
Abstract The production of recombinant pro-

teins in plants is an active area of research and

many different high-value proteins have now been

produced in plants. Tobacco leaves have many

advantages for recombinant protein production

particularly since they allow field production

without seeds, flowers or pollen and therefore

provide for contained production. Despite these

biosafety advantages recombinant protein accu-

mulation in leaves still needs to be improved.

Elastin-like polypeptides are repeats of the amino

acids ‘‘VPGXG’’ that undergo a temperature

dependant phase transition and have utility in the

purification of recombinant proteins but can also

enhance the accumulation of recombinant pro-

teins they are fused to. We have used a 11.3 kDa

elastin-like polypeptide as a fusion partner for

three different target proteins, human interleukin-

10, murine interleukin-4 and the native major

ampullate spidroin protein 2 gene from the spider

Nephila clavipes. In both transient analyses and

stable transformants the concentrations of the

fusion proteins were at least an order of magni-

tude higher for all of the fusion proteins when

compared to the target protein alone. Therefore,

fusions with a small ELP tag can be used to

significantly enhance the accumulation of a range

of different recombinant proteins in plant leaves.

Keywords ELP Æ Fusion protein Æ Molecular

farming Æ Recombinant protein

Introduction

Transgenic plants have considerable potential for

the production of recombinant proteins, particu-

larly because they can reduce costs and offer

virtually unlimited scalability (Giddings et al.

2000). Many different crop platforms have been

used to produce recombinant proteins (Twyman

2004), but because of biosafety concerns the use

of food crops is meeting with increasing criticism

(Fox 2004; Macaulay 2003; Nature Biotechnology

2004; New Scientist 2005). Tobacco leaves are an

attractive alternative to the use of food crops

since tobacco is a non-food crop, which minimizes

regulatory barriers associated with plant re-

combinant protein production by eliminating the

risk of entry into the food chain (Menassa et al.

2001). The leaves are harvested before flowering,

significantly reducing the potential for gene

leakage into the environment through pollen or

seed dispersal. Unlike seeds or tubers, tobacco

leaves are perishable and will not persist in the
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environment. While tobacco is inherently biosafe

the accumulation of some recombinant proteins

in tobacco leaves can be low (Rymerson et al.

2002), often several orders of magnitude below

the 1% of total soluble protein economic thresh-

old proposed by Kusnadi et al. (1997). Therefore,

improvements in recombinant protein accumula-

tion in tobacco leaves are necessary. The reasons

why a specific recombinant protein does not

accumulate are numerous and many efforts have

been made in tobacco and other species to opti-

mize transcription, translation, and intra-cellular

targeting (Richter et al. 2000; Sojikul et al. 2003)

but none so far offer the magnitude of increase

really needed. Chloroplasts are a potential solu-

tion and can be engineered to produce very large

amounts of recombinant protein (Staub et al.

2000), but issues related to post-translational

processing and assembly of complex proteins are

significant so the system cannot be used with all

possible protein candidates. There are already

effective methods of improving recombinant

protein accumulation in seeds (De Jaeger et al.

2002; Scheller et al. 2006), but seeds present sig-

nificant biosafety challenges even in non-food

platforms. Given that no complete platform is yet

available, methods to improve leaf-based re-

combinant protein production are worthy of

exploration.

Most common fusion proteins in use today

were originally conceived as aids to isolation and

purification, but some were also shown to en-

hance recombinant protein accumulation. Fusion

tags have been used in various fermentation

based production systems in order to enhance

protein solubility (maltose-binding protein

(MBP) and N-utilizing substance A (NusA)),

facilitate detection (c-myc tag) and purification

(poly-histidine, glutathione-S-transferase (GST))

(Terpe 2003). Early attempts to use a thioredoxin

fusion to increase accumulation of recombinant

antibodies in tobacco leaves were not successful,

but GST-antibody fusions did accumulate to

slightly higher levels than controls (Spiegel et al.

1999). Hondred et al. (1999) showed that ubiqu-

itin-GUS C-terminal fusions accumulated in

transgenic tobacco leaves at concentrations over

four times higher than controls, but many bio-

pharmaceuticals are secreted proteins and would

not necessarily lend themselves to a ubiquitin

based fusion system. Mainieri et al. (2004)

showed that fusions with domains from zein, a

seed storage protein from corn, formed protein

bodies in the ER and more interestingly accu-

mulated to seven times higher concentrations

than the target protein with a KDEL ER locali-

zation signal. Recently Obregon et al. (2005) re-

ported that a fusion between the HIV-1 antigen

and human p24-IgA increased accumulation 13-

fold relative to the antigen alone. While it is clear

that certain fusions can improve accumulation,

exactly how the carrier increases passenger pro-

tein accumulation in plants is not completely

understood. In bacteria the carrier protein may

act as a stabilizing agent, forcing the fusion pro-

tein through the chaperone pathway in the con-

text of the carrier, which promotes proper folding

and stability of the target (Douette et al. 2005).

Similarly when zeolin, a fusion between two seed

storage proteins, is expressed in tobacco leaves,

the aromatic/hydrophobic amino acids in the c-

zein carrier interact with the chaperone BiP,

which imparts stability and enhances accumula-

tion of the fusion (Mainieri et al. 2004).

Elastin-like polypeptides are synthetic proteins

made from pentapeptide repeats of the amino

acids ‘VPGXG’ that occur in all mammalian

elastin proteins (Raju and Anwar 1987). In its

native state elastin co-occurs with collagen and is

the major matrix protein of large arteries, lung

tissue, intestines and skin where it imparts

extensibility and elastic recoil on the tissue. Aside

from interest in elastin as a biomaterial, elastin-

like polypeptides (ELP) can be used as thermally

responsive tags for the temperature based non-

chromatographic separation of recombinant pro-

teins (Meyer and Chilkoti 1999). Recently,

Scheller et al. (2006) showed that a 100 mer ELP

tag increased the accumulation of a scFv passen-

ger protein by up to 40 times in tobacco seeds.

While large ELP tags have utility in the purifi-

cation of proteins and a positive impact on accu-

mulation they can also make up a very large

proportion of the total recombinant protein and

as such reduce yield of target protein. We used a

small 27 mer (~11.3 kDa) ELP-tag with three

different target proteins in an effort to minimize

tag size and to determine the range of possible
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target proteins that could be used with ELP. The

target proteins were: human interleukin-10 (IL10;

Menassa et al. 2001), murine interleukin-4 (IL4;

Ma et al. 2004) and the native major ampullate

spidroin protein 2 (MaSp2; Menassa et al. 2004)

gene from the spider Nephila clavipes. IL10 and

IL4 are potential therapeutic agents and spider

silk is a high strength biofibre with many potential

industrial and medical applications. Although we

have already shown that these target proteins can

be produced in plants and that the two cytokines

are biologically active, the concentration of all

three proteins in tobacco leaves can be rather low.

So our interest was to determine whether ELPs

solubility and stability could be used to improve

plant recombinant protein accumulation, instead

of its use as a purification tool. In this study we

demonstrate that our ELP tag dramatically im-

proves the accumulation of the three very differ-

ent target proteins in tobacco leaves. It is also

possible that our results could be part of a more

generalized system to improve recombinant pro-

tein accumulation in leaves.

Materials and methods

Design and construction of the ELP-tag

The complete synthetic ELP sequence was first

codon-optimized to remove cryptic splice sites

and rare codons. The resulting sequence was then

used to design eight overlapping oligomers, which

also included 5¢ BamHI and 3¢ EcoRI restriction

enzyme sites (Table 1). The Roche Expand Long

Template PCR System was used to sequentially

assemble the eight oligomers into a single nucle-

otide sequence. Reactions contained 100 pM of

each oligomer, 350 lM dNTP’s, and 1 · PCR

buffer containing 1.75 mM MgCl2, and sterile

water to bring the reaction volume to 50 ll.

Oligomers were denatured at 94�C for 1 min. The

temperature was then ramped down to 60�C over

35 min, and held for an additional five minutes.

Five units of Expand DNA polymerase (Roche)

was then added to the reaction. Temperature was

ramped up to 68�C over 5 min. Extension was

continued at 68�C for an additional 2 h. This

reaction with oligomers 1 and 2 resulted in the

formation of the central 114 base pair double-

stranded template, which was gel purified using

standard methods. Oligomers 3 and 4 were added

onto this template using PCR and 200–250 ng of

template DNA from the previous step. This

reaction resulted in a new 237 base pair DNA

fragment. The final PCR reaction was conducted

adding the other four oligomers to this central

template and the reaction was subjected to gel

electrophoresis. A 400–500 bp fragment was

excised from the gel, purified and then cloned into

pBS KS+. The fragment was fully sequenced

using an ABI 3100 capillary DNA Sequencer

and the 420 bp shown to code for a 27 mer of

the VPGVG sequence, which consisted of 17

Table 1 The 5¢ to 3¢ sequence of oligomers used to synthesize the elastin like polypeptide tag

Oligo 5¢ to 3¢ Primer sequence

1 GAGTACCTGGCGTGGGTGTACCTGGTGTTGGTGTCCCAGGAGTGGGAGTTCCTGGAGTTG-
GAGTCCCTGGAGTCGGAG

2 CTCCGGGTACACCAGGCACGCCTACACCGGGTACACCCACTCCTGGCACTCCGACTCC-
AGGGACTCCAACTCCAGG

3 CCAGGAGTCGGAGTCCCCGGAGTAGGAGTTCCAGGGGTGGGAGTTCCAGGAGTAGGAG-
TACCTGGCGTGGGTGTACCTGGT

4 AGGGACACCGACTCCGGGCACCCCCACACCTGGAACCCCTACGCCGGGCACTCCAACTCC-
GGGTACACCAGGCACGCCTACAC

5 GTACCGGGTGTCGGAGTGCCTGGCGTAGGGGTTCCGGGAGTGGGTGTCCCAGGTGTCGGCGTA-
CCAGGAGTCGGAGTCCCC

6 CGGGGACCCCCACACCAGGTACTCCAACACCCGGCACGCCGACTCCTGGAACCCCTACACCA-
GGGACACCGACTCCGGG

7 GGCGAATTCATGGTTCCAGGGGTAGGTGTCCCTGGTGTCGGTGTACCGGGTGTCGGAGTGC
8 GCCGGATCCTTAGCCGACACCAGGCACCCCTACTCCGGGGACCCCCACACCAG
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pentamer repeats linked by the sequence VPG

and flanked by 10 more pentamer repeats. The

tag had a predicted molecular weight of 11.3 kDa.

Design and construction of plant expression

vectors

In order to assemble the IL10 and IL4 expression

constructs the TEV protease site was first added

to the 5¢ end, and a KDEL and EcoRI restriction

enzyme site were added to the 3¢ end of the

synthetic ELP sequence using PCR. The IL4 and

IL10 coding sequences were then amplified with a

5¢ primer that included 20 bp of the 3¢ end of the

Pr1 b (Matsuoka et al. 1987) secretory signal and

a 3¢ primer that included the 21 bp of the TEV

protease recognition sequence (Smith and Ko-

horn 1991). The tCUP translational enhancer

(Wu et al. 2001) and Pr1 b signal peptide se-

quences were amplified with primers that incor-

porated a BamHI restriction enzyme site at the 5¢
end and 20 bp of the 5¢ end of either the IL4 or

the IL10 coding sequence at the 3¢ end. To pro-

duce the IL10 and IL4 control constructs with a

HIS-tag, fragments were amplified with a 3¢ pri-

mer that incorporated the HIS tag, KDEL and an

EcoRI restriction enzyme site. The components

of the expression constructs were sequentially

assembled using homology overlap extension,

with the Expand Long Template PCR System

(Roche) (Horton et al. 1989). MaSp2-ELP was

constructed by adding the TEV protease cleavage

site sequence to the 3¢ end of MaSp2 by PCR

(Menassa et al. 2004). Homology overlap exten-

sion and a 52�C annealing temperature was used

to add ELP-KDEL-EcoRI to the 3¢ end of the

MaSp2-TEV fragment. The MaSp2 control

construct was used by Menassa et al. 2004 and had

no HIS-tag. Each fragment was then digested

with BamHI and EcoRI and cloned into pBS KS+

for sequencing and the pCaMterX binary vector

for plant transformation. The genes were under

the control of CaMV35S promoter with dupli-

cated enhancers (35S · 2; Kay et al. 1987) and

nopaline synthase (nos) terminator. The expres-

sion constructs were transformed by electropo-

ration into the Agrobacterium tumefaciens strain

EHA105.

ELP expression in Escherichia coli

A protein expression construct was made for

bacterial expression of ELP for antibody produc-

tion. ELP was amplified with primers that incor-

porated a 5¢ NcoI site and the amplification

product digested with NcoI and EcoRI and then

cloned into pET30 b, in frame with the start site

and a N-terminal HIS tag. It was then transformed

by electroporation into E. coli strain BL21 (DE3).

Expression of recombinant protein was conducted

according to manufacturers instructions (pET

System Manual, Novagen) and extracts subjected

to immobilized metal affinity chromatography

using the chelating Sepharose Fast Flow system

(Amersham Biosciences) to separate the HIS-

ELP from the remaining bacterial proteins in the

extract. Purification was conducted using a gravity

flow column as per supplier instructions. The HIS-

ELP protein bound to the Ni2+-sepharose was

eluted using 250 mM imidazole and then used for

the generation of polyclonal antibodies. All ani-

mal experiments were conducted by the Canadian

Food Inspection Agency in accordance with

approved animal care protocols.

Agrobacterium-mediated transient expression

assays

Transient assays were performed using tobacco

plants that were 10–16 weeks old and the various

Agrobacterium lines containing each of the

expression constructs. The Agrobacteria were

prepared for leaf infiltration as described in Ka-

pila et al. (1997). Syringe injections were con-

ducted using a method similar to that described in

Yang et al. (2000). Briefly, Infiltrations were

conducted using a 1 ml plastic syringe to inject

the Agrobacterium suspension into the abaxial

surface of the leaf just under the epidermis. Three

or four leaf panels each from a different leaf from

the same plant were injected with each construct.

Following infiltration the tobacco plants were

maintained in a controlled environment chamber

at 20�C, with 16 h daylength for 4 days and the

individual infiltrated panels were collected and

analysed separately. The average of the 3 or 4 leaf

panels were then used to represent the concen-

tration of a given recombinant protein.
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Stable transformation of tobacco with the six

expression constructs

The six plant expression constructs (pIL4-HIS,

pIL4-ELP, pIL10-HIS, pIL10-ELP, MaSp2 and

MaSp2-ELP) were introduced into the low alka-

loid tobacco (Nicotiana tabacum) cultivar ‘‘81V9’’

(Menassa et al. 2001) using Agrobacterium-med-

iated transformation of leaf discs. Primary trans-

formants were grown in a greenhouse and the

leaves harvested when the plants had 10–15

leaves. Three representative leaves (young, med-

ium and mature leaves) were collected from each

plant and stored at –75�C for later analyses.

Subsamples from the individual leaves were taken

and the average of the three leaves used to rep-

resent the concentration of recombinant protein

in the whole plant.

Plant protein extraction

Leaf tissue was weighed and homogenized in 4

volumes of extraction buffer (phosphate buffered

saline, pH7.4, 0.05% Tween 20 (v/v), 2% (w/v)

polyvinylpolypyrrolidone, 100 mM ascorbic acid,

1 mM phenylmethylsulfonyl fluoride, and 1 lg/ml

leupeptin). The extract was clarified by centrifu-

gation at 13,000 · g for 15 min at 4�C. Total sol-

uble protein concentrations were determined by

dye binding.

Enzyme linked immunosorbent assay

(ELISA) for quantification of IL4 and IL10

The levels of IL4 and IL10 proteins present in

protein extracts and purified protein fractions

were quantified by comparing several protein

sample dilutions to known standard concentra-

tions of recombinant IL10 and IL4 using an

ELISA. The ELISA assay specifically detects IL4

and IL10 using purified monoclonal rat anti-IL4

or IL10 capture antibodies, purified monoclonal

rat biotinylated anti-IL4 or IL10 detection anti-

bodies and streptavidin-HRP conjugate (BD

PharMingen). ELISAs were performed according

to the cytokine ELISA protocol provided with the

antibodies by the manufacturer (BD PharMin-

gen).

Immunoblot analysis/Western blot analysis

Proteins from one-dimensional PAGE gels were

transferred to a Sequi-BlotTM PVDF (Bio-Rad)

or nitrocellulose membrane in a semi-dry elec-

troblotting apparatus (Bio-Rad) using transfer

buffer (48 mM Tris/39 mM glycine) containing

20% methanol (v/v). Membranes were stained

after protein transfer with 0.02% Ponceau-S (w/v)

in 1% acetic acid solution (v/v) to visualize

transferred proteins and standards. Membranes

were blocked with 10% (w/v) non-fat milk pow-

der in Tris Buffered Saline pH 7.5 (TBS) over-

night. Membranes were then probed with

appropriate primary antibodies diluted in 3%

BSA (w/v); biotinylated polyclonal goat anti-IL4

(1:500, R&D Systems), biotinylated polyclonal

goat anti-IL10 (1:1000, R&D Systems), mouse

anti-HIS (1:5000, Sigma), rabbit anti-MaSp2

(1:1000, Nexia) or rabbit antiserum containing

anti-ELP (1:5000, see antibody production sec-

tion), for 1 h at room temp. After membranes

were washed twice with TBS, secondary anti-

bodies were applied diluted in 5% (w/v) non-fat

milk powder/TBS; biotinylated primary antibod-

ies were incubated with either Streptavidin-HRP

(1:3000, Genezyme) or rat anti-goat IgG-conju-

gated with HRP (1:5000, Sigma), primary anti-

HIS antibody was incubated with goat anti-mouse

IgG-conjugated with HRP (1:10,000, Sigma), and

the MaSp2 and ELP antibodies were followed by

incubation with goat anti-rabbit IgG-conjugated

with HRP (1:4000, Sigma). Blots were washed in

TBS four times and detected using ECL detection

reagents (Amersham Biosciences) as per the

suppliers protocol.

Results and discussion

Construction of the ELP tag and production

of anti-ELP antibodies

The temperature at which a given ELP protein

will desolvate is directly related to its size, such

that large proteins have lower desolvation tem-

peratures. Since most studies that have been

conducted with ELP were focused on protein
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purification and they used large ELP tags, in the

range of 30–65 kDa, so that the transition tem-

peratures would be between 30 and 39�C (Sti-

borva et al. 2003; Kostal et al. 2003; Shimazu et al.

2003). However, Meyer and Chilkoti (1999) re-

ported that yields of recombinant protein in

Escherichia coli were inversely proportional to

the size of the ELP tag. This may help to explain

the results of Guda et al. (2000) who expressed an

synthetic ELP gene with 121 repeats (51.7 kDa)

in tobacco chloroplasts and found that ELP pro-

tein did not accumulate to very high levels. They

speculated that the low levels of ELP accumula-

tion were likely a consequence of the unusually

large number of the amino acids glycine and

proline required to synthesize such a repetitive

protein leading either to tRNA starvation or a

shortage of specific amino acids. Since low accu-

mulation was already an issue with our three

target proteins and the intent of the fusion was

the enhancement of protein accumulation we

chose a small tag so as not to create a disadvan-

tage right at the outset. The tag was engineered

using oligonucleotides and a synthetic DNA se-

quence that minimized the use of rare codons and

that was kept variable to avoid sequence repeti-

tion. The result was a 420 bp sequence, with start

and stop codons, that coded for a 27 mer

11.3 kDa ELP peptide.

Expression of the ELP peptide with a HIS-tag

in E. coli, followed by SDS-PAGE and Western

analysis of protein extracts using a HIS tag spe-

cific antibody, showed a band similar in size to

what we expected (Fig. 1) so it was reasonable to

conclude that the complete peptide was being

synthesized. Recombinant ELP was purified from

a total protein extract from induced bacterial cells

using Immobilized Metal Affinity Chromatogra-

phy and, following elution with imidazole two

fractions were used for antibody production in

rabbits. The resulting polyclonal serum was highly

specific to ELP.

We then constructed plant expression vectors

for each of the proteins we were interested in:

IL10, IL4 and MaSp2. In the IL4 and IL10 vectors

the target gene was fused to HIS, in another

version the IL4, IL10 genes were fused to ELP. In

Fig. 1 Expression of HIS-ELP in E. coli. (A) SDS-PAGE
analysis and Coomassie staining of an uninduced total
protein extract (lane 1), induced total insoluble protein
(lane 2) and induced total soluble protein (lane 3). (B)
Western analysis using an anti-hexahistidine antibody of
total protein extracts from E. coli before (lane 1) and after
(lane 2) induction with IPTG. Arrows indicate the position
of the recombinant ELP
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both the HIS and ELP vectors the target protein

was separated from the tag by TEV protease site

to allow the ELP and HIS tags to be separated

from the target protein upon purification. A ear-

lier version of a MaSp2 vector that had no HIS

tag was used for the MaSp2-ELP comparison. All

six vectors were used in both transient expression

analysis and to create stable transgenic plants

(Fig. 2).

Transient plant expression of the fusion

constructs

The temporal decay in transgene expression in

transient assays has led to the general conclusion

that expression is independent of the position

effects normally observed with stable integration

of transgenes into plant genomes (Kapila et al.

1997; Janssen and Gardner 1990). Transient

analysis is therefore a good indicator of the effect

that an ELP tag has on recombinant protein

accumulation, without being confounded by vari-

ability in gene expression. ELISA analysis of leaf

tissue from transient assays showed that the IL4-

ELP combination accumulated 19-times more

recombinant protein than IL4-HIS (Fig. 3A).

ELISA analysis also showed that IL10-ELP pro-

tein concentrations were approximately 15 times

higher than IL10-HIS (Fig. 3B). The concentra-

tion of MaSp2 spider silk protein was estimated

by Western blot using dilutions of known

concentrations of MaSp2 protein and the con-

centration of MaSp2-ELP was found to be

approximately 100-fold higher than MaSp2 alone

(Fig. 4). Since the ELP fusion proteins were

quantified relative to unfused standard proteins,

the amount of total fusion protein is actually

under estimated. For IL4-ELP, IL10-ELP and

MaSp2-ELP fusions, the ELP tag makes up 37, 33

and 17% of each fusion protein. Transient assays

clearly supported our hypothesis that an ELP fu-

sion tag can be used with a range of protein targets

to substantially increase their accumulation.

Stable transgenic plants expressing the fusion

proteins

Although production systems for recombinant

protein production in plants that rely on transient

expression have been developed, the majority of

the efforts to date have focused on systems that

rely on stable transformation. In addition, the

results of transient experiments while instructive

do not always correlate with those involving sta-

ble transformations (Maximova et al. 1998). In

that context it is important to examine the impact

of ELP carrier proteins on recombinant protein

accumulation in stable transgenic plants as well.

To further examine the effect of the ELP fusion

on protein accumulation in leaf tissue from plants

transformed with the IL4 and IL10 constructs, an

ELISA analysis was used. From a population of

13 IL4-HIS and 17 IL4-ELP primary transgenic

plants, the five from each group with the highest

IL4 protein levels were compared. As expected

the individual primary transformants varied in

terms of recombinant protein concentration and

so the mean of the top five transformants used to

demonstrate the difference between the HIS and

ELP fusions. IL4 protein levels in the five best

IL4-ELP plants were 85-fold higher than the

concentration of IL4 in the top five IL4-HIS

transgenic plants (Fig. 5A). Similarly, from a

population of six IL10-HIS and 22 IL10-ELP

transgenic plants, the best five IL10-ELP plants

had IL10 concentrations that were 90-fold higher

than the IL10-HIS plants (Fig. 5B). MaSp2 pro-

tein concentration from stable MaSp2-ELP

transgenic plants was estimated to be 60 times

higher than MaSp2 alone (Fig. 5C). A hexahisti-

dine tag and a large 90 mer (36 kDa) ELP tag,

each with three different carrier proteins were

expressed in E. coli and compared by Trabbic-

Carlson et al. (2004) who found the two tags gave

similar recombinant protein yields. Scheller et al.

(2004) expressed a 100 mer ELP-spider silk fu-

sion in tobacco leaves, although they did not

compare yields to controls with no ELP, the

accumulation of spider silk was within the same

range or perhaps slightly higher (0.5–4%) than had

been reported previously (1–2%) for synthetic

spider silk genes not fused to ELP (Scheller et al.

2001). Conversely, our small ELP tag appears to

have a highly significant impact on protein accu-

mulation in tobacco leaves, consistent with earlier

observations in bacteria where yields of ELP-thi-

oredoxin fusions were about 60% higher for a

30 mer tag when compared to a 180 mer
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(Meyer and Chilkoti 1999). In addition to its im-

pact on accumulation, smaller tags make up a les-

ser portion of the fusion protein mass and as such

can have a positive impact on yield simply because

the target protein makes up a larger proportion of

the polypeptide (Trabbic-Carlson et al. 2004).

ELP is relatively rich in hydrophobic amino

acids and it is possible that BiP, the major ER

chaperone, is interacting with our ELP tag and

preventing non-specific aggregation of the newly

synthesized fusion proteins in a manner similar to

that observed with zeolin (Mainieri et al. 2004).

The second component in our system was ER

localization and we used a KDEL ER localization

signal to keep the target protein in the ER. Since

we already knew from our previous work with

IL10 that a KDEL increases IL10 accumulation

more that 60 times (Menassa et al. 2001) and now

that ELP increases it another 90 times, it may be

that the KDEL and ELP act synergistically to

enhance accumulation. Further experiments with

ELP fused to target proteins without a KDEL will

Fig. 2 Plant expression
constructs for murine
interleukin-4 (IL4),
human interleukin-10
(IL10) or major ampullate
spidroin protein (MaSp2)
with or without a
11.3 kDA elastin like
polypeptide tag

Fig. 3 Accumulation of murine interleukin-4 (A, IL4),
human interleukin-10 (B, IL10) with either a hexahistidine
tag (IL4-HIS, IL10-HIS) or a 11.3 kDA elastin like
polypeptide tag (IL4-ELP, IL10-ELP) following transient
expression by agroinfiltration

Fig. 4 Western analysis showing accumulation of the
major ampullate spidroin protein with a 11.3 kDa elastin
like polypeptide tag (MaSp2-ELP) or without a tag
(MaSp2) following transient expression by agroinfiltration.
Samples were standardized to 20 lg of total soluble
protein and numbers above each lane indicate dilution
factors used for each replicate
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be needed to confirm that possibility. However,

both our transient and stable expression results

suggest that the small ELP tag confers increased

stability to a wide range of proteins and may have

general application in the improvement of re-

combinant protein accumulation in tobacco

leaves. Our results confirm the results of Scheller

et al. (2006) and demonstrate that ELP tags can

significantly enhance recombinant cytokine and

spider silk protein accumulation in leaves.

Protein fidelity

Plants are higher eukaryotes and have been

shown to have a wide range of post-translational

capabilities including biosynthesis, folding, and

assembly of multimeric proteins via disulfide

bridges (Ma et al. 1995; Merle et al. 2002). IL4-

HIS and IL-10-HIS were both purified using

IMAC and their size approximated using Western

analysis and IL4 and IL10 specific antibodies. A

single band of predicted size was observed with

IL10-HIS (Fig. 7A) but two bands were seen with

IL4-HIS (Fig. 6B). IL4 and IL10-specific anti-

bodies were used to purify both IL4-ELP and

IL10-ELP proteins (Figs. 6A, 7B). In this analysis

the IL4-ELP protein also separated into two dis-

tinct bands of approximately 27 and 30 kDa in

size, and IL10-ELP was a single 31.5 kDa band.

Given that recombinant human and equine IL4,

like murine IL4 also have two glycosylation sites

and were reported to be heterogenous, then the

size heterogeneity we observed may be the result

of differential glycosylation of murine IL4 (Le

et al. 1988; Magnuson et al. 1998; Dohmann et al.

2000). However, further experiments will be re-

quired to confirm that the plant IL4 is glycosy-

lated. When Western analysis was conducted with

the same proteins and the ELP specific antibody

the same results were obtained demonstrating

that the ELP tag was intact (data not shown).

Fig. 5 Accumulation of murine interleukin-4 (A, IL4),
human interleukin-10 (B, IL10) or major ampullate
spidroin protein (C, MaSp2) with or without the 11.3
kDA elastin like polypeptide tag in stable transgenic
plants. For IL10 and IL4 the five transgenic plants with the
highest levels of recombinant protein accumulation were
used and for MaSp2 it was the top two plants

Fig. 6 Accumulation of murine interleukin-4 (A, IL4),
human interleukin-10 (B, IL10) or major ampullate
spidroin protein (C, MaSp2) with or without the
11.3 kDA elastin like polypeptide tag in stable
transgenic plants. For IL10 and IL4 the five transgenic
plants with the highest levels of recombinant protein
accumulation were used and for MaSp2 it was the top
two plants
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Interleukin-10 is biologically active only as a non-

covalently associated homodimer. When IL10-

ELP protein extracts were separated by native

PAGE and analyzed by immunoblot with ELP-

specific antibodies, two protein bands were ob-

served, corresponding to dimeric and monomeric

IL10-ELP, respectively (Fig. 7C). Therefore, the

ELP tag is not restricting IL10 dimer formation.

In summary it is clear that the 11.3 kDa ELP

tag, in conjunction with an ER retention signal,

was instrumental in increasing the accumulation

of three quite different target proteins in tobacco

leaves. The application of these results will help

to improve the utility of tobacco leaves for the

production of recombinant proteins. However,

the tag still needs to be optimized. For example, it

remains to be determined just how small an ELP

tag can be used and still enhance protein accu-

mulation. In addition more experiments are

needed to demonstrate if there is an interaction

between ELP and BiP and to quantify the synergy

between ELP and the KDEL.
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