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Abstract In this methods article, we describe application

of Prandtl–Tomlinson models and their extensions to

interpret dry atomic-scale friction. The goal is to provide a

practical overview of how to use these models to study

frictional phenomena. We begin with the fundamental

equations and build on them step-by-step—from the simple

quasistatic one-spring, one-mass model for predicting

transitions between friction regimes to the two-dimensional

and multi-atom models for describing the effect of contact

area. The intention is to bridge the gap between theoretical

analysis, numerical implementation, and predicted physical

phenomena. In the process, we provide an introductory

manual with example computer programs for newcomers

to the field, and an illustration of the significant potential

for this approach to yield new fundamental understanding

of atomic-scale friction.

Keywords Nanotribology � Friction mechanisms � AFM �
Stick-slip � Dynamic modeling

List of Symbols

Variables

a Substrate lattice spacing

b Tip lattice spacing

Ceff Effective stiffness (cantilever, tip, and contact)

d Superstructure periodicity

f Actuation frequency

f0 Attempt frequency

fnt Frequency of the tip apex mode

(nanocontact)

fPT Frequency of the one effective mode of the PT

model

F Friction force

Fc Maximum friction at zero temperature

Fn Normal force

Fts Interaction force in the normal direction

k System stiffness (cantilever and tip)

kt Stiffness of spring connecting neighboring tip

atoms

kn Normal stiffness

m Mass of tip

N Number of atoms

p Probability of a transition

t Time

tv Average time for the tip to traverse one lattice

spacing

T Temperature

U Corrugation potential amplitude

Uc Corrugation potential

v Sliding speed of support

vc Critical speed

V Total potential energy

x Displacement of the tip in the sliding direction

xt Transition point

xsp Displacement of the support

y Displacement of the tip perpendicular to applied

sliding direction

z Displacement of the tip in the normal

direction
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Greek Symbols

a Parameter that reflects the resonance of normal mode

actuation

aa Magnitude of amplitude modulation

ac Magnitude of centerline modulation

b Curvature of the corrugation potential

c Parameter that reflects the resonance of torsional

mode actuation

g Stick-slip regime transition parameter

j Transition rate

l Viscous friction (damping) coefficient

n Thermal activation force

s Average time to hop out from a potential well due to

thermal activation

x Angular frequency

1 Introduction

It has been proposed that fundamental insight into frictional

phenomena might be gained by studying single asperity

friction, where a single asperity is considered to be the basic

element of friction on any length scale. The small size scale

of a single asperity means that individual atoms may play a

role in resisting motion, so single asperity friction is often

called atomic-scale friction [1]. Atomic force microscopy

(AFM) is the primary experimental tool used to investigate

this phenomenon. To measure friction, the AFM cantilever

gently drags a nanoscale sharp tip to slide against a substrate.

The resulting interaction causes torsion of the cantilever

which can be detected by optical techniques and then con-

verted to a friction force. These friction measurements can

also be understood using modeling and simulation.

Atomistic simulations such as molecular dynamics

(MD) are popular and powerful tools to investigate atomic

friction because they can track the evolution of each atom’s

configurational and energetic information. However, the

cost of this level of detail is significant computation time.

Further, atomistic simulations are limited in their ability to

capture larger-scale features such as long times or large

masses. An alternative is an analytical or reduced-order

model that simplifies the system such that, while it cannot

provide the level of detail of a fully atomistic simulation, it

enables investigation of atomic friction under almost all

experimental conditions (some of which are inaccessible to

MD). Reduced-order models in this context refer to the

Prandtl–Tomlinson (PT) model [2, 3] and its various

extensions. This simple, yet widely used model consists of

a harmonic spring that captures the combination of the

stiffness of the tip and the first eigenmode of the cantilever

torsion, and an equivalent point-mass that captures the

effective mass corresponding to that eigenmode. Reduced-

order, atomic-scale friction models simplify single asperity

friction into one or more point-masses (contact area atoms)

pulled via an elastic tether (compliant cantilever and tip)

along a periodic potential energy profile (substrate).

There have been many modifications and extensions of

the original PT model. One important extension is the

introduction of thermal activation proposed by Gnecco

et al. [4]. Other related methods are the Frenkel–Kontorova

(FK) [5] and the Frenkel–Kontorova–Tomlinson (FKT) [6]

models which take the size of the contact into consider-

ation. The essential difference between the FK and FKT

models is that only the end atom is attached to the support

in FK while all atoms are attached to the support in FKT.

The one-dimensional (1D) PT, FK, and FKT models are

illustrated in Fig. 1. An advantage of all these models is

that they can be easily implemented and enable the effects

of individual parameters to be isolated to reveal funda-

mental mechanisms of atomic friction.

The goal of this article is to bridge the gap between

theory and implementation of these models for studying

atomic friction. For newcomers to the field, it can serve as

an instructional tutorial; we have also provided example

MATLAB programs in Supplementary Material to facili-

tate the learning process. The connection between funda-

mental concepts and their implementation provided in this

Fig. 1 Illustrations of the 1D PT, FK, and FKT models. Large solid
spheres represent tip atoms and rectangular slabs represent the

sliding support. Inset is a schematic of the relationship between an

AFM tip/cantilever and the simple mass-spring model. Variables are

defined in the text
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article, in conjunction with the extensive literature cited,

should provide researchers at all levels with an apprecia-

tion of how PT-based models can be used to gain funda-

mental insights into atomic-scale friction as well as the

tools necessary to further this research direction.

We first introduce the basic mathematical formulation

(Sect. 2) and describe how to implement robust numerical

algorithms to solve the governing equations (Sect. 3). We

then discuss application of PT-based models to describe

thermal activation (Sect. 4), transitions between friction

regimes (Sect. 5), friction modulation due to surface

reconstruction (Sect. 6), dynamic actuation (Sect. 7), scan-

line dependance (Sect. 8), and contact size effects

(Sect. 9). The sections are organized by topic, and each

section consists of a brief background on some frictional

phenomenon and motivation for its study, details of how to

extend and apply the PT model to describe that phenom-

enon, illustrative results predicted by the PT model, and

finally suggestions for future research. References to the

many studies that have contributed to progress in this area

will be provided in the relevant sections.

2 Mathematical Formulation

The mathematical formulation of the reduced-order, atomic-

scale friction models can be described using the 1D PT model

as an example. The 1D PT model simplifies single asperity

friction into a ball-like tip dragged to slide against the rigid

substrate by a support moving at constant speed that is

connected to the ball-like tip by a harmonic spring. The

interaction between the tip and the substrate is modeled by a

corrugation potential which has a sinusoidal form for a

perfectly ordered crystalline surface. The total potential

energy of the system V(x, t) can be written as,

Vðx; tÞ ¼ �U

2
cos

2px

a

� �
þ 1

2
kðvt � xÞ2: ð1Þ

The first term on the right hand side of this expression

describes the corrugation potential where U is the amplitude,

x is the tip displacement, and a is the lattice spacing of the

substrate. The second term is the elastic potential resulting

from the interaction between the tip and support where k is

the spring stiffness (or physically speaking the combined

stiffness of the cantilever and tip), t is time, and v is the

sliding speed of the support. The dynamics of the tip can be

described by the Langevin equation,

m€xþ ml _x ¼ � oVðx; tÞ
ox

þ nðtÞ; ð2Þ

where m is the mass of the tip, l is the viscous friction (or

damping) coefficient, and n(t) is the thermal activation

force. This equation is solved for x and friction force is

then calculated as

F ¼ kðvt � xÞ: ð3Þ

The governing equation of the PT model (Eq. 2) belongs

to a family of stochastic differential equations composed of

deterministic dynamics and stochastic processes. In this

case, the deterministic term is a viscous drag to resist the

movement of the tip and the force due to the corrugation

potential in which the tip resides. The stochastic process is

taken into consideration by adding a random force field

n(t), where n(t) is a thermal noise term satisfying the

fluctuation–dissipation relation,

hnðtÞnðt0Þi ¼ 2mlkBTdðt � t0Þ: ð4Þ

In this expression, h i indicates an ensemble average, kB is

the Boltzmann constant, T is temperature, and d is the

Dirac delta function. With the stochastic term n(t), given

specific initial conditions, there is no deterministic path for

the tip, i.e., multiple paths can be taken by the tip with

specific probabilities.

Typical values and/or range of values for the parameters

in these equations are given in Table 1. Note that this table

only gives a general idea of the range of these parameters

reported in the literature. The actual values used should be

chosen on a case-by-case basis to correspond to the phys-

ical system being modeled. The exact values of parameters

used in this article will be specified for each result pre-

sented. Also, it should be mentioned that the definition of

mass is still controversial as will be discussed later. Finally,

we want to point out that, although the Langevin equation

is most common way to treat the thermal activation term,

other methods exist, for example application of Monte

Carlo methods [11, 12].

3 Numerical Algorithms

Ermak’s algorithm [13, 14] to treat deterministic dynamics

and stochastic processes simultaneously has been widely

used to solve the governing equations of atomic friction [7,

Table 1 Typical values or range of values for the parameters used in

the PT model to describe an AFM friction experiment [7–10]

Variable Magnitude

m, Mass of tip 10-12kg

U, Amplitude of potential 1 eV

v, Sliding speed 1 nm/s–1 m/s

k, Cantilever and tip stiffness 0.1–50 N/m

a, Lattice spacing 0.3 nm

l, Viscous coefficient 2
ffiffiffiffiffiffiffiffiffi
k=m

p
T, Temperature 0–1000 K
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9, 10, 15, 16]. The following describes the solution to a 1D

Langevin equation; two-dimensional (2D) and three-

dimensional (3D) solvers can be obtained in a similar

manner. An example of this method is provided in the

Supplementary Material as MATLAB program

PT1D_Ermak.m. Based on Eq. 2, the discrete differential

equations at each time step are,

€xðtÞ ¼ �l _xðtÞ � oVðx; tÞ
mox

; ð5Þ

_xðt þ dtÞ ¼ c0 _xðtÞ þ c1dt€xðtÞ þ dvG; ð6Þ

xðt þ dtÞ ¼ xðtÞ þ c1dt _xðtÞ þ c2dt2€xðtÞ þ drG; ð7Þ

where dt is the time step size. The parameters c0, c1, and c2

are given by,

c0 ¼ expð�ldtÞ; ð8Þ

c1 ¼ ðldtÞ�1ð1� c0Þ; ð9Þ

c2 ¼ ðldtÞ�1ð1� c1Þ ð10Þ

The random variables dvG and drG, which are used to

describe the thermal activation term n(t), can be sampled

from a bivariate normal distribution. This distribution, q, is

expressed,

qðdrG; dvGÞ ¼ � 1

2prrrvð1� c2
rvÞ

1=2

� exp

(
�1

2ð1� c2
rvÞ

 
drG

rr

� �2

þ dvG

rv

� �2

�2crv
drG

rr

� �
dvG

rv

� �!)

ð11Þ

where the mean values of the bivariate Gaussian

distribution are zeros with variances given by,

dr2
r ¼dt2 kBT

m
ðldtÞ�1

� 2� ldtð Þ�1
3� 4e�ldt þ e�2ldt
� �n o ð12Þ

dr2
v ¼

kBT

m
1� e�2ldt
� �

ð13Þ

and the correlation coefficient is,

crvrrrv ¼ dt
kBT

m
ðldtÞ�1ð1� e�ldtÞ2: ð14Þ

Details for the derivation of c0, c1, c2, dvG, and drG can

be found in the original papers [13, 14].

The one-step Ermak’s algorithm is useful because it is

straightforward and efficient, especially for computation-

ally intensive systems such as those modeled using MD

simulation containing thousands of atoms. The efficiency

results from the low storage and the one-step method is

crucial for many applications. However, the drawback of

this algorithm is its first order accuracy which requires a

short time step to obtain highly accurate results [17].

Alternatively, there are many higher-order algorithms that

have been developed for stochastic differential equations

[17–20]. Here, we introduce an implementation of the

fourth-order Runge–Kutta (RK) algorithm developed by

Kasdin [19]. While, other options are always available, we

choose this method as an illustration for its performance

and relatively easy implementation. An example of the

fourth-order RK solution is provided in the Supplementary

Material as MATLAB program PT1D_RK.m.

To implement this method, we separate the one variable

equation with second order derivatives (Eq. 2) into two

variable equations with first order derivatives.

X ¼ FðX; tÞ þ NðtÞ

_x1

_x2

� �zfflfflffl}|fflfflffl{
¼

x2

�lx2 � 1
m

oVðx1;tÞ
ox1

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
þ

0

nðtÞ=m

� �zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{ ð15Þ

where x1 = x and x2 ¼ _x are used to reduce the derivative

order of the equation. Now, we can use vectors X; FðX; tÞ,
and NðtÞ with two elements each to describe the variables

of the equation sets.

Assuming that we know the value for Xk ¼
x1

x2

� �
at

time step tk, through fourth-step calculation (see equations

below) we obtain the value for Xkþ1 at time tk?1.

k1 ¼dtFðXk; tkÞ þ dtD1=2
0

r1

� �

kj ¼dtF Xk þ
Xj�1

i¼1

ajiki; tk þ cjdt

 !

þ dtðDqjÞ1=2 0

rj

� �

Xkþ1 ¼Xk þ a1k1 þ . . .þ ankn

ð16Þ

where dt is the time step, D ¼ 2mlkBT
dt ; j ¼ 2:::n; n ¼ 4 for

the fourth-order algorithm, and r is sampled by a standard

Gaussian distribution with zero mean value and a variance

of 1. The variables aji, ai, and qj are constant coefficients

whose values are given in Table 2, and c is a constant that

can be obtained by cj =
P

i=1
j-1 aji. More details of the

algorithm can be found in Kasdin’s article [19].

Finally, we provide a case study to show successful

applications of RK and Ermak’s algorithm for thermal

activation in atomic friction. The model-predicted friction

at T = 0 and 300 K obtained from the two different

algorithms is shown in Fig. 2. The results obtained using

the two methods at 0 K are indistinguishable while there is

clearly observable variation at 300 K where thermal
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activation is significant (discussed in a later section).

Although, there is no standard with which the accuracy of

the two methods predictions can be evaluated due to the

stochastic nature of the problem, mathematical analysis has

shown that the RK approach is generally more accurate

[19]. Results reported in the remainder of this article are

obtained using the fourth-order RK method.

4 Thermal Activation

The numerical methods introduced in the previous section

are designed specifically to solve the problem of thermal

activation. Generally speaking, when the energy barrier of

a system comes close to the magnitude of kBT (0.026 eV at

room temperature), thermal effects cannot be neglected.

Therefore, in the case of a single nanoscale asperity contact

with an energy barrier on the order of 1 eV, thermal effects

are significant. A direct result of thermal activation—the

contribution of thermal energy to overcome potential

energy barriers—is a decrease of friction with temperature

[7, 21] and an increase of friction with speed [4, 22–24].

In the PT model the total potential energy, consisting of

the corrugation potential and elastic energy of the spring,

evolves with time as the support moves with a constant

speed (xsp = vt). As shown in Fig. 3, this total energy

defines the potential energy wells in which the tip may

reside at a given time. If there is no thermal activation, the

tip slips only when the energy barrier between the current

potential well (i) and the adjacent potential well (j) disap-

pears such that DVi!j ¼ 0: In the presence of thermal

activation, the slip can occur sooner, i.e., when DVi!j [ 0:

Provided that the sliding speed is slow enough, the tran-

sition rate, j, for a jump from one potential well to next is

given by,

j ¼ f0 expð�DV=kBTÞ; ð17Þ

where DV is the energy barrier that must be overcome for

slip to occur, and f0 is the attempt rate, the frequency at

which the tip attempts to overcome a given energy barrier.

The probability pi of the tip residing at its current location

relative to the corrugation potential is governed by,

dpi

dt
¼ �ji!jpi þ jj!ipj: ð18Þ

This probability is related to the temperature, speed, and

mass dependence of frictional behavior.

Table 2 Fourth-order, time-varying RK coefficients

Coefficient Value

a1 0.25001352164789

a2 0.67428574806272

a3 -0.00831795169360

a4 0.08401868181222

a21 0.66667754298442

a31 0.63493935027993

a32 0.00342761715422

a41 - 2.32428921184321

a42 2.69723745129487

a43 0.29093673271592

q1 3.99956364361748

q2 1.64524970733585

q3 1.59330355118722

q4 0.26330006501868

Fig. 3 An illustration of slip between two adjacent energy minima. pi

is the probability of the tip residing in the current potential well, i,
where the energy barrier is DVi!j: pj is the probability of the tip

residing at the next minima, j, where DVj!i is the corresponding

energy barrier
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Fig. 2 Atomic friction versus support displacement at T = 300 K

solved by the fourth-order RK algorithm (dotted) and Ermak’s method

(dashed). For reference, the friction at T = 0 K which is the same for

both methods is also presented (solid). Other model parameters: m ¼
10�12 kg; k ¼ 1 N/m; U ¼ 0:6 eV; v ¼ 4� 103 nm/s; l ¼ 2

ffiffiffiffiffiffiffiffiffi
k=m

p
;

a ¼ 0:288 nm
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4.1 Temperature

Figure 4 shows the effect of temperature on mean friction

and illustrates that there are two regimes of temperature

dependance, thermal activation, and thermal drift. Repre-

sentative force traces in these two regimes are given in

Fig. 5. At lower temperatures, the system is subject to

standard thermal activation where we suppose DVj!i �
DVi!j so that jj!i � ji!j; the adsorbed boundary condi-

tion (no backward slip) is employed, and then

dpi

dt
¼ �ji!jpi: ð19Þ

In this case, the relationship between friction, temperature,

and speed follows Sang et al.’s prediction [7],

F ¼ Fc � jbkBT ln
vc

v

� 	
j2=3; ð20Þ

where Fc is the maximum friction at T ¼ 0; vc ¼ 2f0bkBT
3Ceff

ffiffiffiffi
Fc

p is

the critical velocity, f0 is the attempt rate, Ceff is the

effective stiffness, and b is a parameter determined by the

shape of the corrugation potential. Equation 20 character-

izes the thermal activation regime which exhibits a rapid

decrease of friction (low temperatures in Fig. 4) and per-

sistent forward slip (top plot of Fig. 5). Assuming a sinu-

soidal potential corrugation, an analytical expression for

the corrugation potential shape can be derived [21], b ¼
ð3p

ffiffiffiffiffi
Fc

p
=ð2

ffiffiffi
2
p

aÞ: A more detailed discussion of b for

different forms of the corrugation potential has also been

presented [25]. Note that Ceff differs from k, in that

k describes the stiffness of the cantilever and tip, while Ceff

includes the contact stiffness as well as the cantilever and

tip stiffness. The magnitude of Ceff can be determined from

the slope of the friction versus support displacement curve.

When the temperature is high enough that the system is

consistently close to thermal equilibrium, the system enters

the thermal drift regime [26]. The transition between

regimes can be understood by considering two time scales.

First is the average time for the tip to traverse over one

lattice spacing, tv = a/v. Second is the average time for the

tip to hop out from the potential well with the assistance of

thermal activation,

s ¼ 1=j ¼ 1

f0

exp
DV

kBT

� �
: ð21Þ

If tv� s, then the system is in the thermal drift regime

where friction follows the prediction of Krylov et al. [11,

26, 27],

F / v

T
expð1=TÞ: ð22Þ

In the thermal drift regime, the system exhibits

consistently low mean friction (high temperatures in

Fig. 4) with both forward and backward slips (bottom

plot of Fig. 5).

It is now widely accepted that thermal activation of the

tip in overcoming an energy barrier can lead to a mono-

tonic decrease of friction as discussed above. However,

experiments on MoS2 [28] and silicon wafers [29] reveal

that there can be an increase in friction with temperature

before the friction force declines rapidly (sometimes called

a friction peak). An interpretation of the friction peak was

proposed by Barel et al. [30] who argued that, in addition

to thermal activation from the energy barrier, there also

exist thermally activated formation and rupturing of mul-

tiple contacts, the competition between which can explain

the force peak. An enhanced PT model incorporating the
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Fig. 4 Illustration of the temperature dependence of friction. The two

regimes identified on the plot, thermal activation and thermal drift,

are described in the text. Other model parameters: m ¼ 10�12

kg; U ¼ 0:6 eV; v ¼ 4� 103 nm/s; l ¼ 2
ffiffiffiffiffiffiffiffiffi
k=m

p
; a ¼ 0:288 nm
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Fig. 5 Representative force traces in the thermal activation (top) and

thermal drift (bottom) regimes identified in Fig. 4. Several charac-

teristic forward and backward slips are identified by dashed lines on

the friction trace in the thermal drift regime
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effect of multiple contacts was successfully applied to

phenomenologically verify this mechanism [30, 31]. This

effect cannot be captured by a single contact PT model

such as that used in this article, so no force peak is

observed in the results presented here.

4.2 Speed

Figure 6 shows the speed dependence of friction. At low

speeds, the relationship follows Sang et al.’s prediction

(Eq. 20), that friction scales logarithmically with speed.

Based on this prediction, when v [ vc, if only thermal

effects are considered, the friction will saturate (sometimes

called a friction plateau) and no longer increase with

additional increases in speed [23]. An analytical prediction

of the appearance of the friction plateau (the mean friction

Fc = 0.39 nN at T = 0 K) is shown as a dashed line in

Fig. 6. However, in the reduced-order model, as the speed

goes up the system enters an athermal regime where the

thermal effects are negligible compared to other contribu-

tions [32]. In the athermal regime the damping term,

v
ffiffiffiffiffiffi
mk
p

, dominates the process and the friction is propor-

tional to velocity, F� v. The athermal region is often

observed in the reduced-order model if the system is

overdamped or at high scanning speed. The appearance of

the athermal regime can hinder the observation of a friction

plateau [8] which explains why there is no obvious friction

plateau in the results shown here. These findings also

suggest that special attention is needed for interpretation of

MD simulation results due to the fact that the speeds

accessible to the simulation often fall into the athermal

regime [24].

It is still unclear to what extent athermal effects play a

role for real dynamical systems in which there exist many

dissipation channels instead of a single viscous term [33]. It

is also worth pointing out that, although majority of AFM

experiments and simulations predict an increasing friction

with velocity, the monotonic relation is not always mea-

sured. For example a non-monotonic velocity dependence

of friction has been experimentally observed under some

conditions [34] and theoretically predicted by taking other

mechanisms such as memory effects or substrate dissipa-

tion into account [35–37].

4.3 Mass

One may note that there is an important parameter arising

in the equations describing thermal activation that has not

yet been discussed, the attempt rate f0. Following Kramer’s

rate theory [38], f0 can be expressed as,

f0 ¼
l2

4
þ x2

t

� �1=2

� l
2

 !
xi

2pxt
ð23Þ

where l is the viscous friction coefficient, xi
2 = m-1V00(xi)

is the squared angular frequency at the metastable

minimum i, and xt
2 = m-1V00(xt) denotes the squared

angular frequency at the transition point. In the extreme

situation of an overdamped system where l � xt, the

attempt frequency becomes,

f0 ¼
xixt

2pl
: ð24Þ

Or for a system without damping where l = 0, the

attempt rate reduces to,

f0 ¼
xi

2p
: ð25Þ

For this case, an expression relating the attempt rate f0 to

mass m and stiffness k can be deduced analytically, f0 ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2U
ma2 cosð2pxi

a Þ þ k
m

q
: In general though, the attempt rate

increases with stiffness and decreases with mass regardless

of the state of damping in the system.

Figure 7 demonstrates the effect of mass, or equiva-

lently the system’s inertia, on its frictional temperature and

speed dependence. A smaller inertia (larger attempt rate)

causes an earlier transition (i.e., at lower temperature) into

the thermal drift regime, where the transition is determined

by the criteria in Eq. 21. Smaller inertia also leads to later

saturation of the speed dependence and so a later transition
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(i.e., at larger speed) to the athermal regime. The later

transition to the athermal regime can be rationalized by the

observation that athermal friction is determined by F ¼
v
ffiffiffiffiffiffi
mk
p

(at large v the term ml _x dominates Eq. 2), so the

smaller the effective tip mass the later the athermal regime

arises.

In principle, f0 can be tuned by varying k, the stiffness

of cantilever and tip, or m, the effective mass. This brings

up the issue of how to define mass. Traditionally,

PT-based models consider the entire mass of the tip

which is the order of 10-12 kg. However, it has been

suggested that elastic deformation could be localized at

the apex of the tip for which the inertia is much less than

the typically used value [39]. This smaller mass causes a

significant increase in the attempt rate of the system, and

therefore leads to prediction of a stronger thermal effect.

One means of addressing this issue is to separate the mass

of the tip apex from that of the body of the tip and the

cantilever by using a two-mass, two-spring model. Such a

model can provide a better description of the tip’s flexi-

bility [11, 39–43]. However, it still does not resolve the

issue of how to differentiate the tip apex from the whole,

or how to determine the mass of the tip apex. Despite

these issues, it is clear that the system’s inertia affects

predictions of thermal effects made using the PT model.

The significance of this effect was recently shown by Li

et al. [24] through optimally matched experiments and

MD simulations where the large discrepancy between the

mass of the model and experimental tips resulted in a

significant difference between the measured and predicted

frictional behavior.

5 Friction Regimes: Smooth Sliding, Single Slip,

and Multiple Slip

Atomic friction can be divided into different regimes:

smooth sliding where the AFM tip slides smoothly on the

substrate, single slip where the tip sticks at one point and

then jumps over one lattice spacing to another point, and

multiple slip where the tip jumps over a few (more than

one) lattice spacings. Stick-slip motion is a very important

instability mechanism and is associated with high friction

and energy dissipation. Finding ways to control transitions

from smooth sliding to stick-slip has been thought to be a

key to prescribing friction at the atomic scale. Considering

the importance of transitions between friction regimes, it is

relevant to understand the underlying mechanisms. In

principle, the parameters that influence friction regimes fall

into two categories, static and dynamic.

If we view sliding friction as a quasistatic process,

temperature, sliding speed, and damping can be neglected.

With this assumption, Eq. 1 can be simplified as
oVðx;tÞ

ox ¼ 0;

to find the balance position for the tip, or equivalently, the

number of potential energy minima available. Therefore,

the 1D static PT model is described by the equation,

pU

a
sin

2px

a

� �
¼ kðxsp � xÞ ð26Þ

where xsp is the support position. The friction regime is

determined by how many solutions this equation has: one

solution corresponds to smooth sliding, two solutions to

single slip, three solution to double slip, and so on. Based

on this, it has been found that transitions between friction

regimes can be characterized by the parameter g ¼ 2p2U
a2k ;

where the critical values of g = 1, 4.6, 7.79, and 10.95 are

associated with transitions to single, double, triple, and

quadruple slips, respectively. The prediction of these crit-

ical values was proposed by Johnson et al. [44] and codi-

fied by Medyanik et al. [45].

Figure 8 illustrates the total potential energy at differ-

ent values of g. This figure shows that, for g B 1, a single

potential minima exists downhill from the tip’s current

position and therefore only smooth sliding can occur. At

1 \ g B 4.6, two potential minima exist and so it is

possible for the tip to traverse from one energy minima to

the next; in other words a single slip could occur. Simi-

larly, (n - 1) fold slip could occur only when n potential

minima exist. So for a quasistatic system, the parameter

g ¼ 2p2U
a2k

can independently determine transitions between

friction regimes.

The critical values of g derived from statics determine

the probability of the occurrence of slip; however, it is

dynamics that ultimately determine transitions between

friction regimes [33]. The first dynamic parameter we
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consider is damping. In the extreme condition where

damping is very strong, i.e., the rate of transfer of kinetic

energy to heat is much larger than the energy associated

with slip, the system can only jump from the current

minima to an adjacent one, and thus only single slip can

occur. This suggests that damping can delay the occurrence

of multiple slip. Figure 9 demonstrates the effect of

damping on transitions between slip regimes; a decrease in

the damping coefficient l causes transitions from single to

double and then triple slip. Direct measurement of the

damping coefficient in an AFM contact is difficult [46] and

requires continuum-based assumptions about the relation-

ship between contact area and normal load which have

been argued to be invalid [47]. However, by observing the

relation between damping and slips, Roth et al. have pro-

posed to use the occurrence of multiple slip as an indicator

for AFM damping through the relationship between

damping and slip [46].

Another dynamical factor is sliding speed. Figure 10

illustrates that the sliding speed can encourage transitions

between friction regimes; that is, increasing speed is

associated with multiple slips. The mechanism underlying

this trend can been understood easily in terms of energetics

since at higher speeds the tip has more kinetic energy to

transverse over additional potential energy barriers [15]. At

finite temperatures, a higher sliding speed can also lead to

later slip through thermal activation. The slip occurs close

to the transition point and the potential energy stored in the

cantilever at the onset of slip is large, leading to a larger

proportion of multiple slips [33]. One may also notice from

Fig. 10 that at v = 100 lm/s the maximum friction

increases. That is because at high speeds the viscous term

starts to dominate the process and the system enters the

athermal regime as discussed previously.

The last dynamical factor in the PT model we will con-

sider is temperature. Without temperature effects, slip only

occurs when there is no longer an energy barrier to escape the

potential minima where the tip resides. Temperature can

trigger the occurrence of slip at an earlier stage through

thermal activation. The jump at an earlier stage through

thermal activation will result in not only less potential energy

accumulated and so less kinetic energy transferred, but also

fewer potential minima available downhill [33]. Therefore,

the higher the temperature, the less probability of multiple

slip. This effect is illustrated in Fig. 11.

These types of observations can be exploited as potential

means of controlling friction by, for example, manipulating

the amplitude of the corrugation potential U. Some attempts

have already been made: Socoliuc et al. achieved transitions

between friction regimes by tuning the normal load [48] and

Dienwiebel et al. realized similar transitions by controlling

the commensurability between tip and substrate [49]. How-

ever, further investigation of the parameters that affect
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is the critical damping coefficient. Single,
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transitions between friction regimes using reduced-order

models may yield even more novel ideas for friction control.

6 Friction Modulation Due to Surface Reconstruction

So far, we have only considered friction on an atomically

flat, defect-free surface. However, many surfaces are non-

ideal and exhibit defects, disorder, or reconstruction that

result in corresponding variation in friction. In this section,

we focus on reconstruction, which refers to a scenario

where atoms near a surface reside in positions different

from the bulk material and form a new ‘‘reconstructed’’

surface, sometimes called a ‘‘superstructure’’. One repre-

sentative and well-known example is Au(111) surface

reconstruction [50, 51].

Friction variation due to reconstruction was recently

observed with KBr films formed on NaCl(001) and

Cu(111) surfaces [52]. In that study, friction as well as

energy dissipation were found to vary with the recon-

structed surface features, and these observations were

attributed to a tiny rumpling in the direction perpendicular

to the surface on the order of 0.01 nm. Recently, a

graphene film on SiC(0001) with 6 9 6 reconstruction was

also found to give rise to friction modulation. However, in

that case there was no variation in the energy dissipated

because the offsets of the force trace and retrace were

consistent [53]. These and other results suggest that it may

be feasible for friction to be controlled at the nanoscale

by utilizing topographic features provided by different

superstructures.

For an ideal clean crystal surface, the PT model corru-

gation potential can be represented by a sinusoidal form.

However, this simple approach cannot capture atomic

disorder. Friction on non-ideal surfaces has been investi-

gated in the framework of the PT model by introducing a

local perturbation [54] or including a second harmonic

term [55]. Instead of modifying the sinusoidal potential to

capture surfaces features, friction modulation has also been

studied using a non-sinusoidal potential [25, 56]. To show

the application of reduced-order modeling to study surface

reconstruction, we follow Steiner et al. [57] and employ a

1D PT model at T = 0 K to phenomenologically interpret

the friction modulation.

To capture the presence of a superstructure on a sub-

strate surface, the PT corrugation potential must be modi-

fied correspondingly. As suggested by Steiner et al. [57],

two types of modulation could exist. The first is called

amplitude (or friction loop width) modulation where a long

range modulation is applied to the amplitude of the cor-

rugation potential. The modulated corrugation potential

can be written as,

UcðxÞ ¼
1

2
U 1þ aa cos

2px

d

� �
 �
cos

2px

a

� �
; ð27Þ

where U is the amplitude of the corrugation potential

before modulation, aa is an artificial parameter used to

adjust the magnitude of the modulation, and d is the peri-

odicity of the superstructure. Figure 12 shows the form of

the corrugation potential after amplitude modulation with

the corresponding model-predicted force trace and retrace

depicted below. If one views the energy dissipation as the

area confined between force trace and retrace, the energy

dissipation is largest at the point where the amplitude of

corrugation potential is a maximum while there is almost

no energy loss elsewhere. Therefore, in amplitude modu-

lation, both the force and energy vary due to the underlying

superstructure. This is consistent with the experimental

measurements of films formed by KBr on NaCl(001) and

Cu (001) [52].
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Another illustration of this effect is called centerline (or

friction loop offset) modulation. This phenomena is

incorporated into the PT model by adding a long range

potential to the short range sinusoidal potential,

UcðxÞ ¼
1

2
U cos

2px

a

� �
þ 1

2
Uaccos

2px

d

� �
; ð28Þ

where ac describes the magnitude of the centerline mod-

ulation. Figure 13 demonstrates the modulated potential

form and the resultant model-predicted force trace and

retrace. In contrast to amplitude modulation, the force

trace and retrace are modulated consistently such that

there is almost no variation of the energy dissipation.

Similar friction force traces with centerline offset modu-

lation have been acquired on graphene films grown on

SiC(0001) [53].

Both of types of friction modulation observed in

experiments can be captured by the PT model with a

modulated corrugation potential. However, this does not

directly answer the question of where the modulated

potential comes from. Initial work has been done by Li

et al. [58] to explain the friction offset modulation on a

reconstructed Au (111) surface using MD simulation. The

fully atomistic model revealed that the cause of the fric-

tion modulation is not the tiny rumpling in the normal

direction, but rather can be attributed to the transitions

from face-centered-cubic (FCC) to hexagonal-close-

packed (HCP) structure on the surface. However, there is

still a significant gap between observation of friction

modulation and having sufficient understanding of the

fundamental mechanisms to enable use of surface recon-

struction as a means of controlling friction which invites

further investigation.

7 Dynamic Actuation

It has been reported that friction at the nanoscale can be

drastically decreased by mechanically exciting the normal

[59] or torsional [23] modes of an AFM cantilever. These

two approaches are illustrated schematically in Fig. 14.

The idea of controlling friction by driving an AFM near its

resonance frequency originates from the invention of

dynamic mode AFM which, in contrast to contact mode,

has the advantage of causing less wear and can provide

more information such as phase, frequency, amplitude, and

so on. For example, Lantz et al. showed that the dynamic

mode can substantially decrease wear during the sliding of

an ultrasharp silicon tip against a polymer surface [60],

which gives promise to new technologies for applying

nanoprobes to read and write data. In this section, we focus

on how to simplify this complicated system into a reduced-

order model, and demonstrate how to employ such a model

to facilitate understand the physical phenomena.

In Socoliuc et al.’s [59] study, excitation is achieved

through modulation of the normal force acting on the tip at

well-defined frequencies. Then the movement of the tip in

the normal direction is governed by the equation,

m€zþ c _zþ knz ¼ FtsðzÞ þ Fn0 cosð2pftÞ ð29Þ

where z is the displacement in the normal direction, c _z is

the dissipation term, kn is the normal stiffness of the sys-

tem, Fts is the interaction force in the normal direction

between the tip and substrate, and Fn0 is the magnitude of

the normal force (Fn) exerted on the system.

The steady state solution of this problem can be written

as,

zðtÞ ¼ Z0 cosð2pft � /Þ; ð30Þ

where the tip will oscillate with the same frequency f but

with a phase lag /, and amplitude Z0 which is determined

by the quality factor and the excitation frequency. When

f coincides with the characteristic frequency of the system,

resonance occurs such that Z0 reaches its maximal value.

The characteristic frequency of the system is determined by
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the normal stiffness kn, effective mass m, and the interac-

tion force Fts, and so is usually larger than that of a free

system without Fts [23, 61].

The variation of z can be implicitly reflected in the PT

model by variation of the magnitude of the corrugation

potential U. An approximation is to suppose that U varies

linearly with z, so the variation of the magnitude of the

corrugation potential also has a harmonic form [16, 59],

U ¼ U0½1þ a cosð2pftÞ� ð31Þ

where a is used to reflect the magnitude of z.

Another approach is to excite the torsional mode of the

system [23, 62]. The excitation of the torsional mode leads

to an oscillating motion of the tip in the sliding direction. In

this case, the speed of the tip has the form,

v ¼ v0½1þ c2pfa cosð2pftÞ� ð32Þ

where v0 is the constant sliding speed without excitation,

a is the lattice spacing in the sliding direction, and c is used

to describe the oscillation strength. In practice, c can be

controlled by adjusting f; when f is equal to the charac-

teristic torsional mode of the system, c reaches its maxi-

mum value. Note that U and v in Eqs. 31 and 32 are the

magnitude of the corrugation potential and sliding speed in

Eq. 1.

The dependence of friction on a, the parameter that

reflects the resonance of the normal mode, and c, the

parameter that reflects the resonance of the torsional mode,

are demonstrated in Figs. 15 and 16. It is clear that both

excitations can decrease the atomic friction significantly.

Recall that a small value of a or c represents the scenario

where the excitation frequency is far from the characteristic

frequency of the system, while large a or c corresponds to

the occurrence of resonances.

According to Socoliuc et al. [59] the actuation fre-

quency, f, must satisfy the following criteria,

v=a� f � fnt ð33Þ

where v/a is the frequency that the tip traverses over a

lattice spacing of the substrate and fnt is the frequency of

the nanocontact which is related to the fast motion of the

tip apex. However, in the simplified PT model there is just

one-spring and one point-mass, so we can represent only

one effective mode, i.e., the combination of the tip apex

and cantilever, the frequency of which is fPT. For a system

without damping, the frequency of the PT mode can be

defined as,

fPT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðxÞ=m

p
2p

; ð34Þ

where V is the total system potential and x represents the

slip position of the nanocontact. For a or c = 0 and at zero

temperature, the slip occurs at the saddle point of the total

potential where V 00ð2px
a Þ ¼ 0, so fPT becomes zero. When a

or c increases, the slip occurs at an earlier stage and a larger

V00, thus the resonance occurs at a larger fPT.

In the reduced-order model, we can vary the excitation

frequency f easily and investigate its effect on friction.

From the insets of both Figs. 15 and 16, we can see that

there are two local friction minima. The first minimum

occurs when the frequency is equal to v/a. This minimum

friction is caused by resonance between the traversing

frequency v/a and the external excitation frequency f. The

location of the first minimum is the same for all curves in

0.0 0.5 1.0 1.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.4 0.8
0.0

0.2

0.4

0.6

α=0.1
α=0.4
α=0.9

M
ea

n 
F

ric
tio

n 
(n

N
)

f

M
ea

n 
F

ric
tio

n 
(n

N
)

α

Fig. 15 Friction dependence on a, the parameter that describes

actuation of the normal mode of an AFM system. Inset is the variation

of friction with excitation frequency (units
ffiffiffi
k
m

q
) for different a. Other

model parameters: m ¼ 10�12 kg; U0 ¼ 1:2 eV; v ¼ 1� 103 nm/s;

l ¼ 2
ffiffiffiffiffiffiffiffiffi
k=m

p
; a ¼ 0:288 nm; k ¼ 4 N/m and T = 0 K

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.4 0.8

0.0

0.2

0.4

0.6

γ=0.1
γ=0.4
γ=0.6

F
ric

tio
n 

(n
N

)

f

M
ea

n 
F

ric
tio

n 
(n

N
)

γ

Fig. 16 Friction dependence on c, the parameter that captures actua-

tion of the torsional mode of an AFM system. Inset is the variation of

friction with excitation frequency (units
ffiffiffi
k
m

q
) for different c. Other

model parameters: m ¼ 10�12 kg; U ¼ 1:2 eV; v0 ¼ 1� 103 nm/s;

l ¼ 2
ffiffiffiffiffiffiffiffiffi
k=m

p
; a ¼ 0:288 nm; k ¼ 4 N/m and T = 0 K

378 Tribol Lett (2011) 44:367–386

123



the insets since the same sliding speeds are applied. The

second minimum arises when the external excitation fre-

quency is identical to that of the PT mode, fPT, which

depends on the slip position. So this minimum friction is

due to resonance between the frequency of the PT mode

and the external exciting frequency. As shown in the insets

of Figs. 15 and 16, an increase in a or c results in a slight

shift of the second minima to the right. When the external

excitation frequency is not contained between v/a and fPT,

the suppression of friction will not occur.

In practice, the typical frequency of the 1st normal

eigenmode or 1st torsional eigenmode (on the order of

100 kHz) is much smaller than that of apex mode fnt (on

the order of GHz), and is much larger than the traversing

frequency v/a (on the order of kHz assuming a scanning

speed of 1lm/s and lattice spacing at 0.5 nm). So, in

general the excitation frequency is well contained between

v/a and fnt. However, we do not exclude the cases where

the higher eigenmodes of the microcantilever are excited or

the scanning speed is on the order of mm/s or m/s which is

common in MD simulation.

8 2D Nature of Atomic Friction

There is a significant limitation in the PT model we have

discussed so far in that the trajectory of the tip is limited to

one dimension. In reality, the tip may move in two

dimensions. Fujisawa et al. [63] experimentally revealed

that atomic friction exhibits remarkable 2D behavior.

Subsequent study [64, 65] confirmed that this phenomenon

is ubiquitous on atomically flat surfaces. This means that

the AFM tip usually takes a 2D trajectory instead of a

straight line path while sliding along an atomically flat

surface. Because of this, atomic friction exhibits many

unique phenomena such as dependence on the scanning

direction and the scanning line. An extended version of the

PT model has been successfully used to predict the 2D

nature of atomic friction [10, 66, 67]. In this section, we

will show (a) how to construct a 2D corrugation potential

and (b) application of the 2D PT model to study the scan-

line dependance of friction. An example implementation of

the 2D PT model is provided in the Supplementary Mate-

rial as MATLAB program PT2D_RK.m.

8.1 2D Corrugation Potential

In the 2D PT model, a tip composed of a single atom slides

along an energy landscape that models a 2D lattice of

atoms. For different lattice structures, one has to construct

corresponding formulas for the energy landscape. Most

material surfaces fall into the category of a Bravais lattice

for which the surface can be generated by repeating the

basic unit. Exceptions are surfaces of quasi-crystalline

materials or with reconstruction. Assuming the surface is a

2D Bravais lattice, it can be generated by a pair of primi-

tive vectors, a1, a2. Its reciprocal vectors b1, b2 can be

calculated by

ai � bj ¼
2p i ¼ j
0 i 6¼ j

�
ð35Þ

An approximation of the corrugation potential

Uc(x, y) is given by the first term of the 2D Fourier

series of the primitive lattice vectors and has the form,

Ucðx; yÞ ¼ U½cosðb1 � xÞ þ cosðb2 � xÞ�; ð36Þ

where x is the vector of x and y positions.

For example, in the case of an FCC(100) surface such as

that shown in Fig. 17a, the primitive vectors are

a1 ¼
a
0

� �
; a2 ¼

0

a

� �
ð37Þ

The corresponding reciprocal vectors are

b1 ¼
2p
a
0

� �
; b2 ¼

0
2p
a

� �
: ð38Þ

The corrugation potential can be formulated as,

Ucðx; yÞ ¼ U cos
2px

a

� �
þ cos

2py

a

� �
 �
ð39Þ

and is illustrated in Fig. 17c

In another case, FCC(111), the surface is modeled as

shown in Fig. 17b. According to the procedure we

described above, one can chose two of the three lattice

vectors, a1, a2, a3 as the primitive lattice vectors.

Fig. 17 Illustration of atom arrangements and energy landscapes on

FCC(100) and FCC(111) surfaces. The energy unit is U which is the

amplitude in Eqs. 39 and 46
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a1 ¼
a
0

� �
; a2 ¼

1
2

affiffi
3
p

2
a

 !
; a3 ¼

� 1
2

affiffi
3
p

2
a

 !
ð40Þ

If we choose a1 and a2, the reciprocal vectors are

b1 ¼
2p
a�2pffiffi
3
p

a

� �
; b2 ¼

0
4pffiffi
3
p

a

� �
; ð41Þ

If we choose a1 and a3, the reciprocal vectors are,

b01 ¼
2p
a

2pffiffi
3
p

a

� �
; b03 ¼

0
4pffiffi
3
p

a

� �
; ð42Þ

If we choose a2 and a3, the reciprocal vectors are,

b002 ¼
2p
a

2pffiffi
3
p

a

� �
; b003 ¼

�2p
a

2pffiffi
3
p

a

� �
: ð43Þ

However, there is a complication in that, if we only use two

of the three possible lattice vectors, it is impossible to

maintain symmetry in all three directions at the same time.

So, a practical alternative is to use all the reciprocal

vectors. Actually, there are only three unique reciprocal

vectors such that the corrugation potential becomes,

Ucðx; yÞ ¼ U½cosðb1 � xÞ þ cosðb2 � xÞ þ cosðb3 � xÞ� ð44Þ

in which b1, b2, and b3 can be expressed as,

b1 ¼
2p
a

2pffiffi
3
p

a

� �
; b2 ¼

0
4pffiffi
3
p

a

� �
; b3 ¼

2p
a�2pffiffi
3
p

a

� �
: ð45Þ

Finally, we have a simplified form,

Ucðx; yÞ ¼ U 2 cos
2px

a

� �
cos

2pyffiffiffi
3
p

a

� �
þ cos

4pyffiffiffi
3
p

a

� �
 �
:

ð46Þ

A visual representation of the energy landscape is shown in

Fig. 17d. Other surfaces with Bravais lattices can be con-

structed in a similar way.

One interesting and relevant case is graphene.

Graphene’s structure is similar to the FCC(111) surface

except there is one atom missing in the center of the

hexagonal primitive cell. However, the corrugation

potential for graphene can be constructed using the same

set of primitive lattice vectors. As a result, there is only

a sign difference between their corrugation potentials

[66].

8.2 Scan-Line Dependence

In this section, we apply the 2D PT model to study the

scanning line dependence of friction. We take the

FCC(111) surface as an example. For the 2D PT model,

the Langevin equation becomes,

m€xþ ml _x ¼ � oVðx; y; tÞ
ox

þ nxðtÞ ð47Þ

m€yþ ml _y ¼ � oVðx; y; tÞ
oy

þ nyðtÞ; ð48Þ

where nðtÞx ¼ nðtÞ cosðhÞ and nðtÞy ¼ nðtÞ sinðhÞ, and h is

subject to uniform distribution [0, 2p].

We suppose that the support drags the tip to slide along

the [110] direction, but with different starting positions. As

shown in Fig. 18, although the support scans along a

straight line, the tip moves through a zigzag pattern due to

the 2D energy landscape. Along different scanning lines,

one also obtains distinct force traces. How far the tip’s path

deviates from a straight line is determined by ratio of the

curvature of the corrugation potential and the lateral stiff-

ness of the system, or g ¼ 2p2U
a2k . The larger the value of g,

the further the tip’s path from a straight line.

One consequence of the zigzag path is the loss of res-

olution of the lateral force images from AFM which are

widely used to measure a surface landscape at the atomic

scale. In an ideal situation, the force obtained would reflect

the gradient of the corrugation potential exactly alongthe

scan line such that the measurement is a perfect represen-

tation of the surface. However, this may not be the case if

the path of the tip deviates from a straight line since the

force obtained is due to the gradient of the corrugation

Fig. 18 Potential energy landscape of an FCC(111) surface (top)

illustrating the position of the point tip (solid lines) traveling along

different scan lines (dashed lines) and corresponding force traces

(bottom). Results shown at T = 0 K to clearly illustrate the motion

paths
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potential where the tip resides. The favored positions for

the tip are the minima in the energy landscape and, as a

result, the information at the energy maxima is lost while

the information at the minima is over-represented. Fig-

ure 19 exhibits lateral force images from a 2D PT model

with varying system stiffness. The bright white represents

high friction, and dark represents low friction. Larger

values of k correspond to smaller g, and therefore less

deviation from a straight path. Consistent with this

expectation, the best resolution in Fig. 19 is observed with

k = 200 N/s.

Similarly, we find that scanning in different directions

causes the force patterns to differ due to the 2D nature of

the energy landscape. Figure 20 shows the effect of scan-

ning direction on both the tip’s movement and friction with

a FCC(111) where the tip moves at angles of 0�, 15�, and

30� relative to the [110] direction (the 0� scanning angle is

the [110] direction). This surface has 60� periodicity due to

its hexagonal structure so larger scanning angles can be

mapped back to angles less than 60�; for example 75� is

identical to 15�. At a scanning angle of 0� the tip takes a

zigzag pattern which has also been observed in MD sim-

ulations [33, 68]. Further, for 0� and 30� the periodicity of

the tip’s movement is consistent with the periodicity of the

corresponding force trace. Therefore, the 2D PT model can

be used to predict the connection between the crystal structure, the path through which the tip moves and the

frictional anisotropy. For example, friction anisotropy was

observed on a quasicrystal surface [69] whose origin was

then related to the crystallographic features of that surface

[70]. There is potential for 2D PT-based models to reveal

many more such relationships.

9 Contact Size and the FKT Model

So far, we have considered the tip to be concentrated at a

single point-mass and a ball-like interaction between the tip

and substrate. In reality, even for an atomically sharp tip,

one cannot guarantee that the contact area contains only a

single atom. It is usually assumed that multiple atoms at the

end of the tip are involved in the interaction. However, the

actual size of the contact during an experimental mea-

surement is extremely difficult to directly measure.

Therefore, the area dependence of friction is usually

derived indirectly using the relationship between normal

load and friction. Friction as a function of normal load can

be obtained directly from experiment, but the relationship

between contact area and normal load is usually estimated

with contact mechanics [71], for example the Hertz [72],

JKR [72], or DMT [73] models. Using normal load as the

bridge between friction and area with the assumptions of

continuum mechanics, the area dependence of friction is

conventionally believed to be linear.

Fig. 19 Lateral force images of an FCC(111) surface for different

system stiffness, k. Blue spheres identify the positions of atoms

and show that the larger stiffness yields better the atomic resolution.

Other model parameters: m ¼ 10�12 kg; U ¼ 0:6 eV; v ¼ 4� 103

nm/s; l ¼ lc ¼ 2
ffiffiffiffiffiffiffiffiffi
k=m

p
, lattice spacing in the [110] direction

a = 0.288 nm

Fig. 20 Potential energy landscape of an FCC(111) surface (top)

illustrating the position of the point tip (solid lines) as the support is

moved in different directions from the same starting point (dashed
lines), and corresponding force traces (bottom). Results shown at

T = 0 K to clearly illustrate the motion paths
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However, it is well known that continuum mechanics is

valid only when the dimensions of the studied object are

much larger than the length scale of the atomic disconti-

nuity. Therefore, when the scale of the single asperity is on

the order of nanometers, the effect of the discontinuity of

the atoms within the tip and substrate can no longer be

neglected [47]. Recent AFM experiments on metals

revealed that friction varies little with increase of normal

load in the low load regime [24, 74]. In addition, a newly

invented AFM technique referred to as tip-on-top mode

that enables researchers to manipulate nanoparticles of

different size showed that in some cases friction increased

linearly with interface area while in other cases near fric-

tionless sliding was observed [75]. These conflicting results

suggest that there may be a non-linear relationship between

real contact area and friction.

The connection between contact area and friction on the

atomic scale is therefore still not well understood and

model-based prediction can provide insight into their fun-

damental connection. However, the reduced-order models

we have discussed so far cannot capture the effect of a

multi-atom contact area, so an extended model is needed to

capture their combined effect. The FKT [6] model which

combines the FK [5] and PT models has been proposed to

account for the coupling between tip atoms. In the fol-

lowing sections, we describe implementation of 1D and 2D

FKT models.

9.1 1D FKT

An illustration of the 1D FKT model is shown in Fig. 1

where adjacent tip atoms interact through harmonic springs

kt. The total potential energy of the system becomes,

VFKTðx; tÞ ¼
XN

i¼1

� 1

2
U cos

2pxi

a

� �
þ
XN�1

i¼1

kt

2
Mxi;iþ1 � b
� �2

þ
XN

i¼1

k

2
vt þ ði� 1Þb� xið Þ2

ð49Þ

where N is the number of tip atoms, U is the amplitude of

the sinusoidal corrugation potential, xi is the displacement

of the ith atom, a and b are respective substrate and tip

lattice spacing, D xi,i?1 is the distance between atom i and

adjacent atom i ? 1, v is the sliding speed of the support,

and t is time. This expression includes the corrugation

potential (the first term of Eq. 49), the potential resulting

from the interaction between tip atoms via elastic springs kt

(second term), and the elastic potential due to tethering to

the support by springs k (third term). The instantaneous

friction force is then the sum of the force experienced by

all the tip atoms,

F ¼
XN

i¼1

kðvt þ ði� 1Þb� xiÞ: ð50Þ

An example implementation of the 1D FKT model is

provided in the Supplementary Material as MATLAB

program FKT1D_RK.m.

The FKT model can be used to predict the friction

variation with the tip-substrate lattice mismatch b/a and

the tip size N. Illustrative results are shown in Fig. 21. The

first thing we notice is that only when a = b does the

friction increase linearly with the contact area. For other

b/a, there exist some tip sizes where the friction signifi-

cantly decreases. These so-called ‘‘magic sizes’’ [9] can be

predicted. In the extreme case where we suppose kt ¼ 1,

the corrugation potential between the tip and substrate can

be expressed as,

Uc ¼ �
1

2
U
XN

i¼1

cos
2pði� 1Þbþ x

a

� �

¼ � 1

2
U

sinðNbp=aÞ
sinðbp=aÞ cos

pðNb� bþ 2xÞ
a

� �
:

ð51Þ

This means that the magnitude of the corrugation potential

is zero when Nb/a is an integer. In this case, assuming there

is no viscous term, the friction goes to zero. For example,

for a lattice mismatch of b/a = 4/5, a minimum friction

will occur at N = 5, 10, and so on.

Another observation is that, for any value of Nb/a,

although the local friction minima arise only at some magic

sizes, over a long range the friction increases linearly with

the contact area [76]. The friction comes from the viscous

force which is proportional to sliding speed. Physically

speaking, the viscous term is due to phonon excitation. So

the term ‘‘superlubricity’’ which suggests the complete

0 10 20 30 40
0

1

2

 b/a=1/2
 b/a=4/5
 b/a=9/10
 b/a=0.96
 b/a=1

F
ric

tio
n 

(n
N

)

Atom Number (N)

Fig. 21 Friction variation with the tip size N for different lattice

mismatch b/a. k = 5 N/m and kt = 50 N/m are used to obtain these

results
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cancelation of friction to zero may not be appropriate;

structural lubricity proposed by Müser is a better term to

describe the phenomenon [77].

9.2 2D FKT

Atomic friction and the tip size effect have been studied

using the 1D FKT model since Weiss and Elmer’s study

[6]. However, there are now many experimental observa-

tions that cannot be captured by a 1D model. For example,

increasing numbers of AFM measurements have shown

that incommensurability due to misaligned surfaces can

lead to very low friction [49, 78, 79]. To address these

types of phenomena, we can extend the 1D FKT model to

2D [80, 81]. Figure 22 illustrates a representative setup for

the 2D FKT model.

One effect we can study using this model is the misfit

angle dependence of friction. We again use materials with

FCC structure as an example. Both the tip and substrate

contact interfaces are chosen as FCC(111) surfaces with

identical lattice spacing a = b = 0.288 nm. Figure 23

shows that, for all contact sizes N, the friction reaches a

maximum value at aligned angles, i 9 60�, where i is an

integer. Once the system deviates from perfect commen-

surability, the friction force decreases significantly. Similar

phenomena have been observed experimentally for contact

between graphite surfaces [49, 66].

It has also been reported that incommensurate contact

may result in intermediate states [82–84], and that the

formation of intermediate states can lead to new mecha-

nisms of energy dissipation and thus the breakdown of

structural lubricity [77]. To study such effects using the 2D

FKT model we need to define physically meaningful model

parameters. For example, it is necessary to define the

stiffness (captured in the model by k and kt), and the

strength of the interaction between tip and substrate (U in

the model), since these properties ultimately determine the

appearance of intermediate states and the occurrence of

plastic deformation and wear in a real system. A thorough

study of the effects of these properties will require col-

laborative work involving experiments, atomistic simula-

tions, and reduced-order models.

10 Conclusions

Finally, we want to discuss the shortcomings of PT-based

models for studying atomic friction. First, as a reduced-

order model, the substrate is assumed to be a rigid body

and the corrugation potential between the tip and substrate

taken to have a sinusoidal form. Because of this, only

elastic deformation is considered in the model. However,

plastic deformation or wear may occur depending on

materials, environment, normal load or other factors. Sec-

ond, energy dissipation is added to the equation through a

viscous term, �ml _x, such that the viscous term is the only

channel through which energy can dissipate. However, in

reality, energy is dissipated through electron conduction

and phonon interaction. Taking phonon interaction as an

example, there are many vibration modes (3N where N is

the number of atoms) and thus many energy dissipation

channels the tip can turn to. Like thermal activation, the

transition rate derived from a system with only one

vibration mode may be substantially different from that

derived from a system with many modes [38]. Third, many
Fig. 22 2D FKT model where the tip atoms (large spheres) are

connected to each other and to the support by harmonic springs
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Fig. 23 The misfit angle dependence of friction with different tip

sizes; kt = 50 N/m and k = 10 N/m. The N = 7 curve corresponds to

the model illustrated in Fig. 22
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interpretations of experimental phenomena through

reduced-order modeling are on the phenomenological

level; for example, friction modulation due to surface

reconstruction [57], and formation and rupture of multiple

contacts due to thermal effects [30]. These types of model-

predicted mechanisms require validation and clarification

from other methods such as direct experimental observa-

tion or fully atomistic modeling. Finally, given that the

AFM cantilever itself has many eigenmodes [85] and the

tip apex behaves differently still, it is not understood

exactly how the reduced-order model can correctly capture

the dynamics of the system. As shown in this and many

other articles, even the simplest PT model is able to

describe some of the behaviors of a complicated and

multidimensional AFM experiment. While, this is fortunate

for the research community, there are open questions

regarding exactly why it works.

Despite the shortcomings of PT-based models, they play

a significant and important role in facilitating qualitative

understanding of the mechanisms of atomic friction. As

shown in this article, they can be successfully used to

predict a wide range of frictional phenomena, from the

effects of temperature and speed to the role of contact area

and commensurability. Although, some topics were only

briefly discussed, the extensive reference list provided can

be used to fill in the details on any individual topic.

Overall, we hope this article acts as an introductory manual

for newcomers to the field, as well as an illustration of the

significant potential for this approach that will inspire

others to continue its development and gain new insights

into atomic-scale friction.
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17. Brańka, A., Heyes, D.: Algorithms for Brownian dynamics sim-

ulation. Phys. Rev. E 58, 2611–2615 (1998)

18. Honeycutt, R.: Stochastic Runge–Kutta algorithms. I. White

noise. Phys. Rev. A 45, 600–603 (1992)

19. Kasdin, N.: Runge–Kutta algorithm for the numerical integration of

stochastic differential equations. J. Guid. Control Dyn. 18, 114

(1995)

20. Higham, D.: An algorithmic introduction to numerical simulation

of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

21. Jansen, L., Hölscher, H., Fuchs, H., Schirmeisen, A.: Tempera-

ture dependence of atomic-scale stick-slip friction. Phys. Rev.

Lett. 104, 256101 (2010)

22. Bennewitz, R., Gyalog, T., Guggisberg, M., Bammerlin, M.,

Meyer, E., Güntherodt, H.J.: Atomic-scale stick-slip processes on

Cu(111). Phys. Rev. B 60, R11301 (1999)

23. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.:

Interaction potential and hopping dynamics governing sliding

friction. Phys. Rev. Lett. 91, 084502 (2003)

24. Li, Q., Dong, Y., Perez, D., Martini, A., Carpick, R.W.: Speed

dependence of atomic stick-slip friction in optimally matched

experiments and molecular dynamics simulations. Phys. Rev.

Lett. 106, 126101 (2011)

25. Furlong, O., Manzi, S., Pereyra, V., Bustos, V., Tysoe, W.: Monte

Carlo simulations for Tomlinson sliding models for non-sinu-

soidal periodic potentials. Tribol. Lett. 39, 177 (2010)

26. Krylov, S.Y., Jinesh, K.B., Valk, H., Dienwiebel, M., Frenken,

J.W.M.: Thermally induced suppression of friction at the atomic

scale. Phys. Rev. E 71, 065101 (2005)

27. Jinesh, K.B., Krylov, S.Y., Valk, H., Dienwiebel, M., Frenken,

J.W.M.: Thermolubricity in atomic-scale friction. Phys. Rev. B

78, 155440 (2008)

28. Zhao, X., Phillpot, S.R., Sawyer, W.G., Sinnott, S., Perry, S.:

Transition from thermal to athermal friction under cryogenic

conditions. Phys. Rev. Lett. 102, 186102 (2009)

29. Schirmeisen, A., Jansen, L., Holscher, H., Fuchs, H.: Tempera-

ture dependence of point contact friction on silicon. Appl. Phys.

Lett. 88, 123108 (2006)

30. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond

dynamics of nanoscale friction: the role of temperature. Phys.

Rev. Lett. 104, 66104 (2010)

384 Tribol Lett (2011) 44:367–386

123



31. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Temperature

dependence of friction at the nanoscale: when the unexpected

turns normal. Tribol. Lett. 39, 311–319 (2010)
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80. Gyalog, T., Bammerlin, M., Lüthi, R., Meyer, E., Thomas, H.:

Mechanism of atomic friction. Europhys. Lett. 31, 269 (1995)

81. Gyalog, T., Thomas, H.: Friction between atomically flat sur-

faces. Europhys. Lett. 37, 195 (1997)

82. Kim, W., Falk, M.: Atomic-scale simulations on the sliding of

incommensurate surfaces: the breakdown of superlubricity. Phys.

Rev. B 80, 235428 (2009)

83. Braun, O., Manini, N.: Dependence of boundary lubrication on

the misfit angle between the sliding surfaces. Phys. Rev. E 83,

021601 (2011)

84. Manini, N., Braun, O.: Crystalline misfit-angle implications for

solid sliding. Phys. Lett. A 375, 2946. Arxiv preprint ar-

Xiv:11015508 (2011)

85. Raman, A., Melcher, J., Tung, R.: Cantilever dynamics in atomic

force microscopy. Nano Today 3, 20–27 (2008)

386 Tribol Lett (2011) 44:367–386

123


	Analytical Models for Atomic Friction
	Abstract
	Introduction
	Mathematical Formulation
	Numerical Algorithms
	Thermal Activation
	Temperature
	Speed
	Mass

	Friction Regimes: Smooth Sliding, Single Slip, and Multiple Slip
	Friction Modulation Due to Surface Reconstruction
	Dynamic Actuation
	2D Nature of Atomic Friction
	2D Corrugation Potential
	Scan-Line Dependence

	Contact Size and the FKT Model
	1D FKT
	2D FKT

	Conclusions
	Acknowledgments
	References


