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revealed different adhesion levels between starch 
granules and protein matrix. Starch granules were 
loose and separated from the protein matrix in the 
wild type, but deeply trapped and tightly integrated 
with the protein matrix in hina02 mutants. In addi-
tion, the grain width and thousand-grain weight of the 
hina02 mutant were significantly lower than those of 
the wild type.
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Introduction

Barley (Hordeum vulgare L.) is one of the most 
ancient cereal crops and currently ranks fourth in 
grain yield and area of cultivation throughout the 
world. At present, it is mainly used for animal feed 
and beer brewing, and a small part is used for food 
and pharmaceutical raw materials (Mantovani et  al. 
2008). Recent research on the health benefits of 
β-glucans is rekindling an interest in barley as a major 
food source for humans (Behall et  al. 2004, 2006; 
Keenan et  al. 2007). Moreover, barley is suitable 
for cultivation under a wide range of environmental 
conditions. It is highly salt tolerant and can thrive 
well in regions with very dry, cold climates, where 
other major crops such as wheat and oat fail to grow 
(Mahdi et al. 2008).

Abstract The hordoindolina genes (Hina and Hinb) 
are believed to play critical roles in barley (Hordeum 
vulgare L.) grain texture. In this study, we created 
novel alleles of the Hina gene using CRISPR/Cas9 
(Clustered regularly inter spaced short palindromic 
repeat-associated protein, CRISPR-Cas) genome 
editing. Mutagenesis of single bases in these novel 
alleles led to loss of Hina protein function in edited 
lines. The grain hardness index of hina mutants was 
95.5 on average, while that of the wild type was only 
53.7, indicating successful conversion of soft bar-
ley into hard barley. Observation of cross-sectional 
grain structure using scanning electron microscopy 
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Grain hardness, defined as the resistance of the 
kernel to deformation, is the most important and 
defining quality of barley and wheat, and is the main 
standard of international commercial cereal classifi-
cation (Symes 1969). Cereal kernels are divided into 
hard kernels and soft kernels according to differences 
in grain hardness (Turnbull and Rahman 2002). Pre-
vious studies have shown that grain hardness signifi-
cantly affects pearling and milling properties of cereal 
kernels, flour particle size distribution, starch dam-
age, and flour water absorption (Edney et  al. 2002). 
During dehulling and pearling, loss of endosperm 
from hard kernels is minimized (Baik and Ullrich 
2008). Meanwhile, uniform-sized, bright yellow, 
plump, thin-hulled, and medium-hard barley kernels 
are given priority for food consumption. In addition, 
the malting and feed qualities of barley are strongly 
associated with grain hardness. (Bowman et al. 2001; 
Nair et  al. 2011; Walker et  al. 2011; Mayolle et  al. 
2012).

Hordoindoline (Hin) and grain softness protein-1 
(Gsp-1) are involved in the regulation of grain hard-
ness in barley and are orthologs of wheat Puroin-
doline (Pin) and Gsp-1 (Gautier et  al. 1994, 2000). 
Mutations in the Pina or Pinb genes result in hard 
grain texture (Giroux and Morris 1997; Bhave and 
Morris 2008); conversely, heterologous expression 
of Pina or Pinb in transgenic rice plants confers 
softer endosperm texture (Krishnamurthy and Giroux 
2001). Turuspekov et al. (2008) identified 5 alleles of 
Hina, 6 alleles of Hinb-1, 18 alleles of Hinb-2, and 18 
alleles of Gsp in 81 spring barley lines. Grains pos-
sessing the most common Hina, Hinb-1, Hinb-2, and 
Gsp genotype combinations had significantly softer 
texture and increased starch content compared with 
other genotypes. By contrast, the Hinb-2 null muta-
tion was associated with increased grain hardness. 
Although several variations in Hina and Hinb alleles 
have been reported in cultivated and wild barley (e.g. 
H. vulgare subsp. spontaneum, Hordeum bogandii, 
Hordeum chilense, Hordeum bulbosum, etc.) (Cald-
wellet al. 2006; Li et al. 2010; Terasawa et al. 2012; 
Turuspekov et al. 2008), barley with harder grains is 
relatively scarce, and the difference in endosperm tex-
ture between hard grains and soft grains has received 
little attention.

The recently established gene editing tool, clus-
tered regularly interspaced short palindromic repeats 
(CRISPR)/Cas9, derived from the adaptive immunity 

system of Streptococcus pyogenes, has provided a 
breakthrough (Jinek et  al. 2012) enabling genomic 
targeting in many organisms including plants (Cong 
et  al. 2013; Jiang et  al. 2013; Shan et  al. 2013; Li 
et  al. 2013; Xie and Yang 2013; Mao et  al. 2013; 
Jin et al. 2013; Zhou et al. 2014; Zhang et al. 2014; 
Fauser et  al. 2014; Li et  al. 2020a, b; Susana et  al. 
2018; Zhang et al. 2019a, b; Yang et al. 2020; Zhang 
et al. 2021; Qiang et al. 2022). In this study, The bar-
ley Hina gene without introns is located on the chro-
mosome 5H: 1,602,184–1,601,735 of ‘Golden Prom-
ise’ pseudomolecules GPv1, and encodes the 149 
amino acids. We created novel Hina alleles using the 
CRISPR/Cas9 system in the commercial barley vari-
ety ‘Golden Promise’ and successfully obtained a bar-
ley mutant with increased grain hardness and reduced 
grain width. In the endosperm of the hina mutant, the 
protein matrix was tightly wrapped around A-type 
starch and B-type granules, which may give the grain 
more resistance to deformation.

Materials and methods

Plant materials

The soft spring barley (Hordeum vulgare L.) ‘Golden 
Promise’ was grown in a greenhouse under controlled 
conditions of 18  °C during 16  h of light and 15  °C 
during 8  h of darkness. When immature embryos 
were 1.5–2  mm in diameter, immature grains were 
collected from the center of spikes. Immature 
embryos were used for Agrobacterium-mediated 
transformation.

SgRNA design and plasmid construction

To edit the Hina gene in barley, two target sequences 
(hinT1: CGT GGG TCT GCT TGC TT TGG; hinT2: 
TGC AAC ATC CCC AGC AC TAC) were designed 
to recognize the 5′ regions of the conserved cod-
ing sequence using the online software CRISPR-GE 
(http:// skl. scau. edu. cn/ home). The CRISPR/Cas9 sys-
tem was provided by Mr. Liu Yaoguang from South 
China Agricultural University (Guangdong China). 
The Cas9 endonuclease gene from the Streptococ-
cus pyogenes type II CRISPR/Cas system was opti-
mized according to the codon usage bias of plant. 
Construction of sgRNA was conducted following 

http://skl.scau.edu.cn/home
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previously published protocols (Ma and Liu 2016; 
Xie et al. 2017). Two double-stranded target adaptors 
consisting of target sequence and adaptor were ligated 
to the BsaI-digested sgRNA vector carrying OsU6 
promoter (NEbiolabs, Beijing, China), then overlap-
ping PCR using target sequence-containing chimeric 
primers and nested PCR using site-specific primers 
were successively performed to generate the sgRNA 
expression cassette, respectively. Finally, two sgRNA 
expression cassettes were assembled into the pYL-
CRISPR/Cas9 binary plasmid in one round of cloning 
using the Golden Gate ligation method (Ma and Liu 
2016; Xie et  al. 2017). The recombinant vector was 
transferred into competent cells of Agrobacterium 
tumefaciens EHA105 (Huayueyang, Beijing, China).

Agrobacterium-mediated transformation of barley

Agrobacterium-mediated transformation of ‘Golden 
Promise’ was performed as described by Harwood 
(2019). A single colony of A. tumefaciens EHA105 
carrying the pYLH-hina vector with Cas9 and two 
sgRNA cassettes was used to inoculate 10 mL of MG 
medium. Immature embryos were separated from 
sterile grains and co-cultivated with Agrobacterium 
EHA105 infection solution for 3 days at 24 °C in the 
dark. Subsequently, these embryos were transferred 
to selective medium containing 50  mg/L hygro-
mycin (Coolaber, Beijing, China) and cultured for 
6–8  weeks at 24  °C in the dark. Proliferating calli 
were transferred to transition medium containing 
30  mg/L hygromycin and cultured at 24  °C under a 
16 h low light/8 h dark photoperiod. Small plantlets 
were then transferred to regeneration medium con-
taining 30 mg/L hygromycin and cultured for 2 weeks 
at 24  °C under a 16  h light/8  h dark photoperiod. 
Putative transgenic plants were transferred to soil and 
grown to maturity in the greenhouse, under controlled 
conditions of 18 °C during 16 h light and 15 °C dur-
ing 8 h darkness.

Detection of transgenic plants and mutations

Genomic DNA was isolated from leaves of puta-
tive transgenic plants using a TaKaRa MineBEAT 
Plant Genomic DNA Extraction Kit (TaKaRa, Bei-
jing, China). For detection of T-DNA insertions, 
PCR was performed with primers ubiF/R (supple-
mentary material Table  S1) using 100  ng of DNA 

in a 20  µL reaction (Sangon Biotech, Shanghai, 
China). To detect mutations in the Hina gene, prim-
ers TOMos74T1F/R and TOMos74T2F/R (supple-
mentary material Table S1) were designed against the 
targeted regions and PCR was performed using a Hi-
TOM Gene Editing Detection Kit (Qingxue Biotech, 
Xi ’an, China). Amplification products from trans-
formed samples were sequenced using an Illumina 
HiSeq PE150 system (Novogene, China). Sequencing 
results were analyzed using Hi-TOM (High-through-
put Tracking of Mutations, http:// www. hi- tom. net/ 
hi- tom/). Nucleotide sequences were analyzed using 
the AlignX program (Invitrogen, CA, USA). Prim-
ers hina02F/R and hinawtF/R (supplementary mate-
rial Table S1) specific to the mutant sequence of the 
hina02 line were designed for screening homozygous 
mutant plants.

Analysis of grain hardness and quality

To analyze phenotypic differences in grain hardness 
between the wild type and mutant, we used a Single 
Kernel Characterization System (SKCS) 4100 (Perten 
Instruments) to measure 300 grains according to 
American Grain Science Association standard AACC 
55-31. The hardness index (HI) of a single grain was 
obtained. Barley was dehulled before the SKCS test 
to prevent the SKCS from clogging.

Scanning electron microscopy of endosperm

Grains of the wild type and hina02 line were selected. 
Transverse sections of dried grain were attached 
to metallic stubs using carbon stickers and sputter-
coated with gold for 30 s. Images were observed and 
captured using an SU8100 scanning electron micro-
scope (Hitachi, Tokyo, Japan).

Determination of grain quality and agronomic traits

T2 plants generated from hina02 homozygous mutant 
were grown in a greenhouse under controlled con-
ditions of 18 °C during 16 h light and 15 °C during 
8  h darkness. Analysis of the agricultural traits of 
wild-type and mutant plants was performed using 20 
plants. Plant height, number of tillers, spike length, 
and grains per spike were recorded. Starch con-
tent and protein content of grains were determined, 
respectively, via the acid hydrolysis method and the 

http://www.hi-tom.net/hi-tom/
http://www.hi-tom.net/hi-tom/
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Kjeldahl method (Bowman et al. 1988). Every sample 
was analyzed three times. Three spikes per plant of 
a minimum of ten mutant and wild type plants were 
selected for phenotyping. The WSEEN Grain Test 
System (WSeen, http:// www. wseen. com/) was used 
to measure grain length, grain width, and thousand-
grain weight.

Statistical analyses

To analyze the normal distribution of data we per-
formed a Shapiro–Wike (S–W) normality test and 
then performed an unpaired t-test to test for differ-
ences between conditions. Results are expressed as 
mean ± standard deviation (SD) and considered sig-
nifificant at P < 0.05. Statistical analyses were con-
ducted using GraphPad Prism 8.0 software (San 
Diego, CA, USA). Asterisks denote statistical signifi-
cance (*P < 0.05; **P < 0.01; ***P < 0.001).

Results

Mutation detection

To edit the Hina gene in barley, we designed two tar-
get sites (hinT1 and hinT2) (Fig. 1a) for the conserved 
regions of the coding sequence and assembled these 

into a single vector to generate the construct pYLH-
hina using Golden Gate ligation (Fig.  1b). pYLH-
hina was transformed into immature barley embryos 
via Agrobacterium-mediated transformation. A total 
of 12 plantlets were obtained from 355 immature 
embryos. DNA was isolated from leaves of T0 plants, 
and 12 independent transgenic plants were identified 
by PCR amplification (supplementary material Figure 
S1).

Targeted mutagenesis in transgenic plants was 
examined using Hi-TOM Gene Editing Detection, 
and the resulting sequences were aligned against 
the wild-type DNA sequence. Four T0 mutant 
plants (hina02, 06, 07 and 10) and one T1 mutant 
plant (hina12) were identified by Hi-TOM sequenc-
ing, indicating that the CRISPR/Cas9 system con-
tinued to function in the offspring, with an editing 
efficiency of 42%. We detected mutations at the T1 
target site; however, no plants carrying a mutation 
at the T2 site were identified among the transforma-
tion events. Line hina02 had a 1-bp (C>A) substitu-
tion, a 2-bp (C and A) deletion, and a 12-bp (ACA 
ACA ATTAA) insertion, while line hina06 harbored 
two types of 2-bp (C>T and C>A) substitutions and 
a 1-bp (G) insertion and line hina07 had a 1-bp (G) 
insertion. Line hina12 had a 21-bp (GGG TCT GCT 
TGC TTT GGT ) deletion (Fig. 1c), whereas mutagen-
esis in lines hina02, 06, and 07 caused a frameshifts 

Fig. 1  Schematic diagram of target sites in the Hina gene and 
genome editing vector. a Structure of the Hina gene and loca-
tions of target sites T1 and T2 in the coding domain. b Sche-
matic illustration of CRISPR/cas9 construct. PCas9:Cas9 gene 

modified with plant-optimized codons; OsU6: snRNA gene 
promoter from rice; gRNA: guide RNA; T: target site. c Muta-
tion types in transgenic plants revealed by DNA sequencing; 
mutant genotypes at theT1 site

http://www.wseen.com/
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and premature termination codon to appear at bp 272 
and 232, respectively. The hina12 mutant lacked an 
initiation codon, while the amino acid sequence of 
the hina10 mutant was not changed (supplementary 
material Figure S2).

Determination of grain hardness and endosperm 
microstructure

Due to a limited quantity of grains, we first analyzed 
the distribution of single grain HI in a heterozygous 
group generated from hina02, hina06, hina07, and 
hina12 edited plants; these plants produced wild-type 
grains, heterozygous mutated grains, and homozy-
gous mutated grains. The grain HI of the heterozy-
gous group was from 32.2 to 95.56, with an average 
of 65, while the HI of wild type was 32.47–71.94, 
with an average of 53.81 (Fig. 2). The HI of hina10 
edited plants was similar to that of the wild type. 
This result shows that grains of hina mutants, except 
hina10, possessed a higher HI. Homozygous muta-
tions of line hina02 were identified by PCR (supple-
mentary material Figure S3), and the grain HI of the 
homozygous hina02 mutant was 93.08 (from 55.89 

to 105.91) on average (Figs.  2, 4e), representing an 
increase of 72.97% compared with the wild type.

Scanning electron microscope images of frac-
tured endosperms illustrated differences between the 
wild type and hina02 mutant. In the wild type, the 
endosperm possessed large (A-type) starch granules 
and numerous small (B-type) starch granules. A-type 
starch granules were smooth and devoid of the asso-
ciated protein matrix. The starch granule surface in 
the wild type was relatively free of associated pro-
tein material, and the spaces between adjacent starch 
granules appeared to be largely devoid of matrix 
protein (Fig. 3a–c). In the hina02 mutant, the spaces 
between adjacent starch granules were filled with 
protein matrix, which appeared to coat A-type starch 
granules and to embed B-type starch granules com-
pletely (Fig. 3d–f). These images indicate that starch 
granules were loose and separated from the pro-
tein matrix in the wild type, while they were deeply 
trapped and tightly integrated with the protein matrix 
in the mutant.

Agronomic traits and grain quality

Plants generated from the homozygous hina02 mutant 
shared the same appearance as the wild type. Pheno-
typically, there were no differences in plant height, 
number of tillers, spike length, grains per spike, or 
grain length (Fig.  4a and supplementary material 
Table  S2). However, the grain width and thousand-
grain weight of the hina02 mutant were 14.67% and 
22.92% lower than those of the wild type, respec-
tively (Fig. 4b–d). The starch and protein content of 
hina02 were 68.13% and 14.03%, while those of wild 
type were 63.71% and 11.83% respectively (Fig.  4f, 
g). These results suggested that knocking-out of Hina 
gene may affect grain development.

Discussion

Grain hardness has great influence on the end-use 
properties of cereal kernels (Ma et al. 2017). In wheat, 
hard kernels (Grain HI > 60) with larger flour particle, 
more damaged starch and higher water absorption is 
suitable for making breads and noodles, conversely 
hard kernels (Grain HI < 40) with smaller flour parti-
cle, fewer damaged starch and lower water absorption 
is suitable for making biscuits, cakes and other sweet 

Fig. 2  Single grain hardness index (HI) distribution of wild 
type and editing plants. WT: wild type; Heterozygous: the 
group generated from hina02, hina06, hina07, and hina12 
edited plants and consisted of wild-type grains, heterozygous 
mutated grains, and homozygous mutated grains; Homozy-
gous: the grains of homozygous plants screened from hina02 
mutant; Error bars indicate standard deviation. ***P < 0.001
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food (Chen et  al. 2005). Grain hardness of common 
wheat is mainly controlled by Puroindoline genes, 
Pina and Pinb. Much information is available on the 

wheat Pin alleles and their causal association with 
texture (Bhave and Morris 2008); however, infor-
mation about the orthologous Hin genes of barley 

Fig. 3  Scanning electron microscope images of fractured 
endosperms illustrating differences in starch–protein binding 
between the wild type and hina02 mutant. a–c Endosperm of 

wild type. d–f Endosperm of hina02 mutant. A: A-type starch 
granules; B: B-type starch granules; P: protein matrix

Fig. 4  Phenotypic and quality difference between the wild 
type and hina02 mutant. a, b the grains of wild type and 
hina02 mutant; c–g Comparison of grain length, grain width, 
thousand-grain weight, hardness index, starch and protein con-

tent of grain between wild type and hina02 mutant. WT: wild 
type; error bars indicate standard deviation; ns: no signifi-
cance; *P < 0.05; **P < 0.01
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is limited to a few reports (Walker et al. 2011). The 
role of Hin genes in influencing barley grain texture 
has only been shown so far by Takahashi et al (2010). 
Mutation of the Hinb-2 gene leads to a minor increase 
in grain hardness. The diversity and potential role 
of these proteins in barley grain structure therefore 
needs further analysis.

Here, we investigated Hina gene to gain an under-
standing of the genetic diversity of it and its contri-
bution to textural variations in barley. The Hina gene 
of barley was knocked out using the CRISPR/Cas9 
system. Grain hardness and structure were compared 
between wild type and hina mutants sharing the same 
genetic background. Grain HI based on the SKCS 
was elevated in all hina mutants except hina10, which 
possessed a synonymous mutation. The HI of the 
hina02 mutant was 95.5 on average and higher than 
that of varieties (51.3–80.1) containing Hinb alleles 
across different geographic regions (Beecher et  al. 
2001; Takahashi et al. 2010; Iwami et al. 2005; Fox 
et al. 2007). Mutation of Hina alleles in the 5′ region 
of the coding sequence resulted in loss of protein 
function, which may have important influence in the 
formation of grain texture. Microscopic observations 
of endosperms further confirmed our hypothesis. 
Compared with the wild type, starch granules were 
deeply trapped and tightly integrated with the protein 
matrix in the mutant. These structural characteristics 
may endow the grain with greater hardness.

Furthermore, previous studies have shown that 
the environment had a significant effect on the SKCS 
value, this variation could be explained partially by 
the protein content of the grain, i.e. increasing protein 
causes the grain to harden (Fox et  al. 2007). In our 
study, all plants were grown in a greenhouse under 
consistent condition. So the increase of Grain HI in 
mutant was largely coused by knocking-out of Hina 
gene. Interestingly, the protein content of hina02 
were18.59% higher than it of the wild type. How-
ever, the relation of Hina gene and protein content 
still needs further research. Finally, this new cultivar 
with a much higher grain harness provides a good 
germplasm resource for improving the quality of bar-
ley and understanding the formation of endosperm 
structure.
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