and

Reynolds or Navier–Stokes equations are required for the

analysis. In addition, the effects of temperature, cavitation,

turbulent flow, and lubricant properties need to be

accounted for and geometry of surface textures can be of

any possible shape. Because of these, there is no guarantee

that the solution would be a global optimum.

In general, the optimization of surface textures can be

stated as a constrained optimization problem, i.e., find the

surface texture h x; zð Þ that minimizes (or maximizes)

g hð Þ

subject to the following constraints: the governing non-

linear partial differential equation (PDE), i.e., the Navier–

Stokes equations NSE q; hð Þ ¼ 0, boundary conditions that

pressure vanishes at bearing edges and initial conditions of

lubricant velocities, where

• g is the objective functional, e.g., objectives commonly

used in the bearing design such as a coefficient of

friction l ¼
RR

Xsdxdz
�RR

Xpdxdz, a friction force F ¼
RR

Xsdxdz or a load W ¼
RR

Xpdxdz;

• q ¼ ½u v w p�T is the state vector that contains the

lubricant velocity field and the pressure field,

respectively,

• x; z are the planar coordinates,

Fig. 6 Surface texture with marked self-transformable parts. A larger

part of the image converts to a smaller part of the image using

mathematical transformations containing information about location,

scale, translation, rotation, contrast and brightness. A set of these

transformations gives the fractal model (PIFS) of the texture image

PIFS
Two iterations

Three iterations Ten iterations

Textured surface image

Initial image is
iterated through
PIFS

   transf 1     transf 2     transf 3
   transf 4     transf 5     transf 6
   transf 7     transf 8     transf 9 
   transf 10   transf 11   transf 12
   transf 13   transf 14   transf 15
   transf 16   transf 17   transf 18
   transf 19   transf 20   transf 21
   transf 22   transf 23   transf 24
   transf 25   transf 26   transf 27
   transf 28   transf 29   transf 30
   transf 31   transf 32   transf 33
   transf 34   transf 35   transf 36
   transf 37   transf 38   transf 39
   transf 40   transf 41   transf 42
   transf 43   transf 44   transf 45

   etc.

......

PIFS is constructed for the
textured surface image

Initial surface image

Fig. 7 Example of surface

texture and its images obtained

after decoding the PIFS. At each

iteration, an intermediate image

or a transition frame is

generated (taken from

Stachowiak and Podsiadlo [26])
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• h x; zð Þ is the texture shape, also called the film

thickness,

• s is the shear stress field, and

• X is a planar region that represents the bearing surface.

The y direction is defined through the film thickness

(y ¼ h x; zð Þ).
Currently, common approaches are based on ‘‘trial and

error’’ methods, intuition and observations from nature and

they provide solutions using results obtained from experi-

ments, design charts [3, 28], numerical simulations of

system dynamics conducted for various sets of parameters

and conditions [29–31] and heuristic optimization algo-

rithms [15, 16]. Although these approaches can produce

improved results there is no theoretical guarantee that these

solutions are optimal or even feasible. Also, the approaches

require long computational time as the governing equations

are solved at each step of optimization.

Another approach is through the analytical solutions.

Necessary and sufficient conditions for the optimality are

calculated using the calculus of variation to find optimal

surface textures. However, due to the fact that the dynamic

equations are complex the approach produced optimal

textures for only simple cases such as step bearings and

specific constraints imposed on pressure, film thickness,

sliding velocity and lubricant rheology [32, 33].

In light of the above difficulties computational mathe-

matical approaches appear as the method of choice for

texture optimization. Recent studies have been based on a

SQP method. In the method, a quasi-Newton algorithm is

employed to solve the first-order necessary conditions

(a gradient of the Lagrangian function vanishes to zero).

Optimal solution is found by solving a sequence of sub-

problems. Each subproblem is defined as the minimization

of a quadratic approximation of the Lagrangian function

subject to a linear approximation of the constraints. The

SQP method was used to optimize the groove geometry of

thrust air bearings for various objective functions such as

bearing flying height, surface friction torque, dynamic

stiffness, a product of the height and stiffness, and a ratio of

the torque and stiffness [34]. The groove was described by

a third degree of spline function and the film pressure was

obtained from Reynolds equation. In other study, a 2D

slider bearing the film thickness was represented by a

polynomial [35]. Parameters (called design variables) of

the polynomial were optimized with the aim of minimizing

the coefficient of friction (at given minimum film thick-

ness) subject to pressure, shape, load and center of pressure

constraints. Dynamics of the bearing was governed by

Reynolds equation coupled with a stress field. For SQP, the

user is required to supply values of the objective function

and constraints, as well as their gradients. In all previous

studies, the gradients were not provided explicitly to the

SQP solver, instead finite-difference estimates were used.

However, a choice of the perturbation vector that gives

accurate estimates is highly non-trivial [36]. And also, if

several and more optimal parameters of surface textures

need to be found, the optimization task becomes increas-

ingly time-consuming and error-prone. One exception

could be the study conducted by Ostayen [14], who cal-

culated analytically the gradients. However, it was not

shown/discussed whether the gradients were used in actual

optimization.

Fig. 9 Difference in pressure distributions between the original images and the image obtained after decoding PIFS. a S1, b S2, c S3 and d S4.

Darker color represents smaller differences

Fig. 8 Range images of

textured surfaces. a S1, b S2,

c S3, and d S4 (adapted from

Wolski et al. [27])
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In the above studies, different methods handle the

boundary and initial constraints differently. This leads to

difficulties when the surface texture optimization is subject

to new, complex and/or more realistic constraints. So far

this problem has only been partially addressed by modi-

fying the existing methods or developing new ones. This

approach results in a proliferation of various ways of

solving the optimization problem and the great difficulties

associated with the selection of an appropriate method.

Therefore, a much needed solution is the development of a

general and systematic optimization approach that works

within a wide range of constraints for arbitrary surface

textures.

A first step in this development is a unified computa-

tional approach based on optimal control [37]. The

underlying idea is to reformulate the surface texture opti-

mization problem as a combined optimal control and

optimal parameter selection problem. For 1D cases, the

combined problem is

Maximize (or minimize) an objective functional

G0ðu; zÞ ¼ u0ðxðtf Þ; zÞ þ
Z

tf

ts

g0 t; x tð Þ; u tð Þ; zð Þ dt

with respect to the control function u tð Þ 2 R and the system

parameters z ¼ z1; . . .; znz

� �T2 Rnz , subject to

• the system dynamics

_x tð Þ ¼ f t; x tð Þ; u tð Þ; zð Þ

• the initial conditions

x tsð Þ ¼ x0 zð Þ;

• all-time control constraints

aku tð Þ þ bk � 0; k ¼ 1; 2; . . .; ngl;

• the canonical form constraints

Gkðu; zÞ ¼ uk x skð Þ; zð Þ þ
Z

sk

ts

gk t; x tð Þ; u tð Þ; zð Þ dt� 0;

k ¼ 1; 2; . . .; ngc; and

• the system parameter only constraints

Gk zð Þ� 0; k ¼ 1; 2; . . .; ngz;

where ts; tf

� �

is the time interval, x tð Þ ¼ x1 tð Þ; . . .; xns
tð Þ½ �T2

Rns is the state function vector, f ¼ f1; f1; . . .; fns
½ �T is a

vector of functions, sk 2 0; tf

� �

is the characteristic time

associated with the constraint Gk, ak, and bk are scalar

parameters, g0, gk, /0, and /k are scalar functions, nz, ns, ngc,

ngl, and ngz are number of system parameters, state vari-

ables, canonical constraints, all-time control constraints, and

system parameter only constraints, respectively.

In the new unified approach proposed the correspon-

dences between the shape optimization and the combined

problem are employed by replacing

• spacial variable with time (x ¼ t),

• film thickness with control signal (h xð Þ ¼ u tð Þ),
• integration constants and film shape parameters with

system parameters,

• load or friction with objective functional,

• Reynolds equation with system dynamics, and

• pressure boundary conditions with all-time control and

canonical form constraints.

Let the control function be parametrized by a

weighted sum of basis functions with parameters

rj; j ¼ 1; 2; . . .; k
� 	

u tð Þ ¼
X

k

j¼1

rjBj tð Þ

where Bj tð Þ ¼ 1; tj�1� t� tj

0; otherwise




is a piecewise constant

function defined over a set of knots ts ¼ t0;f
t1; . . .; tk ¼ tf g. Once the control signal is parametrized

(called control parametrization) the objective functional

and all the constraint functionals become functions of the

parameter vector H ¼ r1; . . .; rk; z1; . . .; znz

� �T2 Rnp and

the combined problem becomes a nonlinear mathematical

programming problem (NLMP), i.e.

minimize
H

~G0 Hð Þ

subject to the constraints

~Gi Hð Þ ¼ 0; i ¼ 1; 2; . . .; ne

~Gi Hð Þ� 0; i ¼ ne þ 1; . . .; ngc

uL
j \rj\uU

j ; j ¼ 1; . . .; k

zL
k\zk\zL

k ; k ¼ 1; . . .; nz;

where uL
ij, zL

k and uU
ij , zL

k are the lower and upper limits of

the control signal and the system parameters, respectively.

The NLMP can be efficiently solved using existing soft-

ware packages.

Our initial study showed that the above approach/

method works for 1D cases for which the Reynolds equa-

tion can be transformed into a set of ordinary differential

equations (ODEs) [37]. In this study, a partially textured

infinitely long parallel bearing was optimized for the

maximum load capacity. As an example, the optimal
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solution of a partially textured parallel bearing is shown in

Fig. 10. The film thickness of the bearing is given by

where n ¼ h=hm is the dimple height ratio, e ¼ lD=l is the

dimple length ratio, m is number of dimples and D is the

length of textured portion.

An extension of this approach into 2D cases governed

by Reynolds equations will be a focus of future study.

Also, further developments will focus on the optimization

of bearings governed by Navier–Stokes equations for any

geometry of texture shapes and any lubricant rheology.

This would include the construction of efficient and accu-

rate solvers of PDEs with exponential convergence

capacity. Current solvers are relatively slow (algebraic

convergence) and require a large memory for storing the

fine grids that capture all necessary details of surface tex-

tures (except for h–p finite element method [38]). For the

optimization calculations of analytical gradients of dis-

cretized objective functions and various effects including

cavitation would need to be addressed [39, 40].

4 Conclusions

The following conclusions can be drawn from this study:

1. Surface texture image needs to be checked for Brownian

fractalness before directional multiscale analysis:

• If the surface texture is fractal Brownian then the

VOT is the method of choice. It has higher

accuracy and lesser sensitivity to measurement

conditions than other methods.

• For surface textures exhibiting the fractal Brownian

motion (e.g., self-structured surfaces) the ABRG

method is recommended. For self-structured sur-

faces the method has the high accuracy in measuring

surface roughness and directionality and the capac-

ity for quantifying multi-patterned textures.

2. A PIFS can model and describe the entire surface

texture image. There are small differences between the

friction and the load results (i.e., \2 % and \0.04 %,

respectively) obtained from PIFS models and these

calculated for the original surfaces.

3. A unified computational approach based on optimal

control can be used to find the maximum load capacity

or the minimum friction coefficient for all bearings

governed by 1D Reynolds equations.

4. Future study would focus on the optimization of

bearings governed by 2D Reynolds or Navier–Stokes

equations, especially on development of a solver

with exponential convergence capacity and calcula-

tions of analytical gradients of discretized objective

functions.
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Fig. 10 Example of the

geometry of the partially

textured parallel bearing

optimized for the maximum

load carrying capacity. The

optimal ratios of eopt ¼ 1:52 and

nopt ¼ 0:15 were calculated for

the bearing textured with two

dimples m ¼ 2 and the

untextured portions l0 ¼ 0:5 and

l1 ¼ 0:125. These results agree

with data published in [32]

h x; n; eð Þ ¼ n l0\x\l1 and mod x� l0; eD= 1þ eð Þm� 1ð Þð Þ
1:0 otherwise




;
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