
An extension of the Hertz theory for three-dimensional coated bodies

S.B. Liua, A. Peyronnelb, Q.J. Wanga,* and L.M. Keera

aDepartment of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
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This paper presents a work on extending the Hertz theory for circular and elliptical point contact problems involving coated

bodies. The extended form of the Hertzian formulae are adopted to express maximum contact pressure, contact radius, and

contact approach in terms of applied load, equivalent radius, and an extended equivalent modulus that properly considers the

presence of a coating. The extended equivalent modulus is a function of Young’s moduli and Poisson’s ratios of the coating

and the substrate, coating thickness, and a parameter, which is obtained through substantial numerical simulation. The

extended Hertzian formulae are easy to use and give accurate predictions of contact characteristics.
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1. Introduction

Since the seminal paper published by Hertz in
1882 [1], contact mechanics has become one of the
important fields in engineering mechanics. Contact
theories can be found in various application; for
example, with the development of instrumented

indentation methods, materials can be quantitatively
characterized using contact probe techniques.
Research publications on contact problems are widely
distributed among technical journals; however, there
are also several excellent books available, among
them are those by Galin (1953), Gladwell (1980),
Johnson (1985) and Goryacheva (1998). In the fol-
lowing, the three-dimensional (3D) Hertz theory is
described and studies on contact problems for coated
bodies are briefly reviewed.

1.1. 3D Hertz theory for circular point contacts

Figure 1(a) presents two frictionless, elastic, isotro-
pic, and homogeneous convex solids of revolution
(R1x ¼ R1y ¼ R1 and R2x ¼ R2y ¼ R2), which are
brought into contact under an applied load, W.
Each of the bodies has Young’s modulus, Ei, and
Poisson’s ratio, mi, where the subscript refers to the
respective body. If the size of the contact area is
small compared to the size of both solids, the con-
tact problem in figure 1(a) is equivalent to one
between a half-space and a virtual solid with equiva-
lent radii (Rx ¼ Ry ¼ R, R)1 ¼ R1

)1 + R2
)1), as

shown in figure 1(b), where the virtual solid can be
treated as a rigid body. The classic Hertz theory [2]
gives, in a concise and unique form, a set of exact
contact formulae for the contact approach, pressure
distribution, and contact radii. These formulae [2]
are convenient to use and have been widely applied
in both academic modeling and engineering practice,
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W applied force

R, R1, R2 radius

E1, E2, Ec, Es Young’s modulus

E�i equivalent modulus; E�i ¼ Ei

1�m2
i

E* total equivalent modulus

E modulus ratio; E ¼ E�c=E
�
s

m1, m2, mc, ms Poisson’s ratio

ra, rb, a contact semi-axes and contact radius

ra0, rb0, a0 contact radius determined by the Hertz

theory

p0 maximum contact pressure determined by

the Hertz theory

d0 contact approach or rigid body motion

h coating thickness

H non-dimensional thickness; equation (7)

l Shear modulus ratio

s dimensionless thickness; h/a

a parameter

subscript: 1, 2 identifying body

subscript: c, s identifying coating and substrate

�a; �d; �p; �ra; �rb dimensionless variables normalized by

values from the Hertz theory

f semi-axes ratio; rb0/ ra0
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ffiffiffiffiffiffiffiffiffiffiffi
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� contact approach or rigid body motion, d0:

d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð1bÞ

� maximum contact pressure, p0:

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6WE�2

p3R2

3

r

ð1cÞ

� pressure distribution, pd:

pd ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðr=a0Þ2
q

ð1dÞ

where R is the equivalent radius, R)1 ¼ R1
)1 + R2

)1,
E* the total equivalent modulus,

1

E�
¼ 1� m21

E1
þ 1� m22

E2
ð2Þ

and E�i ¼ Ei

1�m2
i

the equivalent modulus. The characteris-
tic of addition between the inverse values of equivalent
moduli offers the convenience of a single variable for
various material combinations.

1.2. 3D Hertz theory for elliptical point contacts

The elliptical point contact applies to two frictionless,
elastic, isotropic, and homogeneous ellipsoids or cylin-
ders in contact having principal radii of curvature of
their surface at the origin, Rix and Riy; i ¼ 1 or 2 (fig-
ure 1(a)). The principal relative radii of curvature are
denoted by Rx (major) and Ry (minor) (Rx > Ry) and
the angle between their axes for each surface is denoted
by h. Their relationships are expressed as follows,

R�1x þ R�1y ¼ R�11x þ R�11y þ R�12x þ R�12y ð3aÞ

ðR�1y �R�1x Þ
2¼ðR�11x �R�11y Þ

2þðR�12x �R�12y Þ
2

þ2ðR�11x �R�11y ÞðR�12x �R�12y Þcosð2hÞ ð3bÞ

The equivalent radius of curvature can be defined as
R ¼

ffiffiffiffiffiffiffiffiffiffiffi

RxRy

p

. Assuming that the elliptic contact region
has semi-axes ra0 (major) and rb0 (minor), they are
related to the principal relative radii of curvature in
terms of their ratio, f ¼ rb0/ra0,

Rx

Ry
¼ EðeÞ=f2 � KðeÞ

KðeÞ � EðeÞ ð4Þ

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p

and K(e) and E(e) are complete
elliptical integrals of the first and second kind. Equa-
tion (4) could be used to find the ratio, f. The contact
characteristics between the two bodies are complicated
and include complete elliptical integrals as follows,
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Figure 1. Problem description: (a) Hertzian contact; (b) equivalent Hertzian contact; (c) contact with a coated body; (d) contact with

a rigid substrate.
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� semi-axes, ra0 and rb0 :

ra0¼F0ðeÞ
ffiffiffiffiffiffiffiffiffiffiffi

3WR

4E�
3

s

and rb0¼ ra0 f ð5aÞ

� equivalent contact radius, a0¼
ffiffiffiffiffiffiffiffiffiffiffi

ra0rb0
p

:

a0¼F1ðeÞ
ffiffiffiffiffiffiffiffiffiffiffi

3WR
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s

ð5bÞ

� contact approach, or rigid body motion, d0:

d0 ¼ F2ðeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9W2

16RE�2
3

s

ð5cÞ

� maximum contact pressure, p0:

p0 ¼
1

½F1ðeÞ�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6WE�2

p3R2

3

r
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� pressure distribution, pd :

pd¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ðx=ra0Þ2�ðy=rb0Þ2
q

ð5eÞ

where

½F0ðeÞ�3 ¼
4

p e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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F1ðeÞ ¼ F0ðeÞ
ffiffiffi

f
p

ð6bÞ

F2ðeÞ ¼
2

p

ffiffiffi

f
p KðeÞ

F1ðeÞ
ð6cÞ

The other parameters are the same as in cases with sol-
ids of revolution mentioned for circular point contacts.
It is clear that these results consist of the Hertzian
relationship of spherical contact and several functions
of the semi-axis ratio. Figure 4.4 in [2] shows the
results of f, F1(e), and F2(e) in terms of the ratio, Rx/
Ry, for easy and efficient evaluation. Johnson [2] fur-
ther pointed out that even for f ¼ 1=3, using equations
(1) and the equivalent radius R ¼

ffiffiffiffiffiffiffiffiffiffiffi

RxRy

p

leads to
overestimating a0 and d0 by only 5% and to underesti-
mating p0 by 8%.

1.3. Studies on coating problems

Coatings with a uniform thickness, h, can be used
for surface strengthening, friction and wear control,

and corrosion prevention. However, the Hertz theory
is not applicable for analyzing the contact behavior
between coated bodies. Figure 1(c) shows a coating
perfectly bonded (bonded case) to a substrate. The
material properties of the coating and the substrate are
identified with subscript ‘‘c’’ and ‘‘s’’, respectively. It is
convenient to make the coating thickness a non-dimen-
sional variable. The Hertzian solutions between body 1
with the substrate alone and body 2 are denoted by
d0s, a0s, and p0s. On the other hand, if the coating is
infinitely thick, the corresponding Hertzian solutions
are denoted by d0c, a0c, and p0c. The non-dimensional
coating thickness is defined as

H ¼ h=a0s ð7aÞ

for elastic substrates and

H ¼ h=a0c ð7bÞ

for rigid substrates.
The case with a rigid substrate was investigated

extensively with various mathematical techniques in lit-
erature, for example, by Vorovich and Ustinov [3],
Keer [4], Matthewson [5], Jaffar [6], Sakamoto et al.
[7], among many others. The counterpart is usually
rigid and has a spherical or parabolic shape (fig-
ure 1(d)). Another dimensionless thickness, s ¼ h=a,
where a is the contact radius, is also used. Quantities
d0c, a0c, and p0c are used to non-dimensionalize the
contact approach (d), contact radius (a), and maxi-
mum contact pressure (p), i.e., �d ¼ d=d0c, �a ¼ a=a0c,
and �p ¼ p=p0c. Vorovich and Ustinov [3] found
approximate solutions in a form of infinite series for a
thick (h/a > 1.5) layer bonded to a rigid substrate in
contact with a rigid parabolic body,

�d¼1�0:504H�1�0:225H�3�0:098H�5�0:197H�6þ���
ð8aÞ

�a¼1�0:113H�3þ0:114H�5þ0:025H�6�0:004H�7þ���
ð8bÞ

�p¼1þ0:225H�3�0:018H�5�0:0126H�6þ0:013H�7þ���
ð8cÞ

When the indenter is elastic, Keer [4] derived the con-
tact solutions by analogy with the method used in [3]
and by introducing the ratio of elastic properties into
the solution. El-Sherbiney and Halling [8] and Wang
and Lakes [9] also studied this problem. The expres-
sions for contact radius and approach between the
elastic indenter and the thick (h/a > 1.5) layer bonded
to the rigid substrate are given by [4] (see also [8]),
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�d¼ 1�0:504CEH
�1�C2

Eð0:225H�3þ0:098H�5þ���Þþ�� �
ð9aÞ

�a ¼ 1þ CEð�0:113H�3 þ 0:114H�5 þ 0:025CEH
�6 þ � � �Þ
ð9bÞ

where CE is the equivalent modulus ratio,
CE ¼ E�2=ðE�c þ E�2Þ (figure 1(d)). Matthewson [5] stud-
ied axi-symmetric indentation problems with rigid ind-
enters, such as spheres and cones, pressed into a thin
(h/a < 1/2) layer bonded to a rigid substrate. Analyti-
cal expressions were derived and substantiated by
experiments. For the incompressible thin layer of
mc ¼ 1/2 on a rigid substrate in contact with a rigid
spherical indenter, Matthewson found the following
relationship between load and contact radius, a,

W ¼ pEca
3

16ð1þ mcÞRs
9þ 1

4s2
þ 3

2s2ð2þ cÞ

� �

ð10Þ

or

ð�aÞ�3 ¼ 3pð1� mcÞ
64s

9þ 1

4s2
þ 3

2s2ð2þ cÞ

� �

where c ¼ xK0ðxÞ
K1ðxÞ is evaluated at x ¼

ffiffi

6
p

3s , and K0 and K1

are the zero-order and first-order modified Bessel func-
tions. Jaffar [6] derived asymptotic expressions for
pressure distribution and contact radius of thin
(h/a < 0.1) elastic layered bonded and unbonded to a
rigid substrate. Sakamoto et al. [7] assumed that con-
tact pressure was the summation of Tchebycheff poly-
nomials (equation (10) in [7]) with unknown
coefficients. Both bonded and unbonded layers were
considered, which were in contact with either spherical
or flat-ended cylindrical indenters. The effect of the
thickness and Poisson’s ratio of an elastic layer on the

parameter, W=ð2E�cadÞ or 2=ð3 �a�dÞ, was depicted in
figure 2 [7].

El-Sherbiney and Halling [8] proposed correction
factors in the form of a decreasing function of
H ¼ h/a0c, to take into consideration the elasticity of
the substrate. Surprisingly, the substrate properties do
not influence the two factors. Keer et al. [10] con-
structed a model to analyze the effects of normal and
tangential loading on two identical, coated, elastic
spheres. The model however is limited to h/a > 0.2.
Eberhardt and Keer [11] introduced an additional
middle layer with the same material properties of the
substrate in order to enhance convergence for prob-
lems with thin (e.g. h/a is as small as 0.05) layers.
Ogilvy [12] presented a curve-fitted expression based
on the approximate results obtained by El-Sherbiney
and Halling [8]. It should be noted that different
interpretations from the original definitions are ques-
tionably applied to film thickness and reduced modu-
lus ratio. By using the numerical model of Chen and
Engel [13], Stevanovic et al. [14] presented approxi-
mate models for predicting the contact radius
between a sphere and a layered body. When the sub-
strate is rigid, the following relationship is obtained
by curve-fitting,

�a � a=a0c ¼ 1� 1:04 expð�1:73s0:734Þ ð11Þ

For elastic substrates, the following approximate solu-
tion for the contact radius were also obtained,

�a � a=a0s ¼ 1þ ðc� 1Þ 1� exp �cp=8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðH=dÞp4

q

� �� �

ð12Þ

where

d ¼ 1þ ðc� 1Þ 1� exp �cp=8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p½2H=ð1þ cÞ�p4

q

� �� �

and c ¼ a0c=a0s:

It is noticed that existing asymptotic or approximate
expressions are only applicable to rigid substrates, and
numerical results for elastic substrates are available
only for cases with specified material properties. This
work extends the Hertz theory to solve the contact
problems between coated components over a wide
range of material properties. Numerical analyses with
a computer code similar to that reported in [15] are
conducted to determine a parameter involved in the
expression of the extended Hertz theory. For two-
dimensional cases, one can refer to the work reported
in an earlier paper [16].Figure 2. Comparison with results from Chen and Engel [13].
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2. Extended Hertz theory

A frequency response function (FRF) is the coun-
terpart in the frequency domain of a Green’s function.
The FRF of the surface normal displacement due to
pressure on the surface of a 3-D body is expressed as
follows [17],

~~u ¼ 2

E�c w

1þ 4whj#� kj#2

1� ðkþ jþ 4jw2h2Þ#þ kj#2
ð13Þ

where

k ¼ 1� 4ð1� mcÞ
1þ lð3� 4msÞ

; j ¼ l� 1

lþ ð3� 4mcÞ
;

# ¼ expð�2whÞ; and l ¼ Ecð1þ msÞ
Esð1þ mcÞ

:

The double tilde means two-dimensional Fourier trans-
form with respect to x and y, and w is defined in the
frequency domain and is the counterpart of radius in
the space domain. l is the shear modulus ratio and
constants k and j in the above equation are similar to
the Dundurs parameters defined for two-material com-
posite problems. Two limiting situations can be
obtained immediately:

(a) ~~u ¼ 2

E�sw
ð14Þ

for zero H (i.e., no coating). In the derivation, the fol-
lowing identity is used

1� kj
1� ðkþ jÞ þ kj

¼ E�c
E�s
;

and

(b) ~~u ¼ 2

E�c w
ð15Þ

for infinite H (i.e., no substrate). Since the coating has
different material properties from the substrate, the
mechanical responses of a coated half-plane are due to
the combined contribution of the coating and substrate
materials. These responses can be regarded as arising
from another equivalent half-space with mingled prop-
erties. By comparing the form of equations (13) and
(15), a new equivalent modulus is defined as follows:

E�1 ¼ E�c
1� ðkþ jþ 4jw2h2Þhþ kjh2

1þ 4whjh � kjh2
ð16Þ

where w now denotes a different variable. After defin-
ing a ¼ wh=H, the above modulus is a function of
material properties (lc, ls, mc, ms), coating thickness
(H), and the parameter (a ),

E�1¼E�c
1�ðkþjþ4ja2H2Þexpð�2aHÞþkjexpð�4aHÞ

1þ4aHjexpð�2aHÞ�kjexpð�4aHÞ
ð17Þ

For the contact between an equivalent half-space (as
body 1) and another half- space (as body 2), the equiv-
alent Young’s modulus in equation (2) becomes

1

E�
¼ 1

E�1
þ 1� m22

E2

ð18Þ

This treatment can be applied to body 2 in the same
way, if it is also a coated body. In order to obtain bet-
ter agreement, the parameter of a and thus E�1 have
different values for the contact approach, contact
radius, and maximum contact pressure. The value of a
can be obtained by comparing the numerical results
and the predictions from using equations (1) or (5)
with equations (17) and (18) instead of equation (2).
The predicted quantities or contact characteristics
obtained from equations (1) or (5) are denoted by the
same names but without subscript ‘‘0’’, which is for
homogeneous body only. The process to determine a
for all characteristics is discussed in Sections 3 and 4
for circular point contact with elastic and rigid sub-
strates, respectively. In Section 5, the extended Hertz
theory is used to predict characteristics for elliptical
point contact.

3. Elastic substrate cases in circular point contact

Elastic substrates are discussed first, since they rep-
resent a more realistic tribology application than rigid
substrates. In this case, numerical simulations require
a substantial amount of code development, and a cer-
tain amount of computation time has to be used to
determine contact performance. In the numerical anal-
ysis, contact constraints have to be satisfied through
an iteration scheme. The discrete convolution and fast
Fourier transform (DC-FFT) algorithm [18] is applied
to improve the simulation efficiency. Quantities a0s,
p0s, and d0s are used to non-dimensionalize the contact
radius (anum), maximum contact pressure (pnum), and
contact approach (dnum) determined with the simula-
tion code, i.e., �a ¼ anum=a0s, �p ¼ pnum=p0s, and
�d ¼ dnum=d0s. Note that the non-dimensional coating
thickness is defined in equation (7a) with a0s as well.
The computation domain is divided into 128 · 128
grids. It is found that the contact radius determined
from contact area S, anum ¼

ffiffiffiffiffiffiffiffi

S=p
p

, is less sensitive to
discretization. In order to verify our code, Chen and
Engel’s results with E ¼ 1/3 and both Poisson’s ratios
as 1/3 (table 2 in [13]) are converted into �a and �d by
algebraic calculation and plotted in figure 2 in terms
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of H. Our results with the same E but slightly different
Poisson’s ratios of 0.3 are shown for comparison. The
agreement is satisfactory except at one data point. By
checking figure 8—a graphical form of table 2 in the
same paper [13], this discrepancy is due to a typo.

The indenter is assumed to be rigid to simplify the
determination of a. If the indenter is elastic, its contri-
bution to contact behavior can be determined by
including the equivalent modulus in E� of equation
(2). The relationship between a and Poisson’s ratio is
not clear at the beginning, so the Poisson’s ratios for
both bodies are first assumed to be 0.3. It is noted that
contact characteristics, such as in Chen and Engel’s
results [13], depend on the modulus ratio, E ¼ E�c=E

�
s ,

but not on their absolute values. Therefore in the anal-
yses, E or E�c=E

�
s varies from 0.25 to 4 and has 25 val-

ues in total: 1=E ¼ 4� ði� 1Þ=4, i ¼ 1. . .12 and
E ¼ 1þ i=4, i ¼ 0. . .12. The value for H has a range
of 0.01–3 and 101 values in total. These 2525 results of
non-dimensional �a, �p, and �d with different modulus

ratio are shown in figure 3, plotted against the non-
dimensional coating thickness. It is obvious that when
H is reduced, all curves approach unity. On the other
hand, when H is sufficiently large, each curve
approaches a constant predicted by the Hertz theory,
i.e., �a ¼ E�1=3, �p ¼ E2=3, and �d ¼ E�2=3. It is also noted
that coated components with E�cE

�
s behave differently

from those with E�c<E�s , particularly in terms of the
maximum contact pressure. Comparing to results in
2D cases [16], figures 3 (a) and (b) have similar trend
of variation for �a and �p but with different magnitudes.

It is not difficult to see that with appropriate a val-
ues, equations (1) with (17) and (18) can predict the
contact approach, contact radius, and maximum con-
tact pressure accurately. However, a values depend on
H and E�c=E

�
s in a complicated way as shown in fig-

ure 4, where aa, ap, and ad are a values for �a, �p, and �d,
respectively. One can argue that curves with E�c>E�s
share one trend and curves with E�c<E�s have the
other. A few representative curves of a, instead of all

Figure 3. Contact characteristics: (a) �a; (b) �p; and (c) �d with different modulus ratio against non-dimensional coating thickness (H).
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curves, may be chosen for convenience. Six curves are
selected with modulus ratio of 1/3 and 3, denoted
as aa(1/3) and aa(3) for contact radius; ap(1/3) and
ap(3) for maximum contact pressure; and ad (1/3)
and ad (3) for contact approach. These curves are
shown in figure 5. Values of a for other modulus
ratios are expressed in terms of modulus ratio (E) as
follows,

apðEÞ ¼

apð1=3Þ � ð1=E� 3Þ=14 E 2 ½1=4; 1=3�
1:85þ ½apð1=3Þ � 1:85�=ð3EÞ E 2 ½1=3; 1�
1:72þ E½apð3Þ � 1:72�=3 E 2 ½1; 3�
apð3Þ � ðE� 3Þ=25 E 2 ½3; 4�

8

>

>

<

>

>

:

ð19aÞ

adðEÞ ¼
adð1=3Þ � ð1=E� 3Þ=39 E 2 ½1=4; 1=3�
0:685þ ½adð1=3Þ � 0:685�=ð3EÞ E 2 ½1=3; 1�

�

ð19bÞ

Error used to quantify the accuracy of prediction is
defined as the difference in percentage between the val-
ues predicted with equations (1) and (17–19) and the
numerical solutions normalized by the latter. It is

Figure 4. Values of the parameter (a) against H with different modulus ratio E: (a) �a; (b) �p; and (c) �d.

Figure 5. Representative values for the parameter (a) against H.
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found that for all cases analyzed in figure 3, the abso-
lute values of error are less than 1.5%.

In real applications, Poisson’s ratio may differ from
0.3, e.g., about 0.2 for grey cast iron. Examinations
are conducted with Poisson’s ratio of the substrate
fixed at 0.3 and that of the coating varying from 0.15
to 0.3, i.e., 0:15þ ði� 1Þ � 0:3, i ¼ 1,. . .,6. These
examination cases also have four different modulus
ratios: 4, 1.25, 0.8, 0.25. Here, 2424 cases are studied
to check error. For E ¼ 0.25 and mc ¼ 0.15, the abso-
lute values of error are large for some values of H, but
less than three percent. Therefore, the parameter, a,
defined in equation (19) is reasonable for prediction of
circular point contact characteristics.

Stevanovic et al. [14] defined the following dimen-
sionless contact radius and coating thickness,

a� ¼ anum � a0s
a0c � a0s

ð20aÞ

s� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h

anum

ffiffiffiffiffiffi

a0c
a0s

r

3

s

ð20bÞ

and reported that the numerical results of contact
radius of a 3D contact problem between an elastic
sphere and a coated half-space fall on a single curve.
Figure 3(a) is transformed into figure 6 of a� against
s�. One can arguably claim that all curves fall into a
single curve, particularly in the region of s� from 0.8
to 1.4. However, It is found that all curves with
E�c>E�s are close to each other, so are all curves with
E�c<E�s , which follow a slightly different path. The
authors checked the accuracy of the approximate solu-
tion of equation (12) proposed by Stevanovic et al.
[14] with regard to our numerical results in figure 3(a)
or figure 6, and found that equation (12) has error in
the range of [0, 8] and [)2.5, 0] for E�c >E�s and
E�c<E�s , respectively.

4. Rigid substrates cases in circular point contact

When the substrate is rigid (figure 1(d)), equation
(17) is still valid and the two constants are
k ¼ 4mc � 3 and j ¼ 1=k. In this case, quantities d0c,
a0c, and p0c are used to non-dimensionalize d, a, and
p. Vorovich and Ustinov [3] obtained approximate
solutions, equation (8) in Section 1, for contact char-
acteristics for thick layers (s > 1.5). Matthewson [5]
derived a simple solution, equation (10), for contact
radius for thin layers (s < 0.5), when the layer is
incompressible. Recently, Stevanovic et al. [14] pro-
posed a simple expression, equation (11), for contact
radius with any value of layer thickness. Figure 7
shows our numerical results of contact radius with
three different Poisson’s ratio (0.3, 0.4, and 0.5)
against s along with these three approximations:
equation (8b) with mc ¼ 0.5 marked by triangle; equa-
tion (10) marked by rounded square; and equation
(11) marked by diamond. It is obvious that our
numerical results with mc ¼ 0.5 agree with both Voro-
vich and Ustinov’s and Matthewson’s work in their
range of validity, and in the range of interest the
curve predicted by Stevanovic et al. is not accurate.
The comparison also suggests that Matthewson’s
solution can not provide accurate prediction for
s > 0.2. It should be pointed out that Poisson’s ratio
has a significant effect on curves in figure 7, particu-
larly when it is larger than 0.3. Figure 8 shows thir-
teen numerical results of contact characteristics
against H from the contact simulation with mc= 0.3,
Ec 2 [50, 800 GPa], and Es > 104 Ec. All results are
independent of Ec and neatly fall into a single curve.
When the coating thickness decreases, one can see
that the maximum contact pressure increases dramati-

Figure 6. Variable a* against s* (elastic substrate).
Figure 7. Comparison of results for contact radius from different

work (rigid substrate).
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cally and contact approach and radius decreases sig-
nificantly. However, all curves approach unity as H
increases. Similar to the case with elastic substrates,
parameter a should be determined based on the
numerical results. The representative a curve against
H, shown in figure 9, corresponds to steel coatings
(Ec ¼ 200GPa, mc ¼ 0.3). When this a curve and equa-
tions (1) and (17–18) are used to predict contact
characteristics of other coating materials, the absolute
value of error is less than one percent.

5. Elliptical point contact

Numerical results for various layer thickness and
modulus ratios were obtained for an elliptical point
contact with principle radii of curvature
R¢ ¼ 17.4 mm and R¢¢ ¼ 3 mm, and load W ¼ 400 N,
corresponding to the example on page 97 in [2]. The
ratio of the major to minor axis (1/f) is around 3.18.

In this case, the discretization interval in the minor
axis direction is set as one-third of that in the major
axis direction to reduce the discretization error in the

Figure 8. Contact characteristics against H (rigid substrate): (a) �a; (b) �p; and (c) �d.

Figure 9. Representative curve against H (rigid substrate).

S.B. Liu et al./An extension of the Hertz theory for 3-D 311



minor axis direction. The computation domain is
divided into 128 by 128 grids. Poisson’s ratio is 0.3
for the substrate and the coating. According to the
error studied in Section 3, predictions for cases with
modulus ratios that differ significantly from represen-
tative ones (1/3 and 3 in this paper) have slightly
large error. Four cases with modulus ratios of 1/4,
0.8, 1.25, and 4 were simulated in our study. Quanti-
ties a0s, p0s, and d0s evaluated with equations (5b–d)
are used to non-dimensionalize coating thickness and
contact characteristics. The subscript ‘s’ means that in
equations (5b–d), E* is determined by Equation (2)
with no coating. The numerical results in this dimen-
sionless form are shown in figure 10 for the major
and minor semi-axes, contact approach, and maxi-
mum contact pressure. The representative a values in
figure 5 for circular point contact problems are
adopted here and the following expressions are used
to modify a values for different E ratios:

E 2 ½1=4; 1=3�; aiðEÞ ¼ aið1=3Þ þ ð1=E� 3Þ=C1 i

E 2 ½1=3; 1�; aiðEÞ ¼ C2 i þ ½aið1=3Þ � C2 i�=ð3EÞ
E 2 ½1; 3�; aiðEÞ ¼ C3 i þ E½aið3Þ � C3 i�=3 (21)

E 2 ½3; 4�; aiðEÞ ¼ aið3Þ þ ðE� 3Þ=C4 i and

adðEÞ ¼ 0:225þ E½adð3Þ � 0:225�=3

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

where subscript i ¼ a, b, d, and p, and constants
Cj i ¼ [Cja, Cjb, Cjd, Cjp] are

Cj i ¼

�2:2 0:7 �64 12
3:5 8:685 0:0885 2:1

0:585 4:685 0:655 2:65
39 2:92 � 0:926

2

6

6

4

3

7

7

5

Equations (5), (17), (18), and (21) are used to deter-
mine the prediction of contact characteristics with the
a values from figure 5, and yield less than 4% overall
absolute value of error for cases shown in figure 10.

Figure 10. Elliptical point contact characteristics against H (elastic substrate): (a) major semi-axis; (b) minor semi-axis; (c) contact approach;

(d) maximum contact pressure.
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6. Examples

The steps of calculation using the extended Hertzian
theory are illustrated in this section. Suppose a 40-lm
thick boron carbide (B4C) coating is deposited on a
52100 steel disk. Their material properties are found as
following: Ec ¼ 380 GPa, mc ¼ 0.17, Es ¼ 200 GPa and
ms ¼ 0.3 with the modulus ratio, E ¼ 1.78. Suppose
further that this coated disk is loaded against a ball in
a ball-on-disk test. The ball is made of 52100 steel as
well and its radius is 10 mm. The applied load is 1 N.
Under these conditions,

� Equation (1) gives, d0 ¼ 0.16700 lm, a0 ¼ 40.866 lm
and p0 ¼ 285.89 MPa.

� With h ¼ 40 lm, the dimensionless thickness (H) is
0.98.

� Due to E > 1, a curves in figure 5 for E ¼ 3 are used
to find a(3) value: ad(3) » 1.1, aa(3) » 3.35 and
ap(3) » 1.55. After substitution of these values into
equation (19), one can obtain ad(1.78) » 1.1,
aa(1.78) » 3.35 and ap(1.78) » 1.619.

� Equation (17) gives E�1 of 278.83, 383.22 and
319.45 GPa for approach, contact radius and maxi-
mum contact pressure, respectively. The correspond-
ing E� in equation (18) are 122.90, 139.68 and
130.20 GPa.

� Therefore, the approach, contact radius and maxi-
mum contact pressure are predicted by equation (1) to
be 0.15500 lm, 37.727 lm and 320.12 MPa.

By comparing to the results of a numerical analysis
with the contact solver: dnum ¼ 0.15669 lm,
anum ¼ 38.232 lm and pnum ¼ 325.66 MPa, the error
of the above predictions is less than 1.7%.

It is of interest to see how well the extended Hertz
theory can in predict contact characteristics between
two coated balls. The second example is from Keer
et al. [10], where two coated balls are identical and
have a radius of 10 mm. With the elastic properties
from [10]: Ec ¼ 406.25 GPa, mc ¼ 0.3, Es ¼ 200 GPa
and ms ¼ 0.28, the modulus ratio is: E ¼ 2.06. The
applied load is 1 N. Under these conditions, equation
(1) gives, d0 ¼ 0.16842 lm, a0 ¼ 41.039 lm and
p0 ¼ 283.49 MPa. Two thickness values are studied as
follows:

Case A: The thickness of the coating is 12.336 lm,
and thus H ¼ 0.3. Since ad(3) » 1.1, aa(3) » 3.2 and
ap(3) » 1.6, one can obtain with equation (19)
ad(2.06) » 1.1, aa(2.06) » 3.2 and ap(2.06) » 1.638.
Equation (17) gives E�1 of 240.94, 296.75 and
252.93 GPa for d, a and p, which should be used for
both terms in equation (18). Thus the corresponding
E� from equation (18) are 120.47, 148.38 and
126.46 GPa for d, a and p. Finally, d, a and p are pre-
dicted by equation (1): 0.15708 lm, 36.974 lm and
313.96 MPa. Comparing to the results of a numerical

analysis with the contact solver for d, a and p:
0.15729 lm, 37.010 lm and 314.87 MPa, the error of
the above predictions is less than 0.3%.

Case B: If a thicker coating, h ¼ 54.648 lm, is con-
sidered, one has H ¼ 1.33. a(3) values are ad(3) » 0.9,
aa(3) » 2.1 and ap(3) » 2.1, and by equation (19), one
can obtain ad(2.06) » 0.9, aa(2.06) » 2.1 and
ap(2.06) » 1.98. Equation (17) gives E�1 of 321.38,
426.94 and 422.15 GPa for d, a and p. Similarly to
case A, the corresponding E� from equation (18) are
160.69, 213.47 and 211.08 GPa. Therefore, the d, a
and p are predicted by equation (1): 0.12963 lm,
32.708 lm and 441.77 MPa. Comparing to the results
of a numerical analysis with the contact solver for d, a
and p: 0.12984 lm, 32.828 lm and 442.46 MPa, the
error of the above predictions is less than 0.4%.

These results are also in good agreement with the
results published by Keer et al. [10] for the same
problem. a/H in their notation are 3.0 and 0.6 for
case A and B, respectively, in their table 2. With
proper algebra, their results read d ¼ 0.15818 lm,
a ¼ 37.007 lm and p ¼ 313.77 MPa for case A; and
d ¼ 0.13084 lm, a ¼ 32.798 lm and p ¼ 441.15 MPa
for case B.

7. Conclusions

This paper presents the expression for an equiva-
lent modulus and an extension of the Hertz theory in
order to predict contact approach, contact radius,
and maximum contact pressure for circular and ellip-
tical point contact problems involving coated bodies.
Following the form of an analytically known fre-
quency response function, the extended equivalent
modulus due to the presence of a coating is a func-
tion of Young’s moduli and Poisson’s ratios of the
coating and the substrate, the coating thickness, and
a parameter, a. This parameter is determined based
on numerical results. Representative curves of a are
chosen and plotted against dimensionless coating
thickness in graphs. The value of a for a specific case
can be calculated using a value from these representa-
tive curves and simple relationships. For a wide range
of Young’s modulus and Poisson’s ratio, the extended
Hertz theory can provide accurate and convenient
predictions.
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Appendix A: Curve-Fitted Expressions

Curve-fitted expressions for representative a curves
shown in figure 5 are obtained as follows:

aað3Þ ¼

5:51; H 2 ½0:01; 0:05�
�34:22H3þ43:67H2 � 20:316Hþ6:331;
H 2 ð0:05; 0:5�
0:157H2 � 1:08Hþ 3:32; H 2 ð0:5; 1:5�
�0:5Hþ 2:8; H 2 ð1:5; 3�

8

>

>

>

>

<

>

>

>

>

:

adð3Þ ¼

�0:252 lnHþ0:389; H 2 ½0:01; 0:05�
�49:446H3þ28:492H2 � 5:106Hþ1:330;
H 2 ð0:05; 0:25�
�0:683H2 þ 0:637Hþ 0:948; H 2 ð0:25; 0:5�
�0:287H2 þ 0:211Hþ 1:064; H 2 ð0:5; 0:9�
0:0466H2 � 0:382Hþ 1:328; H 2 ð0:9; 3�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

apð3Þ ¼

1:047Hþ1:654; H 2 ½0:01; 0:05�
34:734H3 � 8:256H2 � 1:163Hþ 1:776;
H 2 ð0:05; 0:33�
3:661H3 � 10:456H2 þ 9:482H� 0:410;
H 2 ð0:33; 0:75�
�0:648H2 þ 0:882Hþ 2:073; H 2 ð0:75; 1:2�
0:0854H2 � 0:779Hþ 3:02; H 2 ð1:2; 3�

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

aað
1

3
Þ ¼

197:97H2 � 40:013Hþ5:624; H 2 ½0:01; 0:1�
1:853H�0:28; H 2 ð0:1; 0:3�
1:7H�0:352; H 2 ð0:3; 3�

8

<

:

adð
1

3
Þ ¼

568:758H3 � 136:497H2þ11:37Hþ0:518;
H 2 ½0:01; 0:1�
�0:772H2þ0:242Hþ0:836; H 2 ð0:1; 0:3�
0:0175H2 � 0:183Hþ0:899; H 2 ð0:3; 3�

8

>

>

<

>

>

:

apð
1

3
Þ ¼

0:0122H2 � 0:342Hþ1:68; H 2 ½0:01; 0:2�
�0:0428H2 � 0:116Hþ1:637; H 2 ð0:2; 1�
0:0187H2 � 0:279Hþ1:734; H 2 ð1; 3�

8

<

:

Similarly, curve-fitted expressions for representative a
curves shown in figure 9 are obtained as follows:

aa ¼
�1:725lnHþ1:21; H 2 ½0:01; 0:1�
2:371H�0:339; H 2 ð0:1; 0:5�
2:228H�0:438; H 2 ð0:5; 3�

8

<

:

ap ¼ 2:036H�0:243; H 2 ½0:01; 0:5�
0:115H2 � 0:836Hþ 2:805; H 2 ð0:5; 3�

�

ad ¼ 1:039H�0:256; H 2 ½0:01; 0:5�
0:0796H2 � 0:522Hþ 1:503; H 2 ð0:5; 3�

�

Note that some expressions at H ¼ 0.01 gives different
values of a than figure 5 or 9.This is tolerable since it
hardly changes the predictions.
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