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Abstract Homozygous mice devoid of functional

Prnp are resistant to scrapie and prion propagation,

but heterozygous mice for Prnp disruption still suffer

from prion disease and prion deposition. We have

previously generated heterozygous cloned goats with

one allele of Prnp functional disruption. To obtain

goats with both alleles of Prnp be disrupted which

would be resistant to scrapie completely, a second-

round gene targeting was applied to disrupt the wild

type allele of Prnp in the heterozygous goats. By

second-round gene targeting, we successfully dis-

rupted the wild type allele of Prnp in primary

Prnp?/- goat skin fibroblasts and obtained a Prnp-/-

cell line without Prnp expression. This is the first

report on successful targeting modification in primary

adult somatic cells of animals. These cells were used

as nuclear donors for somatic cell cloning to produce

Prnp-/- goats. A total of 57 morulae or blastocytes

developed from the reconstructed embryos were

transferred to 31 recipients, which produced 7

pregnancies at day 35. At 73 days of gestation, we

obtained one cloned fetus with Prnp-/- genotype.

Our research not only indicated that multiple genetic

modifications could be accomplished by multi-round

gene targeting in primary somatic cells, but also

provided strong evidence that gene targeting in adult

cells other than fetal cells could be applied to

introduce precise genetic modifications in animals

without destroying the embryos.
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Abbreviations

DMSO Dimethyl sulfoxide

Dpl Doppel protein

FBS Fetal bovine serum

GMEM Glasgow minimal essential medium

neo Neomycin phosphotransferase gene

Prnp Prion protein gene

PrP Prion protein

puro Puromycin N-acetyl-transferase gene

Introduction

Prion diseases, such as scrapie in goats or sheep and

bovine spongiform encephalopathy (BSE) in cattle,
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are a group of fatal and infectious neurodegenerative

disorders of the central nervous system (CNS)

(Prusiner 1998). The therapeutic research for prion

diseases is intensive but they are still currently

incurable (Stewart et al. 2008). There is considerable

evidence that the PrP plays an essential role in prion

diseases (Aguzzi et al. 2008). More interestingly,

while the cellular PrP (PrPC) is absolutely required

for disease pathogenesis, it is dispensable for normal

animal development. Mice devoid of functional Prnp

(Prnp-/-) do not present macroscopic developmental

or anatomical alternations, and they are completely

resistant to scrapie and do not propagate prions

(Büeler et al. 1992; Büeler et al. 1993). Also, PrP-

deficient cattle are clinically, physiologically, histop-

athologically, immunologically and reproductively

normal, the brain tissue homogenates from Prnp-/-

cattle are resistant to prion propagation in vitro as

assessed by protein misfolding cyclic amplification

(PMCA) (Richt et al. 2007). Based on these results,

goat, a natural host of the prototype of prion diseases

scrapie, with PrP genes disruption should also survive

and reproduce normally.

Different from Prnp-/- mice, the mice heterozy-

gous for disrupted Prnp (Prnp?/-) still suffer from

prion disease though with a prolonged incubation

time, and the prion deposition and lesion distribution

at terminal stage of disease are similar in heterozy-

gous and wild type mice (Büeler et al. 1994; Manson

et al. 1994). We have reported earlier on generation

of five heterozygous cloned goats with one allele of

Prnp be functionally disrupted (Yu et al. 2006). To

obtain goats with both alleles of Prnp disruption

which would be resistant to scrapie and prion

propagation completely, the heterozygous goats

could be bred to produce homozygosity. Alterna-

tively, a second-round gene targeting could be carried

out in Prnp?/- fibroblasts to disrupt the wile type

allele of Prnp and followed with animal cloning.

Because livestock like goats, sheep, pigs, and cows

have a long generation interval, the time required for

production of homozygous livestock by sequential

gene targeting could be greatly reduced compared to

the traditional breeding strategy (Kuroiwa et al.

2004). In this research, while making efforts to

produce homozygous goats by breeding traditionally,

we also applied a second-round gene targeting in

Prnp?/- fibroblasts to disrupt the wild type allele of

Prnp, and then prepared cloned goats through nuclear

transfer. Different from traditional somatic cell gene

targeting in fetal fibroblasts (McCreath et al. 2000;

Denning et al. 2001; Dai et al. 2002; Lai et al. 2002;

Kuroiwa et al. 2004; Yu et al. 2006; Rogers et al.

2008), we chose the skin fibroblasts derived from an

adult Prnp?/- goat ear biopsy as target cells for

second-round gene targeting because Prnp?/- fetal is

rare and difficult to obtain and the cloning efficiency

of goat using fetal fibroblast or adult fibroblasts are

almost the same in our laboratory.

In this report, we successfully targeted the wild

type allele of Prnp in primary Prnp?/- skin fibro-

blasts and obtained a Prnp-/- cell line without Prnp

expression. To our knowledge, it is the first report on

successful targeting modification of a gene in primary

adult somatic cells of animals. Using these targeted

skin fibroblasts as nuclear donor in nuclear transfer,

we finally obtained a cloned fetus with both alleles of

Prnp be disrupted at day 73 of gestation.

Methods

Isolation and culture of Prnp?/- goat skin

fibroblasts

The primary goat skin fibroblasts GSF3-1 were

isolated from an ear skin biopsy of a 1.2-year-old

male Prnp?/- Saanen dairy goat as described by

Kubota et al. (2000). Briefly, skin biopsy was cut into

small pieces after washing in PBS containing peni-

cillin and streptomycin for 3 times and transferred

into 100 mm tissue culture dishes containing 4 ml

GMEM (Gibco) supplemented with 2 mM L-gluta-

mine (Gibco), 1 mM sodium pyruvate (Gibco), 19

non-essential amino acids (Gibco), 10% FBS

(Gibco), 100 U penicillin ml-1 and 100 lg strepto-

mycin ml-1 (Gibco). When the expanding cells

became confluent, they were disaggregated by

0.25% trypsin-EDTA (Gibco) and passaged to new

dishes. The cells at different passages were cryopre-

served in 10% DMSO (Sigma) for further

manipulation.

Construction of the second-round targeting vector

Two fragments including the homologous arms around

the exon 3 of Prnp in the targeted allele (Allele A) and

the wild type allele (Allele B) of GSF3-1 were
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amplified, respectively. A 1.9 kb 50 homologous arm

and a 6.1 kb 30 homologous arm from the two

fragments of allele B were used to construct a

promoter-less targeting vector GTPrPpuro with puro-

pA sequence directly adjacent to the endogenous gene

start codon. The 1.9 kb 50 homologous arm was

amplified by using primers PrP5f: 50-GAACGTCGAC

TCTCCAGTCCATGGTCGTTCCTC-30 with an arti-

ficial restriction-enzyme sites (underlined) at its 50 end

for molecular cloning and vector linearization (Sal I),

and PrP5r: 50-GTGGGCTTGTACTCGGTCATGA

TGACTTCTCTGCAAAAT-30; with a 30 tail

(22 bp; in bold) within the Prnp locus and a 50 tail

complementary to the start of puro coding sequences

(17 bp). The 0.9 kb puro-pA fragment was amplified

by using primers puroF: 50-ATTTTGCAGAGAAGT

CATCATGACCGAGTACAAGCCCAC-30, with a 50

tail (22 bp, in bold) within the Prnp locus and

complementary to the 50 homologous arm, and puroR:

50-CGCGGATCCGCGCCCCAGCTGGTTCTTTCC-

30, with a sites (underlined) at its 50 end for molecular

cloning (Bam H I). These two fragments were used to

prime from each other to give a 2.8 kb product which

was ligated to a 6.1 kb right arm amplified by using

primers PrP3f: 50-CGCGGATCCGGATCCTGGTTC

TCTTTGTGG-30 with a site for molecular cloning

(Bam H I) and PrP3r: 50-CCGCTCGAGGTCGACAT

GCTGGAGAGGATGTGGAGA-30, with two sites for

molecular cloning (Xho I) or vector linearization (Sal I)

to complete the targeting vector.

The targeting vector GTPrPpuro was linearized

with Sal I before electroporation.

Transfection and selection of the GSF3-1

The GTPrPpuro targeting vector was linearized with

Sal I and introduced into passage 4 GSF3-1 by

electroporation. About 1.0 9 107 exponentially

growing GSF3-1 cells were disaggregated and

washed in PBS twice, then mixed with 10 lg

linearized and purified GTPrPpuro and subjected to

a pulse of 400 V/250 lF in a 0.4 cm Gene Pulser

Cuvette (Bio-Rad). The transfected cells were plated

into two 10 cm-dishes in GMEM without selection.

After 48 h, all cells were trypsinized and reseeded in

selective cell-culture medium with 0.8 lg/ml Puro-

mycin (Sigma). After 9–10 days selection, healthy

and well-separated colonies were isolated with clon-

ing rings and transferred to 48-well cell-culture

plates. At subconfluence, half of cells were isolated

for PCR analysis and the remaining cells were

expanded by passaging until sufficient cells were

obtained for cryopreservation and nuclear transfer.

Genomic PCR analysis of drug resistant

cell colonies

Drug-resistant colonies were screened for targeting

events by three different sets of PCR amplification

across the 50-homologous arm or the 30-homologous

arm. Approximately 5,000 cells in 48-well plates were

lysed in 40 ll embryo lysis buffer (ELB) (40 mM Tris/

HCl, pH 8.9, 0.9% Triton X-100, 0.9% Nonidet P-40,

0.4 mg/ml proteinase K) at 65�C for 15 min and heated

to 95�C for 10 min to inactivate the proteinase K. PCR

amplification was performed in a 20 ll reaction

volume using the TaKaRa LA system with GC buffer

with 3 ll cell lysate as DNA template. The positions of

primers are indicated in Fig. 1. The primer sequences

were: P1, 50-CACAGCCAGGCATTCAGAAAC-30;
P2, 50-AGTTGCCAGCCATCTGTTGTT-30; P3, 50-
AACAACAGATGGCTGGCAACT-30; P4, 50-CACG

ATAGTAACGGTCCTCATAGTC-30; P5, 50-GCA G

AGGACCCAAACAGACAT-30; The thermal cycling

conditions were: 5 min at 94�C; 30 cycles of 30 s at

94�C, 30 s at 62�C and 3.5 min (P1/P3 and P1/P4) or

6.5 min (P2/P5) at 72�C; followed by 10 min at

72�C.The PCR products of positive colonies were sent

to sequencing to further confirm the targeting events.

RT-PCR analysis

Analysis of Prnp expression was performed in skin

fibroblasts. Total RNA was extracted from Prnp?/?,

Prnp?/- and Prnp-/- skin fibroblasts by using

TRIzol reagent (Invitrogen), the first strand cDNA

was synthesized with 2 lg RNA using RT-PCR kit

(TaKaRa) following the manufacturer’s instructions.

Subsequent PCR was carried out using primers P6

and P7 in 30 cycles of 94�C, 30 s, 58�C, 30 s, 72�C,

45 s. To detect expression of goat b-actin mRNA as

control, primers GBAF and GBAR were used in the

same PCR conditions. To exclude the possibility of

genomic DNA contamination, another RT-PCR was

carried out without reverse transcriptase. The posi-

tions of primers P6 and P7 are indicated in Fig. 1.

The primers sequences were: P6, 50-GAGTGCTGAA

GAGTTGATGC-30; P7, 50-CTTACCAGTCCAA
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CACTAGCA-30; GBAF, 50-TGGCACCACACC

TTCTACAA-30; GBAR, 50-TCCTTGATGTCACGG

ACGAT-30.

Western blot analysis

Total protein was extracted from Prnp?/?, Prnp?/-,

and Prnp-/- skin fibroblasts with RIPA lysis buffer

(50 mM Tris, pH 8.0, 150 mM NaCl, 1.0% Triton

X-100, 0.1% SDS, 0.5% sodium deoxycholate) at

4�C. Equal amounts of protein sample were run on a

12% SDS-PAGE gel and transferred to PVDF

membranes by semi-dry electroblotting (Bio-Rad).

After preincubation for 1 h in blocking buffer

(25 mM Tris, pH 8.0, 140 mM NaCl, 3 mM KCl,

0.05% Tween-20, 5% non-fat dry milk), the mem-

brane were incubated for 1 h in the same buffer

containing a 1:2,000 dilution of a mouse anti-PrP

monoclonal antibody 4C6 (National BSE Reference

Laboratory, Qingdao, China) or a 1:1,000 dilution of

a mouse anti-actin monoclonal antibody (Sigma,

catalog no. A4700). After washing, the membranes

were incubated for 1 h in the blocking buffer

containing a 1:1,000 dilution of the horseradish

peroxidase-conjugated goat anti-mouse IgG antibody.

Then the membranes were washed again and visual-

ized with diaminobenzidine (DAB).

Chromosome analysis

Targeted cells (Prnp-/-) were cultured in 100 mm

dishes to about 80% confluence and arrested at

metaphase (M) by adding colecmid (Sigma) to the

culture at a final concentration of 0.5 lg/ml. After

1 h, the cells were collected and treated with

hypotonic KCl (0.075 M) for 15 min at 37�C. The

cells were then fixed in acetic methanol (vol/

vol = 1:3), and drops of cell suspension were spread

on clean microscopic slides. The chromosomes were

stained with 5% Giemsa for 10 min. The numbers of

well spread chromosomes within a clear cell bound-

ary were counted under a light microscope at 1,0009

magnification under oil.

Embryonic cloning

The cloned goat embryos were produced by nuclear

transfer as described previously (Zou et al. 2002)

with slight modification. In brief, the healthy targeted

cells (Prnp-/-) with normal karyotypes were treated

with starved medium and then introduced into the

perivitelline of enucleated oocytes with a beveled

pipette, subsequently, the reconstructed oocytes were

electrically activated and cultured in oviducts of

temporary recipients. The morulae and blastocytes

from reconstructed embryos cultured in vivo for

5 days were surgically transferred into uteri of the

synchronized final recipients. At day 35, the surro-

gates were scanned with a B-ultra-sound scanner to

identify pregnant goats which were singled out and

observed closely until they gave birth.

All animal work was done following a protocol

approved by Shanghai Municipal Experimental Ani-

mal Committee.

Fig. 1 Diagrams of the targeted allele A, allele B, second-

round targeting vector GTPrPpuro and targeted allele B. The

black box represents the coding sequence (CDS) of Prnp, the

open boxes represent neo-pA and puro-pA cassettes. PCR

primers are indicated in the targeted Prnp locus and the RT-

PCR primers are indicted in wild type Prnp locus. The

expected size of PCR and RT-PCR products are also shown in

the maps
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Genomic PCR analysis of cloned embryo

Genomic DNA was extracted from the tissue of

cloned goat embryo using FlexiGene DNA kit

(QIAGEN) following the manufacturer’s instruc-

tions. PCR analysis was carried out using primers

P1 and P4 to detect the genotypes of cloned

embryo.

Results

Construction of the promoter-less targeting vector

GTPrPpuro

The Prnp is expressed in goat skin fibroblasts, it is

also possible to enrich for homologous recombination

events using a promoter-trap strategy as in fetal

fibroblasts.

In attempting to target the allele B, there is the

possibility that the second targeting vector will

undergo homologous recombination with the first

integrated targeting vector GTPrP (Yu et al. 2006),

resulting in replacement of the knockout vector in

allele A rather than disruption of the allele B. Two

fragments including the 50 and 30 homologous arm

of the first targeting vector GTPrP were amplified

from Prnp allele A of GSF3-1, the analogous

fragments were also amplified from allele B. These

fragments were analyzed and compared. The results

indicated that the allele A and allele B of Prnp

have 2% discrepancies in the homologous arms. To

targeting the allele B as we expected, the targeting

vector GTPrPpuro in which the homologous arms

were isogenic to allele B was constructed by

inserting the puro-pA directly adjacent to the

initiation codon of Prnp. If homologous recombi-

nation occurs between GTPrPpuro vector and allele

B, a 23 bp coding region followed the initiation

codon will be deleted and replaced by the 0.9 kb

puro-pA cassette (Fig. 1). But if the recombination

occurs in allele A, the fist targeting vector GTPrP

will be replaced by the second-round targeting

vector GTPrPpuro. The same as the first vector

GTPrP, the GtPrPpuro also retained the splice

acceptor site of exon 3 to avoid causing severe

ataxia and Purkinje cell loss in aged animal (Moore

et al. 1999; Rossi et al. 2001).

Targeting of the allele B of Prnp with GTPrPpuro

vector

Linearized GTPrPpuro vector was delivered into

passage 4 GSF3-1 fibroblasts by electroporation.

After Puromycin selection for 9–10 days, the drug-

resistant colonies were isolated using cloning ring.

Puromycin-resistant colonies were first screened by

PCR using P1/P4 to detect targeted events. Of 204

colonies analyzed by PCR using a forward primer,

P1, that is located upstream of the 50 homologous arm

and a reverse primer, P4, that is located within the 30

homologous arm, five colonies (2.5%) were found to

have targeted allele B to produce cells with both

alleles of Prnp be disrupted (Prnp-/-), as determined

by the presence of two bands of the expected sizes: a

3.5 kb band from the first targeted allele A and a

3.7 kb band from the second targeted allele B

(Fig. 2a). Other five colonies (2.5%) were found to

have replaced the first targeting vector in allele A as

determined by the presence of two bands: a 2.8 kb

band from the normal Prnp locus in allele B and a

3.7 kb band from the replaced allele A (Fig. 2a;

Table 1). These results indicated that the vector

GTPrPpuro had no bias on targeting efficiency for

allele A and allele B of Prnp though it was isogenic

to allele B.

To further confirm the successful targeting events,

two additional independent PCRs were carried out in

the targeted colonies. The results were as expected

(Fig. 2b, c). In addition, the 3.0 kb PCR products

generated with P1/P3 and the 6.5 kb PCR products

generated with P2/P5 from positive colonies were

sequenced and the results were also consistent with our

expectation (Fig. 3). These results firmly indicated the

targeting events by homologous recombination had

been occurred between the targeting vector

GTPrPpuro and Prnp locus in GSF3-1. We success-

fully targeted a gene in adult somatic cells and obtained

a cell line with both alleles of Prnp disruption.

Functional disruption of Prnp expression

in skin fibroblasts

To evaluate the functional disruption of Prnp gene in

fibroblasts, RT-PCR was carried out to detect the

mRNA level of Prnp in Prnp?/?, Prnp?/-, and

Prnp-/- goat skin fibroblasts. Primers P6 and P7 are
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located in the exon 3 of Prnp. Amplification with P6

and P7 generated a 446 bp fragment indicated the

expression of the wild type allele of Prnp in Prnp?/?

and Prnp?/- fibroblasts. No fragment was generated

in Prnp-/- fibroblasts in which both alleles of Prnp

had been disrupted by insertion of neo-pA and puro-

pA cassette (Fig. 4). These results indicted that the

transcription of Prnp had been functionally disrupted

in skin fibroblasts.

Western blot was also performed on Prnp?/?,

Prnp?/-, and Prnp-/- goat skin fibroblasts using an

anti-PrP monoclonal antibody 4C6 to confirm the

functional inactivation of Prnp. PrP-specific bands

(approximately 35 kDa) were detected from both

Prnp?/? and Prnp?/- skin fibroblasts, but no band

was observed in Prnp-/- skin fibroblasts (Fig. 5).

These results clearly demonstrated that the expression

of Prnp was functionally disrupted in goat skin

fibroblasts.

Production of Prnp-/- embryo by nuclear transfer

The healthy No. 19 targeted skin fibroblasts

(Prnp-/-) with normal karyotype (data not shown)

were used as nuclear donor for reconstructing

embryos with enucleated oocytes. After nuclear

transfer, a total of 57 (40.1%) morulae or blastocytes

were transferred to 31 recipients, which produced

7 (22.6%) pregnancies at day 35. But unfortunately,

all pregnancies aborted subsequently with only 1 of

the fetuses recovered at day 73 of gestation (Table 2).

Genomic DNA analysis by PCR using primers P1 and

P4 was carried out to detect the genotype of this

cloned embryo, the results show that this aborted

fetus was Prnp-/-, which was consistent with the

donor cell No. 19 colony (Fig. 6).

Discussion

By second-round gene targeting, we successfully

targeted the wild type allele of Prnp in primary

Prnp?/- skin fibroblasts using a promoter-less vector

GTPrPpuro. The targeting modification in adult

somatic cells may have wider application, because

the adult skin fibroblasts are more convenient than

fetal fibroblasts to obtain and have no ethical issues.

In contrast to the gene targeting in adult rhesus

macaque fibroblasts (Meehan et al. 2008), the

primary adult goat fibroblasts without transfection

of hTERT expression cassette could be cultured

in vitro long enough to complete gene targeting

Fig. 2 PCR analysis of Puromycin-resistant colonies. Colony

numbers are indicated above each lane. The PCR primers are (a)

P1/P4, (b) P1/P3, (c) P2/P5. The position of primers are indicated

in Fig. 1. No. 19 and No. 20 colonies were Prnp-/- colonies as

the presence of a 3.5 kb and a 3.7 kb bands amplified by P1/P4, a

3.0 kb band amplified by P1/P3, and a 6.5 kb band amplified by

P2/P5. No. 21, No. 22 colonies were untargeted colonies. No. 23

colony was replaced colony as the presence of a 2.8 kb and a

3.7 kb bands amplified by P1/P4. GSF3-1 was untransfected goat

skin fibroblast. M: 1 kb DNA ladder
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procedures, and the homologous recombination could

be successfully achieved without S-phase synchroni-

zation or adding SV 40 enhancer element to the

targeting vector in our experiments. Our research also

indicated that multiple genetic modifications could be

accomplished by multi-round gene targeting in

primary adult somatic cells.

To specifically target the allele B of Prnp, we

constructed a second targeting vector in which the

homologous arms were isogenic to allele B, which

has 2% discrepancies to allele A in this location. But

the results indicated that there were no bias on the

Table 1 Efficiency of gene targeting of Prnp in goat skin fibroblast GSF3-1

Total

fibroblasts

Puromycin

resistant colonies

Total targeting

events in allele A

Total targeting

events in allele B

Mixed

coloniesa
Senesced

coloniesb
Targeted colonies

suitable for NTc

1 9 107 204 5 (2.5%) 5 (2.5%) 5 2 1

a Colonies were scored as mixed when all 3 bands (2.8 kb, 3.5 kb, 3.7 kb) had been amplified by PCR using P1/P4
b Colonies were scored as senesced when the cell numbers could not be seen to increase after 7 days
c The other two pure and unsenesced colonies were targeted in allele A

Fig. 3 Sequencing analysis of the targeted allele. (a) The

sequences of the connection between the 50 homologous arm of

GTPrPpuro and Prnp locus. (b) The sequences of the

connection between the 30 homologous arm of GTPrPpuro

and Prnp locus. The results indicated successful homologous

recombination between the targeting vector GTPrPpuro and

Prnp locus

Fig. 4 RT-PCR analysis of Prnp?/?, Prnp?/-, and Prnp-/-

goat skin fibroblasts. By the presence or absence of expected

size of RT-PCR products, Prnp transcription were observed in

Prnp?/? and Prnp?/- fibroblasts but not in Prnp-/- goat skin

fibroblast with both alleles be disrupted. b-actin was used for

control to monitor template amounts

Fig. 5 Western blot analysis of Prnp?/?, Prnp?/-, and

Prnp-/- goat skin fibroblasts. The absence of PrP-specific band

in Prnp-/- goat skin fibroblasts indicated the functional

disruption of Prnp expression in goat skin fibroblasts. The

anti-actin antibody was used to ensure that each lane contained

an equal amount of total protein
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targeting efficiency between the allele A and allele B

of Prnp (1:1) using this vector. Our data, together

with others (Sedivy et al. 1999; Kuroiwa et al. 2004),

supported a postulation that the isogenicity does not

significantly influence the efficiency of homologous

recombination in some gene locus in goat skin

fibroblast.

Although we have not obtained live-born Prnp-/-

goats by second-round gene targeting and nuclear

transfer, we did not expect this failure as a direct

result of the gene disruption of Prnp because three

Prnp-/- goats obtained through breeding strategy

remained healthy up to 5 months of age (data not

shown). The aborted cloned fetus had similar abnor-

malities as other nuclear transfer experiments with

untransfected cells in our laboratory. And the devel-

opment rates at different stages of the animal cloning

procedure were also similar with other experiments

(Yu et al. 2006). So we attributed this result to the

inherently low efficiency of somatic cell cloning

technology (Wilmut et al. 1997).

All the Prnp-/- goats obtained from breeding

strategy have remained healthy for at least 5 months

without showing obvious abnormalities, this indi-

cated that ‘‘loss of function’’ of goat PrPc is unlikely

in itself to be significant in the pathogenesis of

scrapie and that ablation of the normal cellular prion

protein PrPc function does not adversely affect the

normal goat development. Therefore, our research

supplied more evidence supporting a general hypoth-

esis that PrPc function is not vital for normal animal

development (Tremblay et al. 1998; Mallucci et al.

2002). However, detailed characterization of these

goats should be carried out to investigate the

physiological function of PrPc in goats.

The Prnp-/- goats could be a more relevant model

than PrP-deficient mice for elucidating the basic

mechanisms of prion diseases and PrPc functions.

They also could be a better source of a variety of goat-

derived products that have been extensively used in

biotechnology, and be useful for production of prion-

free therapeutic recombinant human protein, tissue and

organs in transgenic goats for biomedical application.
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