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Abstract Sugar beet is an economically important 
crop and one of the major sources of sucrose around 
the world. Beet necrotic yellow vein virus (BNYVV) 
and Beet severe curly top virus (BSCTV) are two 
widespread viruses in sugar beet that cause severe 
damage to its performance. Previously, we have suc-
cessfully produced resistance to BNYVV based on 
RNA silencing in sugar beet by introducing con-
structs carrying the viral coat-protein-encoding DNA 
sequence, CP21, in sense and anti-sense orientations. 
Yet, the RNA silencing-mediated resistance to a spe-
cific virus could be affected by other ones as a part of 
synergistic interactions. In this study, we assayed the 
specificity of the induced resistance against BNYVV 
in two sets of transgenic events, S3 and S6 carrying 
5’-UTR with or without CP21-coding sequences, 
respectively. These events were subjected to viral 
challenges with either BNYVV, an Iranian isolate of 

BSCTV (BSCTV-Ir) or both. All the plants inoculated 
with just BSCTV-Ir displayed curly-leaf symptoms. 
However, partial resistance was evident in S3 events as 
shown by mild symptoms and reduced PCR amplifica-
tion of the BSCTV-Ir coat protein encoding sequence. 
Based on the presented data, resistance to BNYVV 
was stable in almost all the transgenic plants co-
infected with BSCTV-Ir, except for one event, S3-229. 
In general, it seems that the co-infection does not 
affect the resistance to BNYVV in transgenic plants. 
These findings demonstrated that the introduced RNA 
silencing-mediated resistance against BNYVV in 
transgenic sugar beets is specific and is not suppressed 
after co-infection with a heterologous virus.
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Introduction

As a primary source of sugar production, sugar beet 
(Beta vulgaris L.) is one of the most important indus-
trial crops in the world. Due to the increased global 
demand for sugar, the sustainability of sugar beet 
production is essential (Stevanato et  al. 2019). Rhi-
zomania, caused by Beet necrotic yellow vein virus 
(BNYVV), is one of the most devastating and wide-
spread diseases of sugar beet that could diminish 
sugar beet yield by up to 80% (McGrann et al. 2009; 
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Biancardi and Lewellen 2016). The virus is transmit-
ted to sugar beet roots by Polymyxa betae Keskin, a 
plasmodiophorid vector, which remains viable in the 
soil for over 15 years by forming resting spores (Pfer-
dmenges 2007; Biancardi and Lewellen 2016). While 
the use of chemicals is now phased out as part of the 
Montreal Protocol (McGrann et  al. 2009), current 
resistant cultivars, such as those carrying Rz1 and/
or Rz2 genes have been the only solution for cultiva-
tion in diseased areas so far. The molecular mecha-
nism that underlies Rz1 resistance is still unclear 
(Funk et al. 2018). It was identified that the Rz2 gene 
encodes a coiled-coil nucleotide-binding leucine-
rich repeat (CC-NB-LRR) protein (Capistrano-Goss-
mann et al. 2017). However, the BNYVV resistance 
conferred by Rz1 and/or Rz2 genes is reported to be 
prone to break in some regions (for example see Pfer-
dmenges and Varrelmann 2009; Kutluk Yilmaz et al. 
2018). Thus, it is necessary to explore other ways to 
effectively deal with this disease as soon as possible.

The advent of genetic engineering has opened up 
new ways to control Rhizomania by introducing novel 
resistance genes resources (Pavli et  al. 2011; Dhir 
et al. 2019). In recent years, several methods based on 
RNA silencing and predominantly pathogen-induced 
resistance have emerged to strengthen plant defenses 
against viral invasions (Palukaitis 2011; Duan et  al. 
2012; Uslu and Wassenegger 2020). Virus-induced 
gene silencing (VIGS) is an RNA silencing-based 
mechanism that innately activates the plant’s natural 
defense mechanism against viruses (Lu et  al. 2003; 
Duan et al. 2012). In this approach, part of the viral 
genome is introduced into plant cells which gener-
ates double-stranded RNAs (dsRNA) intermediates 
that trigger the silencing mechanism producing short 
interfering RNA (siRNA) (Lu et al. 2003; Duan et al. 
2012).

To date, RNA silencing-mediated resistance has 
been effectively applied in various plants (Duan et al. 
2012; Jin et al. 2020; Jiang et al. 2022). In particular, 
through the RNA silencing mechanism, the transgenic 
N. benthamiana expressing the coat protein (CP) 
read-through domain of BNYVV revealed very low 
levels of virus after inoculation (Andika et al. 2005). 
In another study, an inverted cDNA repeat derived 
from the BNYVV replicase gene was transferred 
into the sugar beet genome and showed considerable 
resistance to the virus (Lennefors et al. 2006). Trans-
genic hairy roots of sugar beet exhibited a remarkable 

resistance against Rhizomania through expressing 
BNYVV-derived dsRNA (Pavli et  al. 2010). In our 
recent publications, we have shown RNA silencing-
mediated resistance against Rhizomania in sugar beet 
in both transient and stable transformation of a num-
ber of constructs expressing BNYVV-derived RNA 
which confirmed the effectiveness of this mechanism 
in the greenhouse and field experiments (Zare et  al. 
2015; Safar et al. 2021).

However, a sugar beet field may be exposed to sev-
eral kinds of pathogens such that the co-infection of 
plants by two or more viruses is quite possible (Susi 
et  al. 2015; Moreno and López-Moya 2020). Co-
infection often leads to interactions between viruses 
which can affect disease development in plants both 
negatively (antagonistic) and positively (synergistic) 
(Syller 2014; Syller and Grupa 2016; Mascia and 
Gallitelli 2016). Syller and Grupa (2016) suggested 
that synergistic interactions within plants mostly 
occur between unrelated viruses. Such viral interac-
tions have been reported to enhance infection sever-
ity, particularly through the suppression of RNA-
silencing machinery (Li et al. 2017; Liang et al. 2017; 
Aulia et  al. 2019). For instance, rice tungro disease 
is caused by the synergistic interaction of Rice tungro 
bacilliform virus (RTBV) and Rice tungro spherical 
virus (RTSV). It was shown that combined actions of 
RTBV ORF-IV and RTSV CP3 proteins play a key 
role in tungro symptom development by suppressing 
RNA silencing in rice (Anand et al. 2022). Therefore, 
some concerns have been raised over the efficiency of 
RNA silencing-based resistance of transgenic plants 
under co-infection conditions.

Beet curly top virus (BCTV), a member of the 
Curtovirus genus, is another common and destruc-
tive virus in sugar beet fields around the world. 
Beet severe curly top virus (BSCTV, recently called 
BCTV-Svr) is a strain of BCTV named for the sever-
ity of curly symptoms in infected sugar beet. Iranian 
isolate of Beet severe curly top virus (BSCTV-Ir) is 
one of the main causal agents of the curly top dis-
ease in sugar beet farms in Iran. The C2/L2 protein 
of BCTV has been described as a suppressor of RNA 
silencing machinery (Yang et  al. 2007). Besides, it 
was recently revealed that V2 of BCTV can also act 
as an inhibitor of RNA silencing (Luna et al. 2017).

Considering that BNYVV and BSCTV co-infec-
tion of sugar beets occurs in most sugar beet grow-
ing fields of Iran and perhaps in other parts of the 
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world, the present study was conducted to explore 
the possible interactions between these viruses and 
their effects on the resistance against BNYVV in the 
transgenic plants. We also questioned if the silenc-
ing against CP21 BNYVV could inhibit BSCTV-Ir 
propagation.

Materials and methods

Plant material

Based on our previous studies (Zare et  al. 2015), a 
number of transgenic events carrying intron-hairpin 
RNA (ihpRNA) construct containing the 5’ UTR 
with or without coding sequence of CP of BNYVV, 
called IHP-P (S3) and IHP-U (S6), respectively, were 
selected. Three T1 progenies of S3-12 and one of the 
S3-13.2 events were chosen named 227, 228, 229, 
and 219, respectively. Also, two T1 progenies of S6-2 
and S6-44 events named 221 and 231 were selected. 
These events showed high resistance to BNYVV as 
assessed by ELISA analysis. A diploid monogram 
cultivar as a wild-type parental plant, named ‘9597’, 
and a cultivar called ‘Dorothea’ carrying the Rz1 
gene, a Holly-based resistant plant, served as the neg-
ative and positive controls, respectively, which were 
kindly provided by Sugar Beet Seed Institute of Iran.

Micropropagation of transgenic plants

Transgenic plants were propagated through tissue 
culture to obtain a sufficient number of genetically 
identical individuals. The culture medium was com-
posed of MS salts (Murashige and Skoog 1962) at 
pH 5.8 and supplemented with 3% (m/v) sucrose, 0.1 
mg/l IBA, 1 mg/l BA, and 0.1 mg/l GA3. The root-
inducing medium was MS containing 3 mg/l NAA 
hormone. Clonally propagated plants were trans-
ferred into the soil composed of peat, perlite, and 
vermiculite at a 1:1:1 ratio and adapted under the 
yellow–white fluorescent bulbs with 16  h of light 
photoperiod. The temperature was 25–30 °C and the 
humidity was adjusted to 40–60%.

Molecular analysis for transgenic plants

To select progenies carrying the transgene, a dot 
blot analysis was performed on virus-free transgenic 
plants. Genomic DNA was isolated from 50 mg 
of sugar beet leaves, according to Dellaporta et  al. 
(1983). Genomic DNA (30 µg) was directly spot-
ted on a positively charged nylon membrane (Roche 
Diagnostics, Germany) using a vacuum-assisted dot 
blotter tool (Gentaur BVBA, Belgium). Digoxigenin 
(DIG)-labeled probes were synthesized from the plas-
mids carrying each construct by PCR reaction using 
U+1 and U−1 primers (Table  1) and a DIG DNA 

Table 1  Details of primers used in this study

CP21-ORF, BNYVV coat protein open reading frame sequence used for S3 events validation. CP21- UTR, untranslated region of 
CP21 of BNYVV used for S6 events validation or probe synthesis for dot blot. V1/CP, BSCTV-Ir coat protein coding sequence used 
to validate the BSCTV-Ir infection of plants
The C-1/U+2 used as a nested primer pair for amplifying PCR products of the C-2/CS-1

Name Primer sequence (5′–3′) Tm (°C) Target sequence Ampli-
con size 
(bp)

C-2 AGC TAA TTG CTA TTG TCC GGGT 60 CP21-ORF 736
CS-1 CGC ATA TCT CAT TAA AGC AGG ACT CTA 60
C-1 TTC TCA TTA GTA CCA GCA GTTTT 60 CP21-ORF 460
U+2 CTC GAG AAT AGA ATT TCA CCG TCT G 60
PIF CAA GGT AAC ATG ATA GAT CAT GTC ATT GTG 67 CP21-UTR 333
TOCS AAA CCG GCG GTA AGG ATC TG 67
U+1 AGG ATC CTC GAG AAT AGA ATT TCA CCG TCT GT 65 CP21-UTR 120
U−1 CAA GCT TGA ATT CAC GGC GGC TAC TTA TTA CTC 65
BSCTV-Ir-F AGA AAA TAT ACA AGA AAT C 41 V1/CP 761
BSCTV-Ir-R TTA ATA AAA ATA ACA TCT AC 41
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labeling and detection kit (Roche Biochemical, Ger-
many). The temperature for hybridization was 65 °C 
and the concentration of salt for the last wash was 
0.1 mM NaCl in sodium citrate buffer. Detection was 
done by NBT/BCIP as instructed and the darkness of 
dots was inspected visually.

For genotyping of the progenies, DNA extraction 
of transgenic events was performed from the leaves 
using a GTP kit (Gene Transfer Pioneers, Iran). The 
presence of the transgene in each progeny was moni-
tored by PCR amplification using gene-specific pairs 
of primers (Table 1). The reaction mixture contained 
1 µl (50 ng) genomic DNA template, 2 pmol of each 
primer, 10 µl 2X PCR master mix (Thermo Fisher 
Scientific, USA), 2 mM  MgCl2, 200 µM of each 
dNTPs, and 5 U Taq DNA polymerase (Cinagen, 
Iran) in a volume of 30 µl. Amplification cycles were 
as follows: denaturation cycle at 95 °C for 5 min, 40 
cycles of 94 °C, 60 °C, and 72 °C (1 min each) with 
a final extension step at 72 °C for 10 min. The PCR 
products were separated on 1% agarose gels, stained 
with ethidium bromide, and visualized by UV light.

Viral challenges and bioassays

The micropropagated plants with 6–8 leaves were 
challenged with BNYVV or BSCTV-Ir viruses indi-
vidually or both. Plants were transplanted into the 
mixture of BNYVV-infested and sterile soil at a 1:1 
ratio. BSCTV-Ir infection was done through agro-
injection of sugar beet plants with a full-length 
recombinant BSCTV-Ir construct (Ebadzad Sah-
raei et  al. 2008) using Agrobacterium tumefaciens 
strain C58. To this end, the recombinant Agrobacte-
rium was cultured in LB medium supplemented with 
Rifampicin and Kanamycin at 50 µg/ml and grown 
to  OD600 1.0. The bacteria were pelleted and resus-
pended in MS medium supplemented with 2% (m/v) 
sucrose, 10 mM  MgCl2, and 150 µM acetosyringone 
at pH 5.8 and diluted to  OD600 0.5. After 3 h of incu-
bation at room temperature, it was injected into the 
back of the leaves.

After 30 days of BSCTV-Ir infection, the pres-
ence of the virus was detected by PCR for an 
expected band of 761 bp using a pair of primers 
(Table  1). Total DNA was isolated from 50 mg of 
sugar beet leaves using the i-Genomic Plant DNA 
Extraction Mini Kit (Intron Biotechnology, South 

Korea). The PCR reaction mixture and program 
were carried out as above.

After 60 days of transfer to infested soil, BNYVV 
titers for each event were estimated from root sam-
ples using the enzyme-linked immunosorbent assay 
(ELISA) either by a DAS-ELISA kit (BIOREBA, 
Switzerland) based on the instructions provided by 
the manufacturer or according to Clark and Adams 
(1977) using an anti-CP21 antibody kindly provided 
by Dr. Izadpanah (Shiraz University, Iran). The 
antibody solution was added to the coating buffer 
containing 1.59 g  Na2CO3, 0.2 g  NaN3, and 2.93 g 
 NaHCo3 (pH = 9.6) at 1:1000 dilution. The antibody 
mixture was added to the wells of the plate (Nunc, 
Thermo Scientific, US) and incubated at 37  °C for 
3.5–4 h. 100 mg of each plant sample were homog-
enized in extraction buffer composed of 2% (m/v) 
polyvinylpyrrolidone (PVP) in phosphate-buffered 
saline (PBS; 137 mM NaCl, 2.7  mM KCl, 8 mM 
 Na2HPO4, and 2 mM  KH2PO4). After washing three 
times with washing buffer (PBS-Tween 20) and dry-
ing the plate, the plant extract (100  µl) was added 
to each well and incubated for 4  h. The plate was   
completely covered and incubated overnight at 4 °C. 
After a three-time washing step with the wash-
ing buffer, 100  µl of antibody-conjugate carrying 
Alkaline phosphatase enzyme diluted in conjugat-
ing buffer (1:1000) was added to wells of the plate. 
Then, the covered plate was incubated at 37 °C for 
3.5–4 h after which 100 µl of the substrate solution 
composed of 10 mg of para-nitrophenylphosphate 
(pNPP) dissolved in 10  mL of 1X Diethanolamine 
substrate buffer was added to each well. Follow-
ing overnight incubation of plate at room temper-
ature in dark, the absorbance for each sample was 
measured at optical density (OD) value of 405 nm. 
The cut-off value was calculated by formula sug-
gested by Bioreba (2014) which was the mean ± 3 
times standard deviation for non-infected wild-type 
plants. If the absorbance was more than two times 
the cut-off value, the plant was considered to have 
high infection, whereas if it was lower than or equal 
to the cut-off, the plant was assumed healthy, and if 
between one and two cut-off values, the plant was 
designated as low infected.

To assure the infection process, P. betae spores 
were stained with acid fuchsin in lactophe-
nol 0.05% (m/v) (Maneval 1936) and observed 
microscopically.
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Statistical analyses of bioassays

Analysis of variance (ANOVA) for bioassay data was 
performed in a factorial experiment with a completely 
randomized design and three replications. The means 
comparisons were done by Duncan’s multiple range 
test (P < 0.05). All the statistical analyses were con-
ducted with the use of SPSS software (IBM, USA).

Bioinformatics data analysis

To examine the possible similarity between the 
coat proteins of BNYVV (GenBank Accession No. 
AY277887) and BSCTV (GenBank Accession No. 
X97203), their nucleotide sequences were aligned 
pairwise with MegAlign software in Lasergene pack-
age (DNASTAR, USA).

Results

Following the previous studies (Zare et  al. 2015; 
Safar et  al. 2021), six T1 progenies of transgenic 
events with induced silencing against BNYVV CP21 
were selected. As summarized in Table  2, the pres-
ence of the transgene and the expected effects on the 
selected events were verified using dot blot, PCR, and 
ELISA methods.

The compiled data for the not-infected or infected 
plants with BNYVV and BSCTV-Ir are summarized 
in Table  3. After agro-infection with recombinant 
BSCTV-Ir DNA constructs, S3 events showed mild 
curly leaves while severe symptoms were observed 
in S6 events, Dorothea, and wild-type ‘9597’ cul-
tivar (Fig.  1). The same patterns of symptoms were 
also observed for the co-infected plants. Accordingly, 
lower levels of PCR products were detected in S3 
plants using BSCTV-Ir primer pairs for the coat pro-
tein-encoding DNA sequence (Fig. 2, Tables 1 and 3).

Since partial resistance was observed in some 
transgenic events infected with BSCTV-Ir, the possi-
ble sequence identity between the coding sequence of 
BNYVV and BSCTV-Ir coat proteins was inspected 
by pairwise alignment. As shown in Fig.  3, sub-
stantial sequence identities were observed in some 
regions between these nucleotide sequences.

The clonally propagated plants were challenged 
with BNYVV and BSCTV-Ir viruses, individually 
or together for 60  days. The BNYVV infection was 

confirmed as P. betae spores were detected in the 
roots of all examined plants by microscopic observa-
tions (Table  3). Based on the ELISA data, fourteen 
S3 plants were challenged with only BNYVV, almost 
all of them were found healthy or with low infec-
tion for the duration of the experiment. Among those 
plants co-infected with BNYVV and BSCTV-Ir, six-
plants were healthy and four were slightly infected 
with BNYVV, while two plants showed high infec-
tion when they were exposed to both BNYVV and 
BSCTV-Ir. For the S6 construct, thirteen plants were 
either infected by BNYVV or co-infected by both 
BNYVV and BSCTV-Ir. Just one plant was highly 
infected to BNYVV when infected with BNYVV 
only. In all S6 plants, the co-infection of BNYVV and 
BSCTV-Ir did not affect the symptoms of the latter 
virus.

To overlook the positional effects of gene insertion 
and genotype variations, the means of the 6 selected 
transgenic events (4 events of S3 and 2 from S6) were 
compared (Fig.  4). In all plants, except S3-229, no 
significant difference was observed between BNYVV 
single infection or co-infection with BSCTV-Ir. In 
S3-229 case, the BNYVV accumulation was signifi-
cantly higher in co-infection treatments than the sin-
gle infections. The wild-type cultivar also showed 

Table 2  Summarized data of genotyping by dot blot and PCR 
and viral propagation inhibition by ELISA for the selected 
events

a Transgenic events carrying intron-hairpin RNA (ihpRNA) 
construct containing the 5′ UTR with or without coding 
sequence of CP21 of BNYVV, called IHP-P (S3) and IHP-U 
(S6), respectively
b The plants that had a darker spot compared to the non-trans-
genic wild-type parent (9597) were shown by positive marks 
and the numbers of these marks indicate the rate of darkness
c Average ELISA value as an indicator for the viral titer
d ND not determined
e 9597 is the non-transgenic parental plant used as a control

Plant No. Constructa Event Dot  blotb PCR ELISAc

227 IHP-P S3-12 ++ + 0.14
228 IHP-P S3-12 ++ + 0.07
229 IHP-P S3-12 +++ + 0.10
219 IHP-P S3-13.2 NDd + 0.32
221 IHP-U S6-2 + + 0.16
231 IHP-U S6-44 + + 0.01
9597e − − − − 0.79
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higher BNYVV titers under co-infection conditions, 
although it was not significant.

Discussion

In order to explore the possible effects of viral co-
infection on the efficiency of RNA silencing-medi-
ated resistance, transgenic events were exposed to 
BNYVV or BSCTV-Ir individually and together. 
Almost all transgenic events were resistant to single 
infections of BNYVV. Consistent with our previ-
ous studies (Zare et  al. 2015; Safar et  al. 2021), the 
reduced propagation of BNYVV in transgenic events 
indicates the effectiveness of the CP21-based inserts 
in inducing resistance against Rhizomania. Simi-
larly, other researchers have already shown that the 
introduction of BNYVV-based constructs can be an 
effective way to control Rhizomania disease (Man-
nerlöf et  al. 1996; Lennefors et  al. 2006, 2008). 
Considerable resistance against Rhizomania disease 
was achieved through the expression of dsRNA of 
BNYVV replicase gene sequence in the transformed 
sugar beet plants (Pavli et al. 2010). Similarly, trans-
genic Nicotiana benthamiana plants encoding CP 
readthrough protein exhibited high resistance to 
BNYVV (Andika et al. 2005).

As expected, all the transgenic plants carrying 
S6 constructs produced severe curly top symptoms, 
when subjected to BSCTV-Ir. However, S3 events 
with IHP-P construct moderately resisted BSCTV-Ir 
compared to control and S6 events carrying IHP-U. 
The inhibition of propagation of a particular virus 
in transgenic plants containing the insert derived 
from another virus is commonly referred to as “het-
erologous resistance” (Dinant et  al. 1993). So far, 
several cases of heterologous resistance in differ-
ent transgenic plants have been reported (Dinant 
et  al. 1993; Hassairi et  al. 1998; Peng et  al. 2014; 
Ali et  al. 2019). Medina-Hernández et  al. (2013) 
evaluated the efficiency of Tomato Chino La Paz 
virus (ToChLPV)-derived construct for resistance 
against Pepper Golden Mosaic virus (PepGMV) 
in N. benthamiana plants. It was shown that the 
severity of PepGMV symptoms was reduced to 
45% in transgenic plants. As shown in Fig. 3, there 
are several regions of sequence identities between 
genes coding for BNYVV and BSCTV-Ir coat pro-
teins. Therefore, the slight resistance to BSCTV-Ir a  Se
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observed in S3 events could be due to the presence 
of some BNYVV CP-derived siRNAs.

From the other point of view, almost all trans-
genic events showed stable resistance to BNYVV 
compared to wild-type plants under co-infection 
conditions. Yet, the high titer of BNYVV in 3 out 
of 28 S3 progenies (Table  3) needs further inves-
tigations. It might be due to either interaction of a 
suppressor protein encoded by the BSCTV-Ir virus, 
rearrangement of the transgene, or co-infection with 
other soil-borne viruses. Regardless of this excep-
tion, co-infection with BNYVV and BCTV-Ir does 
not appear to affect the RNA-silencing-based resist-
ance of transgenic sugar beets in general. Simi-
lar to our findings, co-infection with heterologous 
viruses does not always suppress the resistance of 
transgenic plants as shown by other researchers 

(Vassilakos 2012). For instance, the co-infection 
Plum pox virus (PPV) with either Apple chloro-
tic leaf spot virus (ACLSV) or Prune dwarf virus 
(PDV) did not suppress RNA silencing against 
PPV coat protein gene in transgenic plum (Prunus 
domestica L.) (Singh et al. 2019). The RNA silenc-
ing-mediated resistance against BNYVV was not 
affected by co-infection with either Beet Soil-Borne 
virus, Beet Virus Q, Beet Mild Yellowing virus or 
Beet Yellows virus (BYV) in transgenic sugar beets 
(Lennefors et al. 2008).

In summary, the presented results indicate that 
RNA-silencing against BNYVV CP21 is highly effi-
cient in hindering BNYVV propagation and provide 
a powerful mean for breeding programs for the con-
trol of Rhizomania disease in sugar beet. Moreover, 
the siRNAs generated in the S3 transgenic plants can 
be effective in inducing heterologous resistance to 
other sugar beet viruses like BSCTV-Ir. It was also 
demonstrated that the co-infection of BSCTV-Ir with 
BNYVV does not affect the efficiency of inducing 
silencing by the constructs producing RNA with hair-
pin structures. Overall, the induced RNA silencing-
based resistance was stable in transgenic plants under 
both single and multiple infection conditions and, 
therefore, it can be a suitable alternative for the con-
ventional breeding cultivars with BNYVV resistance.

Fig. 1  Symptoms of BSCTV-Ir virus 30 days after agro-
infection with recombinant viral DNA constructs on sugar beet 
plants comprise S3 events (a, b), S6 events (c), Dorothea (d), 
and wild-type ‘9597’ cultivar (e). S3 and S6 are transgenic 

events carrying 5’-UTR with or without full-length CP21-
encoding sequences, respectively. 9597 and Dorothea served as 
the negative and positive controls, respectively

Fig. 2  The level of BSCTV-Ir virus as detected by gel elec-
trophoresis of PCR products in the infected sugar beet plants; 
227–229 and 219 events as progenies of S3 events (lanes 1–4); 
221 and 231 events as progenies of S6 events (lanes 5 and 6); 
Dorothea (lane 7); wild-type plant (lane 8). For abbreviations, 
see Fig. 1 legend
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