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the brain’s fundamental functional units, and that they play 
this role by sending chemical and electrical signals to one 
another. Neurons, it seems reasonable to infer, must them-
selves be simple information processing devices. This idea 
is old, and has played a fundamental role in the development 
of neuroscience. McCulloch and Pitts began referring to it 
as a law of neural science back in 1943 (McCulloch and 
Pitts 1943).

Despite this, it is not easy to find a straight answer to 
the question: what kind of information do neurons process? 
Philosophers have suggested that, at the most coarse-grained 
level of analysis, there are just two kinds: Shannon informa-
tion, and semantic information (Godfrey-Smith and Sterelny 
2008; Piccinini and Scarantino 2011). A physical signal 
conveys semantic information if it conveys an instruction 
or reports a fact. Human language provides the most obvi-
ous examples of semantic information transmission, but 
semantic information can also be transmitted without the 
use of language. For example, a stop sign and a red traf-
fic light convey the same instruction, but only one of them 
uses language to get the message across. Shannon informa-
tion, which derives from an area of applied mathematics 
called information theory, has less to do with the meanings 
of signs, and more to do with the frequency with which dif-
ferent signal types appear.

When cognitive psychologists talk about information pro-
cessing operations in the brain, they are typically talking 
about a version of semantic information. Cognitive psychol-
ogists are typically interested in understanding how purpose-
ful behavior gets generated by the mental representations of 
the world that are stored in our heads. Mental representa-
tions can transmit both varieties of semantic information 
mentioned above. Perceptual representations function like 
reports about the nature of the perceived environment, while 
motor representations function like instructions to behave 
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1  Introduction

If anything deserves to be called an information process-
ing device, the brain does. Sophisticated behavior requires 
a device that can track and process an enormous amount 
of data. How does the brain manage it? The neuron doc-
trine, first established on the basis of anatomical evidence 
in 1905 by Ramón y Cajal, says that individual neurons are 
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this way or that. However, when we descend to the level of 
a single neuron, and attempt to describe the spiking behavior 
observed at that level, semantic concepts no longer have any 
clear application. Neuroscientists who study the properties 
of individual spike trains tend to talk readily about Shannon 
information, but not about particular instructions or com-
mands that action potentials are meant to convey.

So, at least at first glance, the best answer to the ques-
tion “what kind of information is brain information?” seems 
to have two parts. At a high level of neural organization, 
brain information is semantic, but down at the level of sin-
gle neurons, semantic properties are irrelevant, and the only 
information to speak of is Shannon information. My aim in 
this article is to flesh out this bifurcated view of how infor-
mational concepts apply to the brain and ask whether it is 
justified. The upshot of the discussion is that the bifurcation 
is somewhat less clear than our first glance suggests, and that 
claims about Shannon information at the single neuron level 
are not entirely independent from concerns about semantic 
properties.

2 � Why Action Potentials Do Not Transmit 
Semantic Information

In order to assess the bifurcation view of brain information, 
we need to understand the philosophical rationale behind 
the application of semantic terms. Ordinary language phi-
losophers, inspired by Ryle and Wittgenstein, were the first 
to make the articulation of this rationale a core feature of 
philosophical theory. On their view, semantic properties 
emerge only in contexts in which human agency is at work. 
They argued that terms like “perceive,” “think,” and “pro-
cess information” can only be sensibly applied to rational 
agents. For them, to apply these terms to small neural struc-
tures within the brain is to make a kind of category mis-
take called the “mereological fallacy” (Bennett and Hacker 
2003). Their reasoning can be summarized with the follow-
ing argument: (i) agential language can only be applied to 
persons; (ii) to say that a thing processes information is to 
describe it in agential language; (iii) neurons are not persons; 
(iv) neurons, therefore, cannot be described as information 
processing devices.

Today, most philosophers of mind and language are 
usually happy to reject premise (i), and are, accordingly, 
willing to countenance semantic phenomena in systems far 
simpler than fully rational human persons. Nevertheless, at 
least within naturalistic philosophy, a kernel of the ordinary 
language view has been retained. It can be expressed as a 
necessary condition on the realization of semantic proper-
ties. A physical signal has semantic properties only where 
there is an interest-driven justification for the response it 
engenders. This principle is one of the core ideas behind 

recent work on the evolution of meaning and communica-
tion.1 Since human persons clearly have interests, and since 
they typically respond to perceptual information by behav-
ing in ways that further their interests, their perceptual and 
cognitive states can, according to this principle, justifiably 
be described as signals that transmit semantic information. 
More interestingly, this principle also justifies the use of 
semantic description in very simple organisms. Consider 
quorum sensing. Some bacteria will emit a signaling mole-
cule once they detect that the density of conspecifics has sur-
passed some threshold. If the signal is successfully received 
by neighboring bacteria, it can trigger interesting collective 
behaviors such as the formation of a biofilm (Rutherford and 
Bassler 2012). In this example, the relevant sense of “inter-
est” is evolutionary rather than rational. The formation of the 
biofilm is in the interest of the initial bacterium because it is 
adaptive. It might, for example, allow the bacterial colony 
to remain attached to a surface where it is likely to get con-
tinued access to nutrients.

We now have an initial understanding of a naturalistic 
philosophical rationale behind the description of behavior 
in semantic terms. Given this rationale, we can ask: do spike 
trains carry semantic information? Surprisingly, and despite 
the fact that neurons clearly participate in the generation of 
semantic phenomena, there are at least two good reasons 
to think that they do not themselves exhibit semantic prop-
erties. The first reason is that, unlike bacteria, neurons do 
not have interests in the standard evolutionary sense. Most 
neurons do not undergo mitosis, and therefore cannot form 
anything like cell lineages within the lifetime of an indi-
vidual organism. Because they do not form lineages, they 
are not subject to natural selection. As a result, the notion 
of “evolutionary interests” does not apply to neurons in the 
relatively clear way that it does apply to bacteria. If neurons 
do have interests, it is only in an extremely attenuated sense, 
the usefulness of which is controversial.2

There is, in any case, a more fundamental reason to think 
that spike trains do not carry semantic information: they 
do not have the right kind of causal connection to the envi-
ronment. To see this, consider the strategy for attributing 
semantic content that Daniel Dennett calls “the intentional 
stance” (Dennett 1989). In order to predict the behavior of 
an organism, you treat it as a rational agent. Given your 
knowledge of the organism’s goals and the environment 
in which it is embedded, you formulate a hypothesis about 
which mental content it would make sense for it to have. The 
attribution of content is justified to the extent that it allows 

1  Versions of this idea are supported, for example, in Skyrms (2010), 
Harms (2006), Godfrey-Smith and Martínez (2013), and Calcott and 
Griffiths (2017).
2  For a discussion of this issue, see Chapter 8 of Dennett (2017).
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you to make more efficient and/or more accurate predictions 
about the behavior of the organism.3

The intentional stance will typically provide little justifi-
cation for the ascription of semantic content to a spike train 
because, when we observe the spike train of a single neuron, 
it is typically far from clear exactly which behavioral goal 
it is meant to realize. This is because, as Rosa Cao has elo-
quently demonstrated (Cao 2012), whole - organism behav-
iors are typically generated by a symphony of neural activity 
to which any given neuron makes only a small contribution. 
Most individual spike trains do not reliably cause whole-
organism behaviors that can be interpreted as furthering the 
interests of the organism, and therefore cannot be reasonably 
viewed as sending signals with a particular meaning that is 
derived from their association with that behavior.

In his new book, which includes a lengthy discussion of 
the distinction between Shannon information and semantic 
information, Dennett seems to share Cao’s view. Although 
the intentional stance might be applicable to some extent at 
the coarse-grained level of functional neuroanatomy, such as 
in the discovery that the fusiform face area has the function 
of processing perceptual information about faces, it seems 
inapplicable, given the current state of knowledge, to “the 
incredibly convoluted details of individual neuron connec-
tivity and activity” (Dennett 2017, p. 111).

So we seem to have a clear rationale for attributing 
semantic properties to whole organisms, but no corre-
sponding rationale for attributing semantic properties to the 
behaviors of individual neurons. When viewed as an isolated 
fact, this is not surprising. After all, we attribute all sorts 
of interesting properties to whole organisms that we do not 
attribute to their parts. But the situation does become puz-
zling when we reflect on the widespread use of informational 
terminology at the single neuron level. Open any introduc-
tory neuroscience textbook and you are bound to find some 
version of the the claim that neurons send information to 
one another. Moreover, in the first paragraph of this essay, I 
gave a casual argument in support of the claim that neurons 
are information processing devices. But if the reasoning in 
the past few paragraphs has been sound, and we therefore 
have no rationale for the ascription of semantic properties to 
trains of action potentials, then either that casual argument 
is flawed, or it appeals to a sense of the word “information” 
that is distinct from the more common, semantic sense.

One of the reasons that the concept of Shannon informa-
tion seems useful is that it supplies this distinct sense of 
the term “information.” Shannon information is austere and 

mathematical. It depends on nothing other than the prob-
abilities associated with spike trains, and those probabili-
ties can be estimated by means of direct empirical measure-
ment. And direct empirical measurement, one hopes, does 
not require the application of controversial principles from 
the philosophy of mind! As Shannon and Weaver claimed in 
the opening of their landmark book on information theory, 
“These semantic aspects of communication are irrelevant to 
the engineering problem” (Shannon and Weaver 1949, p. 2). 
But if Shannon information has nothing at all to do with 
semantic information - if it is just a scientifically neutral 
mathematical concept - why bother describing spike trains as 
informational in the first place? Is it just a linguistic accident 
that we use the term “information” to describe these two 
sets of properties? I think the relationship between semantic 
information and Shannon information is more subtle than 
that. To see why, I will now introduce some basic ideas from 
information theory, and then briefly describe how they are 
used in the study of spike trains.

3 � Information Theory and Its Use in Neuroscience

The central quantity in information theory is called entropy. 
Entropy is a measure of how much information is associated 
with a single message (or a series of messages in a chan-
nel). How to capture that idea quantitatively? Intuitively, 
the amount of information in a communication system is 
related to its capacity to reduce uncertainty. If a message is 
highly probable, then one can be fairly certain that it will 
be expressed. If improbable, one has very little certainty 
that it will be expressed. This suggests that the entropy of a 
message should be inversely proportional to its probability. 
Another natural requirement is that the amount of informa-
tion in a sequence of two messages should be the sum of the 
information provided by each individual message. Probabili-
ties combine multiplicatively (the probability of two heads 
in a row is (1 / 2)(1 / 2)). Additivity is imposed by taking the 
logarithm. So, the expression for the entropy of an individual 
message x is the logarithm of the inverse of its probability, 
or log(1 / p(x)). This shows that, on any given occasion, 
the production of a low probability message provides a 
large amount of information. However, since low probabil-
ity messages occur infrequently, they contribute less to the 
average entropy of an information source than do higher 
probability messages. To compute the average entropy of 
an informational source, we therefore weight the entropies 
of individual messages by their probabilities. Summing over 
those weighted entropies yields the average entropy of an 
informational source.

(1)H(X) =
∑

p(x)log2(1∕p(x))

3  Notice that this strategy entails, but is not entailed by, the necessary 
condition for the attribution of semantic properties mentioned above. 
This places Dennett’s approach to semantic information within the 
naturalistic tradition.
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One consequence of this expression is that the more varia-
tion there is in a set of signals, the more entropy there is in 
the source from which they are derived. Imagine I regularly 
report to you the results of the football games that occur at 
my home stadium. Then, we can think of my home stadium 
as an information source. There is probability distribution 
over the possible game outcomes. There is a distinct dis-
tribution over the possible things I might say about those 
outcomes. The term “messages” refers to the outcomes 
themselves. The term “signals” refers to the things I say in 
order to relay the messages.

Message and signal entropies are properties of individual 
components within a communication system. In order for 
the communication system to function well, the signals and 
the messages must be systematically related. The measure 
of that relationship is called the mutual information. If my 
reports to you on the football games deserve to be called 
informative, there must be a correlation between the reports 
and the outcomes themselves. From a mathematical perspec-
tive, mutual information is similar to statistical measures of 
correlation between random variables, except that it scales 
with the entropy (variability) in the source variable. If we 
assume that my reports about the football games are always 
accurate, so that the correlation between signals and mes-
sages is 1, the amount of mutual information in the system 
is equivalent to the initial entropy (variability) in the dis-
tribution of game outcomes. So, if our arrangement is that 
I report to you the final score of each game, the amount of 
mutual information expressed by our communication system 
will be substantially higher than it would have been, had we 
arranged for me to report only the name of the winning team.

We can think about the entropy of the distribution of 
game outcomes as equivalent to your average degree of 
uncertainty about game outcomes. Call that variable H(X). 
To compute the mutual information, we subtract the infor-
mation that you could in principle acquire about the value 
of X, given knowledge of the value of Y. This term can be 
expressed as H(X|Y). The mutual information, therefore, can 
be written as:

Mutual information is measured in bits. But since the mutual 
information between two variables can change over time, the 
quantity of interest in theoretical neuroscience is more often 
the bit rate; that is the number of bits one variable carries 
about another per time unit.

Most of the experimental data on bit rates for individual 
neurons comes from experiments on perceptual neurons. 
The organism is fixed in place, presented with a particular 
class of stimuli, and recordings are made from the neuron 
of interest.

The estimates in Table 1, which are taken from a classic 
review paper, constitute canonical examples. The quantities 

(2)I(X, Y) = H(X) − H(X|Y)

in the first column represent the bits per second transmitted 
by a perceptual neuron under natural stimulus conditions. 
Those in the second represent the average coding efficiency 
of the spike train of that same neuron. The coding efficiency 
is the ratio of the rate in the first column to the default 
entropy of the neuron’s spiking behavior - that is, its behav-
ior in the absence of a characteristic stimulus. The ratio is 
so called because it describes how much of the variance 
in a neuron’s spike train is exploited to carry information 
about changes in a time-dependent stimulus. As the ratio 
approaches one, the neuron is said to approach the physical 
limits on the transmission of information (Rieke et al. 1993; 
Koch et al. 2004).

4 � The Ontological View

So far, I’ve described very briefly how information theoretic 
ideas are used in neuroscience. Now I want to shift focus to a 
related question: what exactly does it mean to say that a neu-
ron transmits Shannon information? In other words, what is 
the empirical content of this claim? Answering this question 
will help us to evaluate the justification for the bifurcation 
view of brain information discussed at the outset.

According to one prominent tradition, to say that a physi-
cal thing carries or expresses Shannon information simply 
means that there is an empirical correlation between it and 
some other physical thing. The empirical correlation view 
is expressed, for example, in the Stanford Encyclopedia of 
Philosophy entry on information in biology. There, Kim 
and Godfrey-Smith say that information is present wherever 
there is contingency and correlation.

For Shannon, anything is a source of information if it 
has a number of alternative states that might be real-
ized on a particular occasion. And any other variable 
carries information about the source if its state is cor-
related with the state of the source (Godfrey-Smith and 
Sterelny 2008).

Table 1   Standard claims about the capacity of perceptual neurons in 
various organisms to transmit information Adapted from Borst and 
Theunissen (1999)

Neural information in response to dynamic stimuli

Animal system Bits/s Coding 
efficiency 
(%)

Frog auditory 133  90
Cricket sensory afferent 294  50
Electric fish p-afferent 200  50
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What is the motivation for this extremely permissive view 
of information? Philosophers interested in the mind and 
brain who have discussed Shannon information have usu-
ally done so in the context of either endorsing or denying 
a proposal to provide a reductive explanation of semantic 
phenomena in terms of raw empirical probabilities. This 
is a long-standing project undertaken first by Fred Dret-
ske (whose ultimate goal was a naturalistic account of 
knowledge), and continued today by Brian Skyrms and 
his followers. In order for that kind of reductive project 
to make sense, the notion of Shannon information can-
not presuppose the existence of semantic properties. Phi-
losophers interested in making progress on this reductive 
project therefore have a reason to conceptualize Shannon 
information in such a way as to ensure that ascribing it 
to a physical system is thoroughly uncontroversial. Given 
this understanding of the concept, Shannon information 
will be instantiated in the relation between a stimulus and 
a perceptual neuron, but it will also be instantiated in the 
relation between any two arbitrarily chosen neurons, pro-
vided that those neurons are not perfectly stochastically 
independent.

This permissive ontological view is not adequate for 
interpreting the scientific content of the claim that a neuron 
carries or transmits Shannon information. Common causes 
and spurious correlations are everywhere. Covariation 
among empirical variables is therefore cheap. Without some 
independently motivated theoretical framework, bare corre-
lation is no aid to understanding how a system works. This 
is especially true in a complex networked system like the 
brain. In such a system, correlation is practically ubiquitous. 
So, if Shannon information is just a fancy term for empiri-
cal correlation, as the ontological view suggests, Shannon 
information is ubiquitous. If Shannon information is ubiqui-
tous, having particularly high rates of Shannon information 
flowing through a system cannot be viewed as a functional 
capacity of the system.

As the appeal to efficiency in Table 1 illustrates, how-
ever, information rates do describe performance capacities. 
To reinforce this idea, consider the design of experiments 
used to evoke the appropriate data. Above, I said that the 
coding efficiency of a neuron is the ratio of its active fir-
ing rate, in the presence of a stimulus, to an information 
theoretic measure of the default variability in the neuron’s 
behavior. Designing an experiment that evokes the relevant 
data requires that we understand both the neuron’s default 
behavior when it is not engaged in a task, as well as its 
behavior when it is optimally active, helping to process the 
kind of stimulus to which it is best attuned. So, if we are 
to correctly estimate the information rate of a perceptual 
neuron, our choice of stimulus matters crucially. In a discus-
sion of information theory as applied to vision in particular, 
Dayan and Abbott say:

The basic assumption is that these receptive fields 
serve to maximize the amount of information that 
the associated neural responses convey about natural 
scenes in the presence of noise. Information theoretic 
analyses are sensitive to the statistical properties of 
the stimuli being represented, so the statistics of 
natural scenes play an important role in these stud-
ies (Dayan and Abbott 2001, p. 135).

So, if we want an accurate estimate of the neuron’s infor-
mation rate, we need to design an experiment in which the 
kind of stimulus we employ corresponds to the biological 
function of the neuron from which we record. The relevant 
notion of function here is the kind that is applicable in 
evolutionary explanations of biological traits, sometimes 
known as etiological functions. A trait has a function in 
this sense if it has played the right sort of fitness-enhanc-
ing causal role in the organism’s ancestral lineage.

This idea is bound to provoke skepticism. If neural 
information rates can only be estimated accurately if the 
researchers know what role the neural signal played in 
the evolutionary history of the organism, then we might 
as well pack it in and go study something more tractable. 
The situation is more hopeful than it looks, however. As 
is the case elsewhere in biology, functional ascriptions are 
not typically made on the basis of detailed knowledge of 
the historical record. Instead, they are grounded in adap-
tationist reasoning (Dennett 1996). In perceptual neurosci-
ence, adaptationist reasoning yields a simple principle: 
the stimulus that best reflects the etiological function of 
the neuron is the one that maximizes the mutual infor-
mation between stimulus and spike train. This optimality 
assumption allows neuroscientists not only to fine tune 
their understanding of neural function, but in some cases, 
it allows them to discover functionally appropriate stimuli 
in the first place. For example, one can generate artificial 
stimuli with a range of statistical parameters, and then use 
principal components analysis or other bottom up search 
techniques to identify which parameter settings lead to 
maximal informational performance (Sharpee et al. 2004).

The lesson here is that estimates of neural information 
transmission are about the performance capacity of the 
neuron; and to measure the performance capacity of a neu-
ron, you have to create the right experimental conditions. 
Creating those conditions forces you to draw on an under-
standing of the what task the neuron is trying to perform. 
Because the ontological view is blind to the function of a 
neuron, it is not the conception of information we need to 
interpret the scientific content of neural information rates.
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5 � The Reification View

Because estimates of neural information rates are highly 
sensitive to experimental design and choice of stimulus, 
its scientific proponents are often anxious to demonstrate 
that their methods are objective and empirically sound. 
They want to show that the amount of information flowing 
through a neural circuit is not just a matter of the scien-
tist’s perspective on the situation. However, the desire to 
show that informational quantities are genuinely empirical 
sometimes leads to an awkward sort of reification. In the 
context of a paper on information-theoretic approaches 
to retinal physiology, Meister and Berry, well-established 
practitioners in the field, make the following remark:

It has long been recognized that the essential sub-
stance transmitted by neurons is not electric charge 
or neuro-chemicals, but information. In analyzing a 
neural system, it is essential to measure and track the 
flow of this substance, just as in studies of the vas-
cular system one might want to measure blood flow.

This remark (Meister and Berry 1999) is such an obvi-
ous exaggeration that one is forced to wonder whether the 
authors really meant it. Nevertheless, the claim warrants 
closer attention. Although it may be obvious that it is mis-
leading, it is not entirely obvious what makes it so. In 
my view, the analogy between information and blood is 
flawed primarily because it suggests that information is 
material stuff, which it is not. Blood can be removed from 
the body and nevertheless continue to deserve its status 
as blood (blood banks would be pointless were this not 
so). Action potentials are not like this. They play the role 
of an informational signal when they are embedded in an 
organism that moves about in the world. In vivo, an action 
potential is just a burst of electrochemical activity. There’s 
nothing particularly informational about it.

This is not merely an intuitive judgment. The quantity 
of information carried by a signal depends essentially on 
that signal being incorporated into a functional system 
capable of reading it, as well as on the manner in which it 
is read. To see this, consider an example from communica-
tions technology. Last year, the National Security Agency 
in the United States discovered that terrorists were com-
municating with one another via codes embedded in JPEG 
files. A picture of a puppy would be sent to the attacker, 
but deep in the file was pattern that could be decoded into 
natural language. How much information did the file con-
tain? From the perspective of the modem used to download 
the file, it might have been exactly 2Mb. But from the per-
spective of the would-be terrorist, it could have been just 
1 bit. It might, for example, have resolved the uncertainty 
between just two options: “attack” and “wait.”

The lesson implicit in this example is that the quantity of 
Shannon information attached to a signal is not determined 
entirely by its intrinsic material properties. It depends also 
on the capacity of a receiver to recognize the signal, and the 
manner in which it is recognized. This makes informational 
quantities inherently functional. Blood has a function, of 
course; but, unlike information, its quantity does not depend 
on whether it is measured in a functional context.

How do neuroscientists take this receiver relativity into 
account when estimating neural information rates? Once 
again, an adaptationist perspective is called for. Adapta-
tionism gives us reason to think that a spike train which is 
finely calibrated to a perceptual stimulus is not just a wasted 
burst of energy. We assume, and in some cases have neuro-
anatomical evidence to believe, that downstream receiver 
mechanisms are standing by; ready, at least on some occa-
sions, to make use of the signal in the service of the organ-
ism’s behavioral goals.

6 � A Functional Analysis of Shannon Information

We’ve seen that the claim that a neural spike train transmits 
Shannon information cannot be interpreted as the rather 
bland claim that the time course of the spike train just hap-
pens to be correlated with some other empirical property. 
Nor can it be interpreted as the rather mysterious claim that 
spike trains constitute a special sort of material substance 
that is the hidden target of neuroscientific investigation. So 
how should we interpret it? What positive account can we 
provide, given the discussion thus far?

One lesson that emerged form the discussion of the onto-
logical and reification views of Shannon information was 
that neural information rate claims rely on adaptationist rea-
soning. Consequently, their scientific content includes an 
ineliminable functional commitment: the spiking properties 
of neurons came to be the way they are for a reason. Another 
problem with the two analyses discussed above was that they 
lacked any clear conceptual relationship to the definitions 
introduced in Sect. 3. My positive analysis is designed to 
remedy these shortcomings. On my view, the claim that 
a neuron transmits Shannon information should be inter-
preted to mean (i) that the neuron functions as a component 
in a semantic system, (ii) that the functional capacities of 
the semantic system depend on the degree to which it can 
exploit variations in the physical states of its component 
parts, and (iii) the efficiency of that exploitation can, at least 
in principle, be measured.

This analysis shows how the relatively abstract idea 
behind information theory—entropy—can have functional 
significance in a biological system. Recall from Sect. 3 
that the entropy of an informational source is proportional 
to the number of physical states it can realize. From an 
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adaptationist perspective, the constant variation in neurons’ 
output signals must contribute to the brain’s ability to pro-
cess semantic information about what is going on in the 
environment and what to do about it. The more entropy the 
average neuron can express, therefore, the more semantic 
processing the brain can achieve with its relatively fixed 
stock of physical resources.

From this perspective, the Shannon properties of indi-
vidual neural spike trains can help explain how a brain 
manages to process so much semantic information. It also 
helps us to think more clearly about the relationship between 
information and evolution. If neurons only carry Shannon 
information, and if Shannon information has nothing at all 
to do with semantic information, one might reasonably won-
der why neurons would have evolved such impressive rates 
of coding efficiency. As Peter Godfrey-Smith has pointed 
out (Godfrey-Smith 2011), there is no reason for an infor-
mational system to evolve unless the information it carries 
is worth getting across.

It is true that much of information theory can proceed 
without paying attention to the specific messages being 
sent over an information channel, but there is no point 
in maintaining and using the channel unless the mes-
sages sent do bear on something in the world, and can 
guide actions or inferences of some kind.

Although this passage is drawn from a discussion that is not 
particularly concerned with neuroscience, Godfrey-Smith’s 
subtle formulation is exactly right for our purposes. We can 
say with considerable confidence that spike trains “bear on 
something in the world” and also that they “guide actions 
or inferences,” without committing ourselves to the view 
that there is some particular chunk of semantic content that 
a spike train has been selected to convey. The informational 
properties of individual neurons were selected, rather, in 
order to increase the efficency of the semantic process-
ing that becomes visible only at a higher level of neural 
organization.

If this interpretation is correct, the bifurcation view dis-
cussed in the introduction cannot be quite right. The bifur-
cation view says that semantic properties are irrelevant to 
understanding the spiking behavior of single neurons. But 
according to the functional analysis just suggested, claims 
about the rate of Shannon information only make sense in a 
context in which semantic information is being transmitted. 
This claim is not meant to suggest that all applications of 
information theory will involve semantic systems. Informa-
tion theory is a branch of applied mathematics, and has a 
staggering range of interesting applications. For example, 
it is used to determine how hugely complex genomic data 
sets can be represented most efficiently, in order to simplify 
computation (Vinga 2013). I set cases like this one aside. 
The claim I am making is that if an informational rate is 

intended as a description of a functional capacity within a 
system that uses information, then semantic properties must 
also be involved.

7 � On the Conceptual Fecundity of Shannon 
Information

To this author, the suggestion that information in biological 
systems can be measured is as inspiring as it is bold. The 
neuroscientists working in this area are saying, at least by 
implication, that we can bring quantitative rigor to the study 
of meaning and representation in animals. How could phi-
losophers fail to take interest in a claim like that? It is sur-
prising, therefore, that the philosophical literature includes 
precious little discussion of the topic.4 One reason for the 
lack of interest in working out the philosophical implications 
of this area of science may have to do with the fact that infor-
mation theory has its roots in computer science and commu-
nications technology, rather than biology. In computer sci-
ence, there is no significant danger that we will be mistaken 
about what counts as an elementary symbol. There is no 
need to worry about whether you have correctly understood 
the functional decomposition of the information processor 
before thinking through coding strategies. What counts as 
a symbol is underwritten by engineering conventions that 
we created, and which are baked into the way we learn to 
handle questions about information-theoretic properties. If 
you consult a book on image compression algorithms, for 
example, there will be plenty of discussion of the properties 
Shannon introduced, but little or nothing on the manner in 
which the image is stored in hardware. One can restrict one’s 
attention to mathematical transformations of bit strings since 
there is, at least quite often, no need to know anything about 
the physical characteristics of the machine that will execute 
the algorithm.

This is very much unlike the world of biology, where 
basic questions about how semantic signals are encoded 
remain open. If it turns out that, as some neuroscientists 
believe, neurobiological information transmission occurs 
in large part at the dendritic level rather than at the level 
of spiking neurons (Ovsepian and Dolly 2011), then the 
mainstream understanding of functional decomposition of 
information processing in the brain will be wrong. If that 
is the case, our current estimates of the rate of information 
transmission will also be wrong. Moreover, the adaptation-
ist principles that neuroscientists use to reason about the 
functional decomposition of neural signaling systems are 
themselves open to challenge and revision. For example, 
the optimality assumption suggested in Sect. 3 stated that 

4  But see Rathkopf (2017) for a recent exception.
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the stimulus that best reflects the etiological function of a 
neuron is the one that maximizes the mutual information 
between stimulus and spike train. Other principles are possi-
ble, however. For example, Levy and Baxter (2002) suggest 
that the quantity nature actually tries to maximize is the ratio 
of mutual information to metabolic cost. The lesson here is 
that if we accept that semantic information and Shannon 
information are not entirely independent from one another in 
the domain of biological signaling, the study of information 
theoretic properties in the brain becomes both more error-
prone, and also far more philosophically interesting than we 
might otherwise have thought.
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