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A three-dimensional contact analysis was conducted to investigate the contact behavior of elastic–perfectly plastic solids with

non-Gaussian rough surfaces. The effect of skewness, kurtosis and hardness on contact statistics and the effect of skewness and

kurtosis on subsurface stress are studied. Non-Gaussian rough surfaces are generated by the computer with skewness, Sk, of )0.3,
0.0 and 0.3, and kurtosis, K, of 2.0, 3.0 and 4.0. Contact pressures and subsurface stresses are obtained by contact analysis of a

semi-infinite solid based on the use of influence functions and patch solutions. Variation of fractional elastic/plastic contact area,

maximum contact pressure and interplanar separation as a function of applied load were studied at different values of skewness and

kurtosis. Contact pressure profiles, von Mises stresses, tensile and shear stress contours as a function of friction coefficient were also

calculated for surfaces with different skewness and kurtosis. In this study, it is observed that surfaces with Sk = 0.3 and K = 4 in

the six surfaces considered have a minimum contact area and maximum interplanar separation, which may provide low friction and

stiction. The critical material hardness is defined as the hardness at which severe level of plastic asperity deformation corresponding

to the Greenwood and Williamson�s cut-off Aplastic/Areal = 0.02 occurs for a given surface and load condition. The critical material

hardness of surfaces with Sk = 0.3 and K = 4 is higher than that of other surfaces considered.
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1. Introduction

Surface roughness plays a significant role in friction,
wear, and lubrication in machine components. A small
change in the distribution of heights, width, and cur-
vature of the asperity peaks can have a noticeable effect
on the contact behavior of rough surfaces. In the past
four decades, many analytical and numerical models
have been developed for contact simulation of rough
surfaces [1–9]. The classical analysis is based on the
statistical behavior of rough surface contacts with the
assumptions of given asperity shapes, height distribution
and neglecting interaction between asperities. Green-
wood and Williamson [1] analyzed rough surface con-
tacts with the assumption of spherical asperity tips and a
Gaussian distribution of asperity heights. Whitehouse
and Archard [2] analyzed properties of random surfaces
and showed that all significant features of a random
surface topography can be defined by two parameters;
the rms roughness and the correlation length, if the
surface has a Gaussian height distribution. Onions and
Archard [3] showed the mean pressure to be nearly
independent of load and nominal contact area using
Whitehouse and Archard�s results. Majumdar and
Bhushan [10] and Bhushan and Majumdar [11] devel-
oped a new fractal theory of elastic and plastic contact

between two rough surfaces, which uses fractal param-
eters for surface characterization. Although these sta-
tistical models can predict important trends in the effect
of surface properties on the real area of contact, their
usefulness is limited because of the over-simplified
assumptions of asperity geometry, the difficulty in the
determination of statistical roughness parameters, and
the neglect of interactions between adjacent asperities [6].

With the rapid advance of faster computers within
the last decades, more realistic models for contact sim-
ulation were developed. Lai and Cheng [12] developed a
numerical method to calculate the real area of contact
using Patir�s [13] computer generated surfaces. Lee and
Cheng [14] formulated useful mathematical relation-
ships between the real area of contact, the average gap,
and the mean asperity pressure for surfaces with two-
dimensional roughness. Tian and Bhushan [5] developed
a numerical model that uses digitized real rough surface
maps without any arbitrary assumption about the shape
or size of asperities. They utilized the approach on the
basis of the variational principle. Their results were
based on a numerical contact simulation model which
has an advantage over the classical approach in that the
numerical models closely duplicate the actual surface
contact by taking into account the elastic interactions
between the asperities.

In most models, a Gaussian distribution is assumed.
However, the assumption that most surface heights have
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a Gaussian distribution is not strictly true. Most of the
common machining processes produce surfaces with
non-Gaussian distribution [7, 15–17]. Turning, shaping
and electrodischarge machining produce a peaked sur-
face with positive skewness. Grinding, honing, milling
and abrasion processes produce grooved surfaces with
negative skewness but high kurtosis values. Laser pol-
ishing produces surfaces with high kurtosis. Disk sur-
faces produced by sputter texturing [18] have mainly
peaks on the disk surfaces which are expected to have
positive skewness.

Kotwal and Bhushan [19] developed an analytical
model for contact analyses of non-Gaussian surfaces.
Chilamakuri and Bhushanm [20] have developed a
method to produce non-Gaussian rough surfaces on the
computer and performed numerical contact analyses on
the surfaces with various skewness and kurtosis. They
found that a surface with slight positive skewness and
kurtosis greater than four results in an optimum surface
with a minimum contact area and meniscus force.
However, they did not analyze the subsurface stress
fields and the effect of material hardness.

In the present study, a three-dimensional contact
analysis was conducted to investigate the contact
behavior of elastic–perfectly plastic solids with non-
Gaussian distribution of surface heights. Three-dimen-
sional non-Gaussian rough surfaces were generated on
the computer with different values of skewness and
kurtosis. Variation of fractional contact area, plastic
area, maximum contact pressure and interplanar sepa-
ration as a function of applied load and material hard-
ness were studied at different values of skewness and
kurtosis. Contact pressure profiles, von Mises stresses,
tensile and shear stress contours were also calculated for
non-Gaussian surfaces in both frictionless and frictional
contacts.

2. Numerical Generation of Non-Gaussian Random

Surface

In most previous studies, the surface parameters ex-
pressed as the root mean square (RMS) roughness (r) or
the center line average roughness (Ra) are used. This
method neglects other surface descriptions. Though
surface profiles may have the same r or Ra, they could
have different asperity distributions. Thus, skewness
(Sk) and kurtosis (K) which give information about the
shape of asperities distribution should be used to rep-
resent a more exact surface profile. The probability
density function p(z) for surface heights gives the
probability of locating a point at a height z. This shape
can be described in terms of moments of the function
about the mean, referred to as central moments. The
first moment is m, which is taken to be zero and
the second moment is the variance r2, the square of the
standard deviation,

r2 ¼
Z 1
�1

z2pðzÞ dz ð1Þ

The third moment is the skewness, which represents
asymmetric spread of the height distribution and is
given by

Sk ¼ 1

r3

Z 1
�1

z3pðzÞ dz ð2Þ

where p(z) is the probability density function of surface
heights, z. A Gaussian surface has zero skewness with an
equal number of peaks and valleys at certain heights.
Profiles with peaks removed have negative skewness
whereas profiles with valleys filled or high peaks
have positive skewness. The fourth moment is termed
kurtosis, which represents the peakedness of the
distribution and is given by

K ¼ 1

r4

Z 1
�1

z4pðzÞ dz ð3Þ

The kurtosis shows the degree of pointedness or blunt-
ness of waveform. The kurtosis always has a positive
value and measures the sharpness of symmetric distri-
bution. For a Gaussian distribution the curve has a
kurtosis of 3. If K<3, the distribution has relatively few
high peaks and low valleys. If K>3, the distribution has
more high peaks and low valleys.

Non-Gaussian surfaces with various Sk and K values
are generated on the computer using a two-dimensional
digital filter technique [21]. A digital filter technique is a
system that transforms an input sequence g(I, J) into an
output sequence z(I, J), the digitized surface heights.
First an input sequence of independent random numbers
having a Gaussian distribution of a known standard
deviation, g(I, J), is generated using a random number
generator. To simulate real rough surfaces, however,
surfaces having an expected autocorrelation function
(ACF) and height distribution need to be generated. The
two-dimensional digital filter technique is employed to
generate an output sequence z(I, J) of a known auto-
correlation by a linear transformation system defined as

zðI; JÞ ¼
Xn�1
k¼0

Xm�1
l¼0

hðk; lÞgðI� k; J� lÞ ð4Þ

where I=0, 1,…,N)1, J = 0, 1,…, M)1, n = N/2,
m = M/2 and h is a filter function. The Fourier trans-
form of equation (4) is given by

Zðxx;xyÞ ¼ Hðxx;xyÞAðxx;xyÞ ð5Þ

where A and Z are Fourier transformations of the input
g and output sequences z respectively, and H is the
transfer function of the system given by

Hðxx;xyÞ ¼
Xn�1
k¼0

Xm�1
l¼0

hðk; lÞe�jkxx�jlxy ð6Þ
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The ACF of a random surface in the discrete form is
defined as

Rzðk; lÞ ¼
1

NM

XN�1
I¼0

XM�1
J¼0

zðI; JÞzðIþ k; Jþ lÞ ð7Þ

The power spectral density (PSD) function of the surface
is the Fourier transform of Rz, given by

Szðxx;xyÞ ¼
1

nm

Xn=2�1
k¼�n=2þ1

Xm=2�1
l¼�m=2þ1

Rzðk; lÞe�jkxx�jlxy ð8Þ

If Sg(xx, xy) denotes the PSD function of the input
sequence, the relation between Sg and Sz for a linear
system has the form

Szðxx;xyÞ ¼ Hðxx;xyÞ
�� ��2Sgðxx;xyÞ ð9Þ

Since g is a sequence composed of independent random
number, its PSD function is a constant. The inverse
Fourier transform of H(xx, xy) obtained from equation
(9) gives the filter function h:

hðk;lÞ¼ 1

nm

Xn=2�1
xx¼�n=2þ1

Xm=2�1
xy¼�m=2þ1

Hðxx;xyÞe�jkxx�jlxy ð10Þ

Now h(k, l) from equation (10) is used in equation (4) to
obtain z(I, J).

So far, a technique has been described to generate
Gaussian random surfaces. For the generation of non-
Gaussian random surfaces, the Gaussian input sequence
is transformed to an input sequence with appropriate
skewness, Skg, and kurtosis, Kg, by using the Johnson
translator system of distribution [22,23]. However,
during later transformation using the two-dimensional
filter technique to obtain an output sequence, the dis-
tribution of the output sequence in most cases will not
be of the same form as that of the input sequence. In this
case, the skewness and kurtosis of the output sequence
are related to those of the input sequence as

ð SkzÞ1=2 ¼
Pq

i¼0 h3iPq
i¼0 h2i

� �3=2 ð SkgÞ1=2 ð11Þ

ðKzÞ1=2 ¼
Pq

i¼0 h4i Kg þ
Pq�1

i¼0
Pq

j¼iþ1 h2i h
2
jPq

i¼0 h2i
� �2 ð12Þ

where Skz and Kz are the required skewness and kur-
tosis, Skg and Kg are the input skewness and kurtosis
for Johnson�s translator system, and

hi ¼ hðk; lÞ; k ¼ 0;¥; n� 1

l ¼ 0;¥;m� 1 i ¼ kmþ 1
ð13Þ

The non-Gaussian input sequence with modified skew-
ness and kurtosis obtained from equations (11) and (12)
is generated using Johnson�s translator system. The

Johnson system of frequency curves based on the
method of moments provides a family of curves that can
be used to generate an equation for the distribution for
which the first four moments (mean, r, Sk and K) are
known. In this system there are three main types of
frequency curves, SU, SL and SB, defined as

SU : g0 ¼ cþ d sinh�1
g00 � n

k

� �
ð14Þ

SL : g0 ¼ cþ d log
g00 � n

k

� �
ðg00 > nÞ ð15Þ

SB : g0 ¼ cþ d log
g00 � n

nþ k� g00

� �
ðn<g00<nþ kÞ

ð16Þ

where g0 is a standardized normal variable sequence, g00 is
the variable sequence with given skewness and kurtosis,
and c, d, n and k are constants to be determined for the first
four givenmoments by usingmethod ofmoments. Finally,
steps of the two-dimensional digital filter technique out-
lined earlier by equations (6)–(12) are used to transform
the non-Gaussian input sequence g00 to z.

To summarize, non-Gaussian surfaces are generated
using the following steps:

1. Generate a Gaussian input sequence g0(I, J) using a
random number generator.

2. Determine the skewness and kurtosis of the input
sequence for desired skewness and kurtosis of an
output sequence, using equation (11) and (12).

3. Transform the Gaussian input sequence to the input
sequence g00 (I, J), which has a distribution with
appropriate skewness, Skg, and kurtosis, Kg, by using
the Johnson translator system of distribution.

4. Assume that the ACF for the simulated surface has
the form

Rzðk; lÞ ¼ r2 exp �2:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

b�x

� �2

þ l

b�y

 !2
vuut

2
64

3
75 ð17Þ

where r is the standard deviation of surface heights
and bx

*, by
* are the correlation lengths of surface

profiles in the x and y directions. An isotropic surface
is considered, i.e., b*x = b*y = b*.

5. Calculate Sz(xx, xy) using equations (17) and (8).
6. For the known values of Sg and Sz, calculate H(xx,

xy) using equation (9)
7. Obtain h(k,l) by the inverse Fourier transform of

H(xx, xy) using equation (10)
8. Obtain z(I,J) by performing the filtering operation

using equation (4)

Figure 1 shows two- and three-dimensional surfaces
generated according to the values of kurtosis and
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skewness using this method. For the contact analysis,
surfaces having same correlation lengths b* = 0.8lm
and r = 10 with different values of skewness and kur-
tosis were generated using a scan size (profile length in
the x and y directions) of 20�20 lm. Correlation length
is defined as the distance at which the value of the ACF
reduces to 10% of the value at the origin.

3. Contact Analysis

The rough surface is modeled as a semi-infinite space
with computer-generated surface topography. The
computer-generated surface contains 256�256 data
points. By using these data points as nodal points there
will be 255�255 small patches of equal size
(0.078�0.078 lm2) within the simulated area. This data
file has the similar data format of a measured surface
map from an atomic force microscope or a non-contact
optical profiler.

In this study, matrix inversion technique and itera-
tive process are used to obtain contact pressure dis-
tributions, real contact areas and interplanar
separations [24]. This technique takes full account of
the interaction of deformation from all contact points
and predicts the contact geometry of real surfaces un-
der loading. It provides useful information on the
contact pressure, number of contacts, their sizes and
distributions, and interplanar separations. The matrix

inversion approach starts with the classical approach
for finding the relationship between the contact pres-
sure p(x,y) and surface displacement u(x,y) by Bous-
sinesq [25] who made use of the theory of potential.
Generally, the contact of two elastic bodies can be
simulated as the contact of a rigid body pressing down
on an elastic half space. Under the applied load the
total gap f(x,y) after deformation is

f x; yð Þ ¼ e x; yð Þ þ u x; yð Þ � d ð18Þ

where e(x,y) is the shape function before contact, u(x,y)
is the elastic deformation, and d is the effective rigid
plane displacement. The condition of f(x,y) = 0 in the
contact domain X must be satisfied, therefore equation
(18) leads to the following equation in terms of
Boussinesq�s solution.

1� m2

pE

ZZ
X

pðx0; y0Þ dx0 dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q ¼ d� eðx; yÞ ð19Þ

where E is Young�s modulus and m is Poisson�s ratio.
This equation can be written in the following form.

XM
k¼1

Cklpk ¼ d� ek ð20Þ

where M is the number of patches in X, and Ckl is the
influence matrix, which represents the displacement at
point k due to a distributed unit normal load on ele-
ment l. The numerical procedure for finding the final
contact solution starts with a given d value and an
initial guess of nodes assumed to be in contact. The
pressures are solved by inverting equation (20). After
calculating the pressures, the deformations are also
calculated using the same equation. The pressures and
deformations are continually iterated until convergence
occurs to all the surface elements with positive or zero
contact pressure.

The elastic contact model is extended to elastic–
plastic contact analysis for the case where the solid in
contact deforms as an elastic–perfectly plastic material.
It is assumed that the region of the plastic deformation
is confined to a very small area and does not signifi-
cantly alter the geometry of the elastically deformed
contact surface. Outside the plastic region, the rela-
tionship between contact pressure and elastic deforma-
tion still holds. Since the contacting asperities at
moderate loads are normally separated from each other
in rough flat surface contact and are composed of few
patches, these are much like sharp asperities instead of a
spherical asperity of large radius. These points are as-
sumed to be elastic–perfectly plastic, which transfers
from elastic to fully developed plastic flow immediately.
Therefore, it is a constrained plastic deformation rather
than fully developed plastic flow situation. This ap-
proach will generate errors in analyzing the contact of a
sphere and heavily loaded contact of rough flat surface.

Figure 1. Surface height maps of computer-generated rough surface,

(a) three-dimensional surface maps with Gaussian distribution and

(b) two-dimensional surface profiles of non-Gaussian surfaces with

different skewness and kurtosis.
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In modeling the plastic deformation behavior of the
asperities, if any local contact region experiences pres-
sures exceeding three times the uniaxial yield strength,
3Y or hardness of the softer of the two mating bodies,
then the contact pressures in those regions were set
equal to 3Y and the regions were allowed to deform
freely [14,26]. Thus, in this study, once the contact
pressure exceeds the hardness of the softer material, H
(�3Y), the stress is set to be equal to the hardness.

Once the contact pressures and locations of the con-
tact points are known, the sub-surface stress field can be
calculated. A closed-form solution of the interior stress
field has been derived for the case of a uniform normal
stress distribution, pk, over a rectangular patch of length
2a in x direction and 2b in y direction on the surface of a
semi-infinite elastic space [27] (figure 2), given by

rk
ij ¼

pk
2p
½Aijð�xþ a; �yþ b; �zÞ þ Aijð�x� a; �y� b; �zÞ

� Aijð�x� a; �yþ b; �zÞ � Aijð�xþ a; �y� b; �zÞ� ð21Þ

where �x ¼ x� xk; �y ¼ y� yk; �z ¼ z and ðxk; yk; 0Þ is
the coordinate of the center of kth patch. The functions
Aij are given as

Axxðx; y; zÞ ¼2m tan�1
xz

yR

� �
� tan�1

x

y

� �� �

� tan�1
y

x

	 

þ tan�1

yz

xR

	 

þ xyz

Rðx2 þ z2Þ

Ayyðx; y; zÞ ¼2m tan�1
yz

xR

	 

� tan�1

y

x

	 
h i
� tan�1

x

y

� �

þ tan�1
xz

yR

� �
þ xyz

Rðy2 þ z2Þ

Azzðx; y; zÞ ¼ � tan�1
y

x

	 

� tan�1

x

y

� �
þ tan�1

yz

xR

	 


þ tan�1
xz

yR

� �
� xyz

Rðx2 þ z2Þ �
xyz

Rðy2 þ z2Þ
Axyðx; y; zÞ ¼ � ð1� 2mÞ lnðRþ zÞ � z

R

Axzðx; y; zÞ ¼
z2y

Rðx2 þ z2Þ

Ayzðx; y; zÞ ¼
z2x

Rðy2 þ z2Þ ð22Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

Contributions from all patch loading are superim-
posed, so the stresses are

rij ¼
XM
k¼1

rk
ij ð23Þ

The previously obtained contact points and pressures
are used as input; since this information is obtained at a
mesh of 255�255 patches with an equal size of
0.078�0.078 lm2, the same patch size is used in the
patch solution. Note that the patch solution is for elastic

analysis. When plastic deformation is initiated, this
method cannot be applied to calculating the sub-surface
stress. Nevertheless, the elastic solution can be used to
determine if yielding is reached in the bulk material
(especially when the contact pressure is equal to the
hardness, p = H) and to provide basic information for
elastic–plastic stress analysis.

The effect of friction on the contact pressures and
contact locations has been neglected, so the tangential
load at each contact point is equal to its contact load
multiplied by a coefficient of friction, l. The interior
stress field induced by a uniformly distributed tangential
load, qk, over a rectangular patch of length 2a in x
direction and 2b in y direction on the surface of an
elastic semi-infinite space has also been derived [28]
(figure 2) by

rk
ij ¼

qk
2p
½Bijð�xþ a; �yþ b; �zÞ þ Bijð�x� a; �y� b; �zÞ

� Bijð�x� a; �yþ b; �zÞ � Bijð�xþ a; �y� b; �zÞ� ð24Þ

where qk is the uniform tangential loading applied over
the kth patch. The functions Bij are given as

Bxxðx; y; zÞ ¼ 2 lnðRþ yÞ þ x2y

Rðx2 þ z2Þ þ ð1� 2mÞ y

Rþ z

Byyðx; y; zÞ ¼ 2 lnðRþ yÞ � y

R
þ ð1� 2mÞ y

Rþ z

Bzzðx; y; zÞ ¼
z2y

Rðx2 þ z2Þ
Bxyðx; y; zÞ ¼ lnðRþ xÞ � x

R
þ ð1� 2mÞ x

Rþ z

Bxzðx; y; zÞ ¼ � tan�1
xy

Rz

	 

þ xyz

Rðx2 þ z2Þ
Byzðx; y; zÞ ¼ �

z

R
ð25Þ

Contributions from all patch loadings are superim-
posed. The complete subsurface stress field for frictional
contact is obtained from the superposition of the normal
and tangential loading solutions. Note that this method
does not account for transverse strain or junction
growth. Understanding of junction growth starts with
the deformation of individual asperities under the

Figure 2. Illustration of a semi-infinite space subject a rectangular

patch loading on the surface with uniform normal and tangential

loads.
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combined action of both normal and shear stresses. If
the local shear stress increases then the associated nor-
mal pressure necessary to maintain plasticity of the
junction reduces; if the load stays the same then a

reduction in pressure demands an increase in the true
area supporting the load. Therefore the true contact
area can be greater than what this approach would
predict, which impairs the accuracy of the results.

Figure 3. Variation of the fractional contact area, the maximum contact pressure and the interplanar separation for surfaces with different

skewness and kurtosis as a function of applied load.
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4. Results and Discussion

This analysis was carried out for a rigid surface in
both frictionless and frictional contacts with a non-
Gaussian rough elastic–perfectly plastic solid surface.
The upper surface is assumed to be rigid to simplify the
problem. Elastic modulus of softer rough surface E is
taken as 100 GPa and Poisson�s ratio is taken as 0.3. The
pressure is normalized by E. Non-Gaussian rough sur-
faces are generated by the computer with skewness, Sk,
of -0.3, 0.0 and 0.3, and kurtosis, K, of 2.0, 3.0 and 4.0.
Rough surfaces are analyzed with the applied load Pn/E
ranging from 10-7 to 10-5 and hardness H/E ranging
from 0.008 to 0.1. Two values of the coefficient of
friction are examined for frictional contact, l = 0.25
and l = 0.5.

4.1. Effect of Skewness and Kurtosis

Figure 3 shows the fractional contact area, the max-
imum contact pressure and the interplanar separation

for surfaces with different skewness and kurtosis as a
function of applied load. For the case of Gaussian sur-
face (Sk = 0.0 and K = 3.0), the trends of the real
contact area and the maximum contact pressure change
are consistent with that of Peng and Bhushan [29]. As
shown in this figure, a surface with Sk = )0.3 of the
three values of Sk considered gives the largest fractional
contact area and the lowest maximum contact pressure.
This is not very clear at lower normal load because there
are only a few contact points at this load. However, at
higher loads, this is clear. Surfaces with Sk = 0 and
Sk = 0.3 give similar contact area results at all loads,
but a surface with Sk = 0.3 gives a higher maximum
contact pressure. Surfaces with Sk = 0 and 0.3 consist
of the adequate number of peaks to support the applied
load, whereas a surface with a negative skewness has a
larger number of peaks at a certain height with deep
valleys that afford a high contact area and low contact
pressure. The interplanar separation means a distance
between a central line of rough surface and a rigid flat
plate. The interplanar separation has a maximum value

Figure 4. Variation of the fractional contact area and a ratio of plastic area to contact area as a function of material hardness for Pn/E = 5�10)6

and 10)5, (a) skewness and (b) kurtosis.
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at surface with Sk = 0.3 among the three values of Sk
considered, but the effect of skewness decreases with an
increase in the normal load. The fractional contact area
and the interplanar separation decrease as the kurtosis
value increases. However, the maximum pressure in-
creases with kurtosis due to a decrease in the contact
area with kurtosis. An increase in the peak-to-mean
distance and a decrease in the peak density with an in-
crease in kurtosis result in a lower contact area and a
higher contact pressure.

4.2. Effect of hardness

Figure 4 shows the fractional contact area and a ratio
of plastic area to real contact area for surfaces with dif-
ferent skewness and kurtosis as a function of material
hardness at Pn/E = 5�10-6 and 10-5. For the limit of
elastic deformation, Greenwood and Williamson [1]

defined a plasticity index w. They found that if w<0.6,
the deformation is largely elastic and if w>1, surface
deformation is largely plastic, assuming Aplastic/
Areal = 0.02 to be the criterion for the onset of a signif-
icant degree of plasticity. Therefore, in this study, the
critical material hardness is defined as the value ofH/E at
which severe level of plastic asperity deformation
corresponding to the Greenwood and Williamson�s cut-
off Aplastic/Areal = 0.02 occurs for a given surface and
load condition, which indicates points of inflection where
fractional contact areas are not reduced anymore with an
increase inH/E in figure 4. Thus, in figure 4, elastic region
means a region satisfying Aplastic/Areal<0.02.

For all the case of figure 4, it is observed that the real
contact area becomes independent of the material
hardness and approaches the results in the pure elastic
case with an increase in H/E. In figure 4(a), a surface
with Sk = 0.3 of the three values of Sk considered has

Figure 4. Continued.
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Figure 5. Profiles of contact pressures, contours of von Mises stresses on the surface, von Mises stresses on the max
ffiffiffiffiffi
J2

p
plane (y = ymax),

principal tensile stress on the max rt plane(y = y0max), and shear stresses on the max rxz plane(y = y0 0max) with r= 10 nm, b* = 0.8 lm,

E = 100 GPa, Pn/E = 10)6, H/E= 0.05 with (a) Sk = )0.3, K = 3, (b) Sk = 0.3, K = 3, (c) Sk = 0, K = 3, (d) Sk = 0, K = 2, and (e)

Sk = 0, K = 3.
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the highest critical material hardness. This occurs be-
cause a surface with Sk = 0.3 gives minimum contact
area but high pressures in the contact region, then a
ratio of plastic deformed asperities to contacted asperi-

ties is higher than that of other surfaces considered in
this study, as shown in the lower figures. Therefore
surfaces with Sk = 0.3 may fail due to plastic defor-
mation for a surface with low material hardness. For the

Figure 5. Continued.
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effect of kurtosis, the critical material hardness increases
with an increase in kurtosis value, due to a decrease in
contact area and an increase in plastic area with kur-
tosis, as shown in figure 4(b). In addition, the critical
material hardness of a surface with K = 2 is much lower
than that of any other surface. This means even though
the material of a surface with K = 2 has a relatively low
hardness, asperities remain an elastic region, which is
desirable for low wear. In conclusion, surfaces with
Sk = 0.3 and K = 4 will exhibit a minimum contact
area and a maximum interplanar separation which are
beneficial to low friction and stiction, but if the hardness
of material is not high enough to compensate high
contact pressure, high contact pressure may lead to
severe plastic deformation.

In a study of the effect of sampling interval on
contact pressure [30], the result indicated that an in-
crease of contact stress is coupled with a decrease of
sampling interval (an increase of density). In addition,
it has been concluded that at very small sampling
intervals, contact pressure can exceed the hardness
value, leading to plastic deformation. So with a smaller
sampling interval than considered here, the results of
the critical material hardness may be lower than the
present results.

4.3. Subsurface stresses

As stated previously, the patch solution is for elastic
analysis. For the surface with a hardness H/E = 0.075,

we found that Pn/E = 10-6 is the highest value that
satisfies the condition of no plastic deformation. As
shown in the second figures of figure 3, the value of
maximum contact pressure/E in the surface with Sk = 0
and K = 4 is 0.0745. Therefore, in this section, the
applied load is taken as 10-6 and the hardness of rough
surface is taken as 0.075E.

Figure 5 shows the pressure distribution on the sur-
face and stress distributions on both the surface and the
subsurface with maximum values of stresses and their
locations at different skewness and kurtosis values. All
contours are plotted after taking natural log values of
the calculated stresses expressed in kPa, as the stress has
a large range. For the pressure distribution, a surface
with Sk = )0.3 has a greater number of contact points
whereas a surface with positive skewness (0 or 0.3) has
higher pressure spikes. The number of contacts de-
creases and the peaks become higher and sharper with
an increase in kurtosis, which results in higher pressure
spikes at higher kurtosis values.

The subsurface stress distributions for contact with
l = 0, 0.25 and 0.5 are also shown in figure 5. In a
rough surface contact, there is no symmetrical plane to
show a typical stress distribution and each individual
plane is of unique stress distribution. A y = constant
plane is chosen to make contour plots for subsurface
von Mises stress, principal tensile stress and shear stress.
Since the locations of maximum

ffiffiffiffiffi
J2
p

, rtand rxz are of
interest in the failure prevention, the y = constant plane
is set as the plane including the maximum

ffiffiffiffiffi
J2
p

, rtand
rxz, respectively. Concentric contours are observed and

Figure 5. Continued.
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their locations are consistent with those of the contact
points as compared with pressure distributions. The
contact pressures are seemingly point sources which
induce high stresses around the contact points. This
implies that under the present applied load, because the
contact points are isolated and scattered, the asperity
contact behaves like a point load contact. The von Mises
stress

ffiffiffiffiffi
J2
p

is an important factor in predicting an
initiation of fatigue crack. As shown in figure, the
maximum

ffiffiffiffiffi
J2
p

always occurs beneath one of the con-
tact asperities with highest contact pressures. As the
friction coefficient increases, the subsurface stress con-
tours become asymmetrical and the maximum value
grows larger. The location of maximum

ffiffiffiffiffi
J2
p

has moved
to the surface from near surface. Principal tensile stress
rt makes brittle materials susceptible to ring cracks and
is the cause of surface failure. As shown in figure 5, the
maximum rt always occurs on the surface near a contact
point with the maximum pressure. The shear stress rxz

causes the adhesive failure during sliding contact. The

maximum rxz always occurs beneath the maximum
pressure and decays rapidly with the depth [31].

Figure 6 shows the variation of the maximum von
Mises and principle tensile stresses for surfaces with
different skewness and kurtosis as a function of friction
coefficient. As friction coefficient increases, maximumffiffiffiffiffi
J2
p

and maximum rt increase for all surfaces. It is
interesting to note that the maximum

ffiffiffiffiffi
J2
p

and maxi-
mum rt of a surface with K = 2 are much lower than
any other surface examined. This is due to the distri-
bution of K = 2 having relatively few high peaks and
low valleys, which results in many contact points and
relatively lower contact pressure as shown in figure 5(d).
It is beneficial in reducing stress-induced failure but the
friction and stiction would be higher.

5. Conclusions

A three-dimensional contact analysis is conducted to
investigate the contact behavior of elastic–perfectly

Figure 6. Variation of the maximum von Mises stress and principle tensile for surfaces with different skewness and kurtosis as a function of

friction coefficient.
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plastic solids with non-Gaussian rough surface. Three-
dimensional non-Gaussian rough surfaces are generated
on the computer with various skewness and kurtosis
values. Contact pressures and subsurface stress fields are
obtained by contact analysis of a semi-infinite solid
based on the use of influence functions and patch solu-
tions. It is found that for six surfaces with skewness, Sk,
of -0.3, 0 and 0.3, and kurtosis, K, of 2, 3 and 4, surfaces
with Sk = 0.3 and K = 4 have a minimum contact area
and maximum interplanar separation, which may pro-
vide low friction and stiction. The critical material
hardness is defined as the hardness at which severe level
of plastic asperity deformation corresponding to the
Greenwood and Williamson�s cut-off Aplastic/
Areal = 0.02 occurs for a given surface and load condi-
tion. The effect of kurtosis and skewness on critical
material hardness is investigated. The critical material
hardness of surfaces with Sk = 0.3 and K = 4 is higher
than that of other surfaces considered. As the friction
coefficient increases, maximum

ffiffiffiffiffi
J2
p

grows larger and the
location of maximum value has moved to the surface
from beneath surface; maximum rt also increases, but
the location is always on the surface. In addition, max-
imum

ffiffiffiffiffi
J2
p

and maximum rt of a surface with K = 2 are
very much lower than those of other surfaces considered.
This is due to the fact that the distribution of K = 2 has
relatively few high peaks and low valleys, which results in
many contact points and relatively lower contact pres-
sure. It is beneficial in reducing stress-induced failure but
the friction and stiction would be higher.
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