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Abstract I distinguish two types of reduction within the

context of quantum-classical relations, which I designate

‘‘formal’’ and ‘‘empirical’’. Formal reduction holds or fails

to hold solely by virtue of the mathematical relationship

between two theories; it is therefore a two-place, a priori

relation between theories. Empirical reduction requires one

theory to encompass the range of physical behaviors that

are well-modeled in another theory; in a certain sense, it is

a three-place, a posteriori relation connecting the theories

and the domain of physical reality that both serve to

describe. Focusing on the relationship between classical

and quantum mechanics, I argue that while certain formal

results concerning singular �h ! 0 limits have been taken to

preclude the possibility of reduction between these theo-

ries, such results at most provide support for the claim that

singular limits block reduction in the formal sense; little if

any reason has been given for thinking that they block

reduction in the empirical sense. I then briefly outline a

strategy for empirical reduction that is suggested by work

on decoherence theory, arguing that this sort of account

remains a fully viable route to the empirical reduction of

classical to quantum mechanics and is unaffected by such

singular limits.

Keywords Quantum � Classical � Reduction � Limits �
Formal � Empirical � Decoherence � Semiclassical

1 Introduction

Work on quantum–classical relations encompasses a vast

and disparate range of results, from analyses of �h ! 0 limits

and various quantization procedures to Ehrenfest’s Theo-

rem, environmental decoherence, decoherent and consistent

histories, the measurement problem, interpretation-specific

accounts of classicality and much else. As Landsman (2007)

has emphasized, our understanding of the relationships

among these different areas is still in its infancy. For the

discussion that follows, it will be useful to distinguish two

broad and occasionally overlapping categories of analysis in

the study of quantum–classical relations, which serve to

address two distinct but related sorts of question concerning

the relationship between quantum and classical theories:

1. ‘‘Formal’’ What is the nature of the relationship

between the mathematical formalisms of classical and

quantum mechanics? Classical mechanics is formu-

lated in a mathematical arena of symplectic manifolds,

canonical transformations, Poisson brackets, action

principles and the like, while quantum mechanics is

formulated in a realm of Hilbert spaces, unitary

transformations, commutators, path integrals, C� alge-

bras, PVM’s, POVM’s and related structures. What

connections, analogies and correspondences can we

identify between these two mathematical frameworks?

2. ‘‘Empirical’’ Under what circumstances are the behav-

iors described by classical and quantum models

manifested in real physical systems? How does the

set of real-world cases that are well-described by some

classical model relate to the set of real-world cases that

are well-described by some quantum model?

More narrowly, and more to my central point here, it is

important to distinguish ‘‘formal’’ and ‘‘empirical’’
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approaches to reduction between classical and quantum

mechanics, where reduction broadly speaking is taken to

require that one theory encompass the other in some sense.

In the contexts of both formal and empirical reduction, I

will adopt the convention here of referring to the less

encompassing theory as the ‘‘reduced’’ theory and the more

encompassing theory as the ‘‘reducing’’ theory, so that the

former is said to ‘‘reduce to’’ the latter (the opposite con-

vention is often adopted in the physics literature). Formal

and empirical reduction are distinguished as follows:

1. Formal reduction requires the reduced theory (in this

case, classical mechanics) to be in some sense a special

or limiting case of the reducing theory (in this case,

quantum mechanics). The question of whether one

theory reduces to the other is a wholly mathematical, a

priori question to be resolved entirely through math-

ematical analysis of the two theories. Once the

mathematical frameworks of the theories have been

specified, no further empirical input is required to

assess whether one reduces to the other. Formal

reduction in thus a two-place relation between theories.

2. Empirical reduction requires that every circumstance

under which the behavior of a real physical system can

be modeled in the reduced theory (in this case, classical

mechanics) is also one in which that same behavior can

be modeled at least as precisely in the reducing theory (in

this case, quantum mechanics). That is, empirical

reduction requires that the reducing theory wholly

subsume the physical domain of applicability of the

reduced theory, but does not necessarily require the

reduced theory’s formal mathematical structure to be

subsumed as a special or limiting case of the reducing

theory’s formal structure. Unlike formal reduction, the

question of whether empirical reduction holds between

two theories cannot, in general, be determined solely by

analysis of the theories themselves. Once the theories

have been specified, reduction is still partially an

empirical matter, for demonstrating that one theory has

subsumed the domain of applicability of the other

requires empirical knowledge of the sets of circum-

stances under which the two theories succeed at

describing the behavior of real systems. Empirical

reduction is thus in some sense a three-place relation

connecting the two theories and the domain of physical

reality that the theories serve to describe.

Thus, formal reduction requires subsumption at the level of

the mathematical formalisms of the two theories, while

empirical reduction requires subsumption at the level of the

real physical behavior that can be accurately (if approxi-

mately) modeled in the two theories. It is conceivable that one

could successfully effect an empirical reduction by means of a

formal reduction (if the reduced theory is a special case of the

reducing theory, then any physical behavior that is well-

modeled in the reduced theory can, a fortiori, also be modeled

in the reducing theory). On the other hand, reduction in the

empirical sense does not necessarily require reduction in the

formal sense. It is possible that one could show one theory to

subsume the domain of another without showing that the

mathematical formalism of the latter constitutes a special or

limiting case of the former. In particular, it is possible for the

mathematical structures of two theories to dovetail approxi-

mately over some restricted domain (namely, the domain of

physical reality well-modeled by the reduced theory) without

either theory being a special or limiting case of the other.

The subject of reduction often arises in the context of dis-

cussions about the ‘‘imperialism’’ of physics—that is, the

notion that theories in physics grow ever more universal and

precise in their depictions of physical reality, and that each

successive theory wholly encompasses the domain of physical

behavior that can be successfully modeled by its predecessor.

It is clear that empirical reduction between successive theories

suffices for this purpose. By contrast, in requiring one theory

to be a special or limiting case of another, formal reduction

demands much more than is necessary to support the con-

ventional wisdom that our theories grow ever more precise

and universal in their physical scope. A weaker condition,

which demands approximate agreement between theories

only in the restricted domain where the reduced theory is

successful, is sufficient for this purpose. Unlike formal

reduction, reduction in this weaker (but still highly nontrivial)

sense does not require the reducing theory to recover features

of the reduced theory in cases where the reduced theory does

not describe the behavior of any real physical system.

Like formal reduction, empirical reduction may rest on

direct mathematical correspondences between theories that

serve to ensure approximate agreement between the theo-

ries over the appropriate domain. However, the question of

whether any approximate dovetailing between theories

suffices for one theory to encompass the domain of success

of the other can only be answered by considering further

empirical input that delineates the set of circumstances

under which the reduced theory succeeds at tracking the

behavior of real physical systems, as well as the margins of

error and timescales within which it does so. Therefore,

knowledge only of the theories themselves is not generally

sufficient to determine whether one reduces to the other in

the sense that is relevant to the conventional imperialist

wisdom about the progress of physics.

Here, I focus on distinguishing formal and empirical

approaches to reduction in the context of quantum–classical

relations. In Sect. 2, I consider one attempt at quantum–

classical reduction that is addressed in the work of Batterman

(2002) and Berry (1994, 1983) and based on a formal recipe

due to Maslov for constructing wave functions out of clas-
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sical Lagrangian surfaces. In their analysis, Batterman and

Berry draw the general conclusion that reduction between

classical and quantum mechanics fails because of difficulties

that Maslov’s construction encounters with singular �h ! 0

limits. However, their use of the term ‘‘reduction’’ in this

context is ambiguous, and it is unclear whether their argu-

ments are meant to rule out reduction in a formal sense, an

empirical sense, or both. Here, I argue that while their

arguments may cast some doubt on the possibility of

effecting reduction in a formal sense, they offer no reason for

thinking that singular �h ! 0 limits should block reduction in

the empirical sense. In Sect. 3, I outline an account of

empirical reduction between classical and quantum

mechanics that is drawn from the literature on decoherence

and that is spelled out in greater detail in Rosaler (2015a). I

argue that this analysis provides a viable account of the

empirical reduction of classical to quantum mechanics and

that there is little reason to think that it is encumbered in any

way by singular �h ! 0 limits. In Sect. 4, the Conclusion, I

argue that there are important lessons to be drawn from

juxtaposing this empirical, decoherence-based picture of

quantum–classical reduction with the more formal approach

considered by Berry and Batterman: namely, that the limi-

tations of certain formal correspondences between classical

and quantum mechanics do not necessarily block reduction

between these theories in the empirical sense, and that it is

important generally to take care to distinguish between for-

mal and empirical reduction when asserting the success or

failure of reduction between a given pair of physical theories.

2 ‘‘Formal’’ Approaches to Quantum/Classical
Reduction

In a standard graduate-level textbook on quantum

mechanics, one is likely to encounter some remark to the

effect that classical mechanics can be recovered from

quantum mechanics in the limit �h ! 0. Take Sakurai’s

popular monograph, Modern Quantum Mechanics, as an

example. Sakurai et al. (1995) notes that on inserting the

polar decomposition wðx; tÞ ¼ Rðx; tÞei
Sðx;tÞ
�h of the wave-

function into Schrodinger’s equation, one arrives at the

result that the phase S(x, t) satisfies the classical Hamilton–

Jacobi equation in the limit �h ! 0, and concludes that ‘‘not

surprisingly, in the �h ! 0 limit, classical mechanics is

contained in Schrodinger’s wave mechanics’’. It is not clear

whether such a remark is intended simply to highlight an

interesting formal correspondence between the mathemat-

ical frameworks of quantum and classical mechanics or is

intended to have some deeper physical signifcance. In its

claim that classical mechanics has been shown to be

‘‘contained in’’ Schrodinger’s wave mechanics, such a

remark does seem tentatively to suggest that we can

understand by virtue of this result why classical mechanics

succeeds where it does given that quantum mechanics is

the more fundamental of the two theories.

However, a little thought shows that at most, this formal

result is a small part of a much more complicated story

about how quantum mechanics encompasses the domain of

classical mechanics, if indeed it does. First, the physical

significance of this result is left obscure since it is not made

clear in Sakurai’s presentation what taking the limit �h ! 0

corresponds to physically, given that �h is a constant for all

real systems. Furthermore, this result gives no hint of the

manner in which quantum superpositions are supposed to

give way to the determinate states that characterize realistic

classical behavior, or of the manner in which quantum

interference effects come to be suppressed in these sys-

tems. Both of these points must be addressed in any real-

istic quantum mechanical account of classical behavior.

A more sophisticated examination of formal approaches

to the quantum–classical correspondence, including

explorations of the �h ! 0 limit, the N ! 1 limit and

various formal quantization procedures, as well as a dis-

cussion of decoherence, is given in Landsman’s (2007). He

concludes that none of these ideas in isolation is capable of

explaining the classical world, but suggests that ‘‘there is

some hope that by combining all three of them, one might

do so in the future.’’ Landsman offers an extensive survey

of mathematical correspondences between quantum and

classical theories that have been uncovered in the literature,

but is careful to note that he does not intend to address the

issue of inter-theoretic reduction between classical and

quantum mechanics, which will be my main focus here.

One prominent recent analysis of reduction between

classical and quantum mechanics has been advanced in the

work of Batterman and Berry, both of whom argue that the

singular nature of certain �h ! 0 limits precludes reduction

between these two theories. Here, I argue that the sense of

reduction that they adopt is ambiguous as to whether a

formal or empirical sense of reduction is intended, and that

once we take care to make this distinction, it becomes clear

that while their arguments may pose difficulties for

reduction in the formal sense, they pose little if any

obstacle to reduction in the empirical sense. I begin by

reviewing Berry’s general view on the relationship

between limits and inter-theoretic reduction in physics and

then go on to discuss Batterman’s closely related argument

that the singular nature of the �h ! 0 limit blocks reduction

of classical to quantum mechanics.

2.1 Berry’s Analysis of Reduction in Physics

Concerning the general methodology of reduction in phy-

sics, Berry writes,

‘‘Formal’’ Versus ‘‘Empirical’’ Approaches to Quantum–Classical Reduction 327

123



To begin, realise that theories in physics are mathe-

matical; they are formal systems, embodied in

equations. Therefore we can expect questions of

reduction to be questions of mathematics: how are the

equations, or solutions of equations of one theory,

related to those of another? The less general theory

must appear as a particular case of the encompassing

one, as some dimensionless parameter - call it d -

takes a particular limiting value. A general way of

writing this scheme is

encompassing theory ! less general theory as d ! 0

Thus reduction must involve the study of limits, that

is asymptotics. The crucial question will be: what is

the nature of the limit d ! 0? We shall see that very

often reduction is obstructed by the fact that the limit

is highly singular. Moreover, the type of singularity is

important, and the singularities are not only directly

connected to the existence of emergent phenomena

but underlie some of the most difficult and inten-

sively-studied problems in physics today (Berry

1994).

It seems more natural here to interpret Berry as adopting a

formal sense of reduction. That is, Berry seems to regard

reduction as a purely mathematical, a priori relation between

the mathematical frameworks of the theories. However, it is

possible that Berry intends to include all forms of reduction,

including empirical reduction, in his assertion that singular

limits block reduction. In the case of classical and quantum

mechanics, this would imply that because certain limits as

�h ! 0 are singular, the conventional wisdom that quantum

mechanics is a strictly more universal and more accurate

theory than classical mechanics is false. But in order to show

that a particular singular limit blocks empirical reduction

between two theories, it is necessary to explain why

empirical reduction between the theories requires this limit

to be non-singular in the first place. Berry’s discussion does

not offer any reason for thinking that the limits he has in mind

must be non-singular in order for it to be possible to give an

accurate quantum description of every real system (in which

Planck’s constant maintains the same fixed value) whose

behavior is well-modeled in classical mechanics, as empir-

ical reduction requires. The common refrain that classical

mechanics is ‘‘supposed to’’ be the limit of quantum

mechanics as Planck’s constant vanishes seems to reflect a

formal rather than an empirical understanding of reduction.

But even if we restrict our interpretation of the above

quotation to reduction in a purely formal sense that requires

one theory to be a limiting case of another, we are faced

with a further ambiguity: namely, that it is not clear what it

means, in general, for one theory to be a limiting case of

another, given that the mathematical concept of a limit is

defined only for functions and sets and that a theory is not a

well-defined mathematical concept. Given two theories, it

is far from clear how, in general, we should determine

whether one is a limiting case of another. Is any singular

limit relating any two quantities between two theories

sufficient to support the conclusion that reduction fails? Or

is it only certain special limits that are salient to deter-

mining whether reduction occurs? If the latter, on what

basis should we determine what these limits are?

In the next section, I review an argument made by

Batterman and following closely on the work of Berry that

certain singularities arising in the limit �h ! 0 block the

reduction of classical to quantum mechanics. I argue that

the sense of reduction employed by Batterman is also

ambiguous in a number of respects and that we must be

careful not to conclude from his analysis that the particular

singular limits he discusses pose an obstacle to reduction in

the empirical sense.

2.2 Batterman’s Anti-Reductionism Regarding

Quantum–Classical Relations

Like Berry, Batterman concludes that singular limits gen-

erally block reduction, and that they do so specifically

where the reduction of classical to quantum mechanics is

concerned. Batterman takes singular limits to block

reduction both in the sense adopted by Berry that requires

one theory to be a limiting case of the other, and also in the

sense associated with Nagel and Schaffner’s well-known

account of reduction, which requires that it be possible to

derive the laws of one theory from those of another through

the use of bridge principles (Batterman 2002).1 While

reduction is understood in Batterman’s discussion to fail

specifically with respect to the limit-based and Nagel/

Schaffner approaches, these approaches themselves are

highly vague and therefore open to a wide range of

interpretations.

At the start of his discussion of the relationship between

quantum and classical mechanics, Batterman (2002) writes,

‘‘The semiclassical limit is singular and no reductive

relation obtains between the two theories,’’ where the

semiclassical limit is the limit �h ! 0 (Batterman 2002),

Ch. 7. Recognizing that �h is fixed for all real systems and

that its numerical value depends on a choice of units, he

notes that this limit should be understood as shorthand for

the limit �h
Sc
! 0, where Sc is a measure of the ‘‘typical

classical action’’ of the system in question and �h
Sc

is

dimensionless (since �h also has units of action). However,

Batterman’s discussion does not specify the appropriate

1 For further discussion of the Nagel/Schaffner approach to reduc-

tion, see, for example Dizadji-Bahmani et al. (2010).
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quantitative measure of a system’s typical classical action.

While this is common practice in discussions of the limit

�h ! 0, it is important to note that a good deal of physical

insight is lost as a result of the failure to give a precise

specification of the quantity Scl, since knowledge of this

quantity would provide a clear delineation of the physical

circumstances under which �h (understood as shorthand for
�h
Sc

) can legitimately be regarded as ‘‘small,’’ and under

which formulas derived from the assumption of small �h can

legitimately be applied.2 For the moment, though, let us put

this worry aside and assume that some appropriate measure

of Scl can be found that physically justifies the assumption

of small �h.

At the start of his analysis of quantum–classical relations,

Batterman writes, ‘‘Given that classical mechanics is sup-

posed to be a limiting case of quantum mechanics as �h ! 0,

we would like to try to understand the nature of the quantum–

mechanical wave functions in this limit.’’ The sense in which

this limit is singular is reflected in the breakdown of a par-

ticular formal correspondence, due to Maslov, between

wavefunctions in Hilbert space and a special class of N-

dimensional surfaces in 2N-dimensional classical phase

space known as Lagrangian surfaces. Given a generating

function S(q, P) of a canonical transformation from coordi-

nates (q, p) to coordinates (Q, P) on classical phase space,

the set R of points in phase space of the form ðq;rqSðq;PÞÞ
for constant P forms a Lagrangian surface. To each such

surface, Maslov’s method associates the wave function,

wðqÞ ¼ K

�
�
�
�
det

oQi

oqj

� ��
�
�
�

1=2

e
i
�hSðq;PÞ ð1Þ

¼ K

�
�
�
�
det

o2Sðq;PÞ
oqjoPi

� ��
�
�
�

1=2

e
i
�hSðq;PÞ; ð2Þ

where Qi ¼ oSðq;PÞ
oPi

, pi ¼ oSðq;PÞ
oqi

and K is an appropriate

normalization constant. Batterman notes that the limit �h !
0 of this function is singular in much the same way that the

function cos 2p
k x

� �

is singular as k ! 0: in both cases, the

oscillations of the function become infinitely rapid as the

relevant parameter approaches zero, so that the value of the

function is not well-defined in this limit. In particular, this

singularity blocks the expansion of e
i
�hSðq;PÞ in �h around the

value �h ¼ 0.

For fixed, non-zero values of �h, a Hamiltonian evolution

on the classical phase space, which generates an evolution

of the Lagrangian surface RðtÞ, induces a corresponding

evolution of the wave function constructed from this sur-

face through Maslov’s procedure. In cases where R
develops folds under the Hamiltonian evolution, so that it

is multivalued when expressed as a function of the

configuration variables q, Maslov’s construction stipulates

that the wavefunction associated with R is a superposition

of different components, one associated with each single-

valued piece of R. A special technique devised by Maslov

is then used to match these pieces along the caustic curves

joining them, where

�
�
�
�
det

o2Sðq;PÞ
oqjoPi

� �
�
�
�
�

is singular. For further

details of this construction, see Berry (1983).

By contrast with this ‘‘bottom-up’’ construction, Bat-

terman then considers a ‘‘top-down’’ derivation of the well-

known expression for the WKB wave function, which

proceeds by solving the time-independent Schrodinger

equation to first order in �h. The general solution thus

derived is,

wðqÞ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE � VðqÞÞ4
p e

i
�h

R q

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE�VðxÞÞ

p
dx

þ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE � VðqÞÞ4
p e

� i
�h

R q

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE�VðxÞÞ

p
dx
; ð3Þ

where A and B are arbitrary constants. Batterman observes

that at a classical turning point, where VðxÞ ¼ E, the

amplitude of the wave function diverges just as the Maslov

construction specifically, the coefficient
o2Sðq;PÞ
oqjoPi

� �

diverges

along the caustics connecting different branches of the

Lagrangian surface.

Given a classical Lagrangian surface R defined by the

function S(q, P) for fixed P, one can then fix the constants

A and B in the WKB solution at some initial time t ¼ 0 so

as to agree with the wave function (1). It is then natural to

ask whether the evolution induced on this initial wave

function by the classical Hamiltonian evolution of the

surface R approximately agrees with the semi-classical

approximation to the Schrodinger evolution associated

with (3). Citing the work of Berry and others, Batterman

notes that this agreement holds for a limited class of

Lagrangian surfaces—namely, those that are preserved

under the classical Hamiltonian evolution. On the other

hand, for irregular or chaotic evolutions, Lagrangian sur-

faces will tend to develop an increasing number of folds—

i.e., to become increasingly multivalued in q—over time.

Maslov’s construction remains applicable in such cases,

but only when a certain measure of phase space volume

characterizing the separation between adjacent folds in the

Lagrangian surface is large in comparison with �h. The

construction becomes inapplicable once the caustics asso-

ciated with these folds become clustered on scales smaller

than �h. As a result, applying the classical Hamiltonian

evolution and then the Maslov construction will not give

even approximately the same result as applying the Maslov

construction and then the semi-classical Schrodinger

dynamics. Where the classical dynamics of the system are2 In (2007), Landsman offers a number of suggestions as to the

particular measure of Scl that might be adopted in various cases.
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chaotic, the semiclassical limit �h ! 0 will therefore fail to

commute with the infinite time limit t ! 1 relevant to

chaos: for fixed time t, one can make �h small enough so

that Maslov’s construction applies and the semiclassical

and Hamiltonian evolutions agree; however, if one takes

the limit t ! 1 first, this can’t be done.3

2.3 Ambiguities in Batterman’s Usage

of ‘‘Reduction’’

In his assertion that singular limits block reduction, Bat-

terman clarifies that he means reduction both in the Nagel/

Schaffner (or simply ‘‘Nagelian’’) sense and in the limit-

based sense employed by Berry. However, as I argue here,

both of these senses of reduction are subject to a wide

range of interpretations, so that a large degree of ambiguity

remains in Batterman’s use of the term ‘‘reduction’’.

Like many discussions of Nagelian reduction, Batter-

man’s presentation leaves unanswered a range of important

questions. In its requirement that it be possible to derive the

laws of one theory from those of another through the use of

bridge principles, does Nagelian reduction reflect a formal

or an empirical sense of reduction? On the one hand,

deduction is a formal logical relationship, so that Nagelian

reduction could be construed as a kind of formal reduction.

On the other hand, one could restrict the requirement of

derivability to only those contexts in which the reduced

theory successfully describes the behavior of real systems,

in which case Nagelian reduction should be regarded as an

empirical form of reduction. One can also pose the ques-

tion: Does Nagelian reduction require a single ‘‘global’’

derivation of the reduced theory’s laws or does it allow for

many context-specific ‘‘local’’ derivations that may employ

different bridge principles in different systems? Some

treatments of Nagelian reduction require bridge principles

to be global, biconditional identity claims while others

loosen this requirement to allow for one-way conditional

associations that may vary depending on context. There is

also the perennial ambiguity as to whether bridge princi-

ples are empirically established claims or definitions.

While these ambiguities reflect the discussion of Nagelian

reduction generally, it is not clear from Batterman’s dis-

cussion why singular limits should generally preclude

Nagelian reduction since nothing inherent to any of these

construals relies essentially on taking limits.

In the case of limit-based reduction, Batterman writes that

this sort of reduction rests on the requirement

lim�!0 Tf ¼ Tc, where Tf is the more fundamental and Tc the

less fundamental theory. As discussed above (and as Bat-

terman himself has acknowledged) this requirement is open

to a wide range of interpretations. It is simply unclear what it

means to take the limit of a theory or even what is being taken

to constitute a theory. We can also pose many of the same

questions about limit-based reduction that we posed about

Nagelian reduction. Is it being understood formally or

empirically? While a formal construal seems more faithful to

what is intended in the analyses discussed here, the claim that

one theory is a ‘‘limit’’ or ‘‘limiting case’’ another is some-

times used loosely to mean that the latter supersedes the

former, in which case an empirical construal would also be

reasonable. One can also ask: is the requirement that one

theory be a limit of another local or global? We can imagine a

single limit that relates the theories globally, or many con-

text-specific limiting relations that connect the individual

models of the theories for different systems. The under-

standing of limit-based reduction that is hinted at in Batter-

man’s analysis and many other discussions of the limit-based

approach seems to be as a global, formal relation, but nothing

in Batterman’s presentation explicitly signals a commitment

on this point.4

Where both formal and empirical types of reduction are

concerned, it is not made clear in Batterman’s analysis why

the breakdown of the Maslov construction should be taken to

constitute a failure of reduction per se—either in the formal

or the empirical sense - rather than merely a failure of one

particular approach to reduction. While the notion that

classical mechanics is the limit of quantum mechanics as

�h ! 0 comprises what is perhaps the most widespread

conventional wisdom about the supposed reduction between

quantum and classical mechanics, this does not constitute

good reason for thinking that this reduction (in either the

formal or the empirical sense) could only be effected via the

semiclassical limit and Maslov’s construction, especially

given the vast range of other work on quantum–classical

relations that does not invoke this limit or this construction.

As I argue in the next section, there are strong reasons to

doubt that the technical difficulties associated with Maslov’s

construction and the singular limits that Batterman high-

lights pose any obstacle to the empirical reduction of clas-

sical to quantum mechanics, and more specifically to

attempts to effect this kind of reduction based on

3 Another reason often cited for the inability of quantum theory to

recover classical chaos is that classical chaos entails exponential

divergence of closely spaced initial conditions in phase space, while

on the usual association of classical phase space points with narrow

wave packet states in quantum theory, the unitary nature of the

Schrodinger evolution—which preserves the inner product between

any two initial states throughout their evolution—precludes such a

divergence between the corresponding wave packets. However, Zurek

has argued that when we incorporate the effects of environmental

decoherence, the effective quantum dynamics of the system in

question is no longer unitary (it is only the total closed system

consisting of the system in question and its environment that is

assumed to evolve unitarily) and so this objection no longer applies.

4 For further discussion of the vagueness of existing formulations of

the limit-based approach, see Rosaler (2015c).

330 J. Rosaler

123



decoherence. Given the vagueness of limit-based reduction

and the existence of other quantum–classical relations that

employ the �h ! 0 limit in a non-singular way,5 further

argument is needed to show that difficulties with Maslov’s

construction block reduction even in a formal sense, and that

these difficulties signal anything more than the failure of just

one among many attempts to smoothly recover the formal-

ism of classical mechanics from that of quantum mechanics.

As it stands, Batterman’s argument gives little reason for

attributing the sort of broad, sweeping significance to

Maslov’s construction that it does.

2.4 Singular �h ! 0 Limits and the Empirical

Reduction of Classical to Quantum Mechanics

If Batterman’s (or Berry’s) analysis can be fairly inter-

preted as denying the empirical reduction of classical to

quantum mechanics, then there are a number of reasons

that should lead us to strongly doubt that his argument

based on singular limits lends much, if any, support to this

claim. Assuming that it does deny the possibility of

empirically reducing classical to quantum mechanics,

Batterman’s analysis may be criticized on the grounds that

it ignores a number of physically salient factors that figure

into any realistic quantum mechanical description of actual

systems whose behavior is well-modeled by classical

mechanics. That is, much of Batterman’s analysis focuses

primarily on the abstract mathematical formalisms of

quantum and classical mechanics, seemingly without a

concrete physical system or set of systems in mind. While

this sort of methodology may be employed in analyses of

formal reduction, greater attention to the features that

characterize real systems that we know to behave classi-

cally is necessary to address the possibility of empirical

reduction. The specific points on which Batterman’s dis-

cussion departs from the description of real classical sys-

tems into the realm of abstract formalism are as follows:

1. One may make the predictable criticism that Batter-

man’s analysis relies on the limit �h ! 0 even though �h
is constant for all real systems, and that the relevance

of the analysis for real systems is obscured by this fact.

This sort of criticism may be met, as it is in

Batterman’s work, with the claim that what is ‘‘really’’

meant by �h ! 0 is �h
Scl

! 0, where the value of Scl does

vary across real physical systems. Yet, it is more often

the case than not—and is the case in Batterman’s

analysis—that relatively little is said about what the

measure Scl should specifically be taken to be. It is also

rarely, if ever, the case that expansions in �h used to

recover classical equations are explicitly re-cast in

terms of the dimensionless variable �h
Scl

. While the

choice to expand in �h rather than �h
Scl

may be seen as a

matter of convenience, it is a convenience that comes

at a significant cost to our physical insight, since a

specification of the measure Scl is needed to demarcate

the circumstances under which �h can legitimately be

regarded as ‘‘small’’; without such a specification, we

can only hope that calculations based on the assump-

tion of small �h turn out to be physically meaningful in

a given context.

2. Analyses such as those of Batterman, Berry and many

others in the field of semiclassical analysis are

formulated in the context of isolated quantum systems.

But essentially none of the real physical systems whose

behavior we know to be well-described by classical

mechanics are isolated. Any realistic quantum

mechanical model of a classical system such as the

center of mass of a golf ball, the moon, or even an

alpha particle in a bubble chamber 6 must take account

of the fact that these systems are constantly interacting

with external degrees of freedom in their environments

and thus subject to entanglement with those degrees of

freedom. And such entanglement, of course, has

significant effects the behavior of the system in

question—most notably, the suppression of quantum

interference effects. However, it should also be pointed

out that incorporation of environmental effects, though

compelled by the need to give a realistic description of

the system in question, substantially complicates

matters in certain respects and disrupts the tidy

mathematical setting that one finds in the case of

isolated systems.

3. Batterman’s analysis makes no mention of wave func-

tion collapse. However, it is clear that some mechanism

for collapse, or effective collapse, must figure into the

recovery of real classical behavior from quantum theory.

The task of modeling real classical systems in quantum

theory does not consist solely in the formal mathemat-

ical project of recovering classical equations from the

formalism of quantum theory, but also in the more

conceptual, metaphysical task of understanding how the

determinate (or apparently determinate) outcomes char-

acteristic of classical behavior come about in a quantum

setting. As with the inclusion of environmental deco-

herence, the need to recover determinacy from quantum

theory brings further complications to the simple

mathematical setting of isolated systems evolving

unitarily under Schrodinger’s equation—in this case,

by obliging us to grapple with difficult interpretational

5 See Landsman’s (2007) for examples of non-singular �h ! 0

limiting relations.

6 See Joos et al. (2003), Ch. 3, Bacciagaluppi (2012) and Barbour

(2000) Ch. 20 for discussion of this last example.
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issues. In Batterman’s analysis, it is not clear when or

whether collapses are supposed to occur: is the wave

function collapsing continuously, periodically, not at all,

or in some other manner? The first of these possibilities

would seem to invalidate the WKB approximation that

Batterman invokes, which treats the wave function as an

approximate plane wave, by requiring the state always to

be a narrowly localized wave packet. The second

possibility would not successfully recover classical

behavior since a position measurement on the sort of

plane wave associated with the WKB approximation

will give radically unpredictable results for each mea-

surement and so fail to recover classical behavior (since

the wave is widely spread out in space). If the wave

function never collapses, on the other hand, the question

remains as to whether Batterman’s analysis is consistent

with the appearance of determinate outcomes charac-

teristic of real classical behavior. Without going so far as

to demand a solution to the measurement problem, one

can still reasonably insist that any realistic attempt to

recover classical behavior offer some rough specifica-

tion as to when collapses or effective collapses occur.

Because Batterman’s analysis does not incorporate a range

of crucial, physically salient considerations required for the

realistic description of classical systems, it is unlikely that

the formal mathematical difficulties that he highlights bear

strongly on the empirical reduction of classical to quantum

mechanics. In the following section, I describe a template

for the recovery of realistic classical behavior7 from

quantum theory that is drawn from the literature on deco-

herence and that I claim does incorporate the important

factors that Batterman’s discussion omits. This account is

spelled out in greater detail in Rosaler (2015a), and only its

central points and underlying assumptions are discussed

here. I argue that this template provides a strategy for the

empirical reduction of classical to quantum mechanics that

is unaffected by the particular formal mathematical issues

that Batterman highlights.

3 An ‘‘Empirical’’ Approach to Quantum/
Classical Reduction

Empirical reduction of classical to quantum mechanics

requires that every circumstance in which the behavior of

some real system is accurately modeled in classical

mechanics also be one in which that system’s behavior can

be modeled at least accurately in quantum mechanics.

More precisely, reduction in this sense requires that for

every system in the domain of classical mechanics—that is,

for every system S whose behavior is accurately charac-

terized by some model of classical mechanics—there exists

some model of quantum mechanics, also representing S,

such that the classical model of S reduces to the quantum

model of S. Here, reduction between models of a fixed

system is taken to require that the reducing model track the

system’s behavior at least as precisely as the reduced

model in all circumstances where the reduced model

applies. Thus, empirical reduction between the theories of

classical and quantum mechanics here is understood to rest

on a more basic notion of reduction between two models of

these theories in cases where both models describe the

same, fixed system. Inter-theoretic reduction on this

approach may turn out to be a local, piecemeal affair

insofar as this approach leaves open the possibility of

demonstrating the subsumption of one theory’s domain by

that of another through numerous system-specific, inter-

model reductions. (This local, model-based picture of

physical reduction is expounded in greater generality in

Rosaler (2015c).)

The account of empirical reduction of classical to

quantum mechanics that I outline here is framed as a

template for the reduction between classical and quantum

models of a single fixed system in the domain of classical

mechanics (e.g., the center of mass of a golf ball, or an

alpha particle in a bubble chamber, that traverses an

approximately Newtonian trajectory). A complete demon-

stration of reduction between two models requires proof

that certain quantities in the reducing model approximately

instantiate the dynamical and other transformation prop-

erties of the reduced model in cases where those features of

the reduced model accurately describe the system’s

behavior. The account of quantum–classical reduction that

I give here is formulated as a template into which such a

proof might be fit, and synthesizes a variety of results

drawn from the extensive body of work on decoherence

theory. This template rests on various assumptions that are

conventional in discussions of decoherence and for which

proofs have been given in the context of specific models,

but which are believed on the grounds of various heuristic

arguments to apply generically. My analysis here does not

presuppose any specific quantum model, but rather only

that the quantum model is compatible with a certain gen-

eral canonical form of the equation of motion for the

reduced density matrix of the system in question.

We will see that on this picture of quantum–classical

relations, the classical model of the physical system in

question is not a special or limiting case of the quantum

model; however, the quantum and classical descriptions

can be shown to dovetail in certain situations with respect

7 Here, I take classical behavior to designate behavior that is

accurately represented by some purely classical model. That is, I do

not take it to include those systems whose behavior is well-described

by semiclassical models that employ hybrids of quantum and classical

concepts.
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to the behavior of certain variables, and so to provide

distinct but mutually consistent (within some margin of

approximation) characterizations of the same physical

behavior (e.g., the Newtonian trajectory of a golf ball). As

an analysis of empirical reduction, this template has certain

important advantages over Batterman’s: (1) �h remains fixed

throughout the analysis (as do quantities such as mass and

particle number) so that difficulties regarding singular �h !
0 limits are avoided; (2) the class of quantum models

considered here is more realistic as a description of actual

classical systems than the models considered in Batter-

man’s discussion, since the models considered here incor-

porate the effects of the environment on the system’s

behavior; (3) this account explicitly accommodates the

need for a collapse (or effective collapse) mechanism.

This template starts from the recognition that any real-

istic quantum mechanical model of a classical system will

account for the effects of the system’s inevitable interac-

tion with its environment. As is typical in models of

decoherence, the system of interest (whose classical

behavior we wish to recover) and its environment (which

includes all degrees of freedom external to the system,

including any observer or measuring apparatus that may be

present) are modeled together as a closed quantum system

with Hilbert space HS �HE, where HS is the Hilbert space

of the system of interest and HE the Hilbert space of its

environment. The quantum state jWi of the combined

system SE is assumed (as we will see, provisionally) to

follow the Schrodinger equation,

i
ojWi
ot

¼ ĤS � ÎE þ ÎS � ĤE þ ĤI

� �

jWi; ð4Þ

where ⁄:1, ĤS and ĤE operate respectively on states in

HS and HE, ÎE is the identity on HE, ÎS is the identity on

HS, ĤS ¼ P̂
2

S

2MS
þ VðX̂SÞ, and ĤI , the interaction Hamilto-

nian, operates on states in HS �HE. The analysis further

assumes that these quantities are such that the reduced

density matrix q̂S � TrEjWihWj of S follows an equation of

the form,

i
dq̂S

dt
¼ ½ĤS; q̂S� � iK X̂; X̂; q̂S


 �
 �

; ð5Þ

where K is a constant that depends on the details of ĤE and

ĤI , the first term on the right-hand side generates the

unitary evolution of q̂S, and the second term generates non-

unitary effects associated with decoherence, including the

suppression of off-diagonal elements of hX0jq̂SjXi.
Zurek et al. (1993) have argued that in the special case

where the potential V describes a harmonic oscillator there

will generically be a separation of timescales over which

states in HS become entangled with E. Most states of S

very rapidly become entangled with E over the extremely

short timescale associated with decoherence. However,

certain special states of S, which are known as pointer

states and which form a basis for HS, suffer entanglement

with E only on timescales much longer than the decoher-

ence timescale. Further heuristic arguments have been used

to show that pointer states should generically be coherent

states for more general choices of the potential V; see for

example Schlosshauer (2008), Ch.’s 2.8 and 5.2. For the

specific case of the harmonic oscillator, Zurek et al. have

argued that the pointer states of S should generically be

coherent states that are narrowly peaked both in position

and in momentum (within the constraints of the uncertainty

principle). Assuming this to be the case, environmental

decoherence in our class of models lends the overall

quantum state evolution of SE a branching structure with

respect to a basis of coherent states for HS. As we will see,

this branching can be quantified using the formalism of

decoherent histories. For a clear discussion of quantum

state branching, see Wallace (2012), Ch. 3.

Given these specifications, our template for the recovery

of classical behavior can be summarized as follows. Pro-

visionally assuming a unitary evolution for the closed

system consisting of the system of interest (whose classi-

cality we wish to recover) and its environment, decoher-

ence lends the total pure state of this system a branching

structure. Relative to each branch of the quantum state, the

state of the system S is always quasi–classical—that is,

always narrowly localized in position and momentum (this

is a consequence of the fact that decoherence occurs rela-

tive to a pointer basis of coherent states). Thus, one can

ascribe a unique quasi–classical (spatially localized) tra-

jectory to each branch, given by the evolution of the

branch-relative expectation values of S’s position and

momentum operators. Moreover, a little-discussed form of

Ehrenfest’s Theorem adapted to open quantum systems

entails that on timescales where wave packet spreading (or,

precisely, ‘‘ensemble’’ wave packet spreading) in S can be

neglected, nearly all of these quasi–classical branch tra-

jectories will approximate some solution to Newton’s

classical equations of motion. Branching still occurs in

these cases, but in such a manner that fluctuations associ-

ated with branching are confined to small scales of position

and momentum. Thus, the branch-relative quantum phase

space trajectories consist of small, stochastic deviations

around some deterministic Newtonian trajectory. Each

branch of the quantum state is thus associated with some

particular, approximately classical history of the system S,

corresponding to the sort of localized, approximately

Newtonian trajectory that we observe when we see a golf

ball moving through the air or the moon orbiting the earth.

The manner in which one branch comes to be selected as

the ‘‘actual’’ state of affairs depends on one’s interpretation

of quantum mechanics and its associated mechanism for

‘‘Formal’’ Versus ‘‘Empirical’’ Approaches to Quantum–Classical Reduction 333

123



effective collapse. However, it should be noted that the

significance of the branching structure that emerges

through decoherence on this account is that it serves to

‘‘carve out’’ the set of possible trajectories for the various

interpretation-dependent collapse mechanisms to choose

from.

Let us now briefly outline this story in more technical

detail. Following Wallace (2012), Ch. 3, we can use the

pointer states of S, which are coherent states jzi—where

z � ðq; pÞ denotes the phase space point around which the

state jzi is peaked—to construct a positive operator-valued

measure (POVM) on S’s Hilbert space HS (see footnote 9

for an informal explanation of POVM’s). As we will see

shortly, this POVM can, in turn, be used to delineate the

individual branches of the total quantum state jWi. Given

an arbitrary partition flag of the classical phase space CS

of the system S, this POVM consists of the set of operators

fP̂ag on HS, where the P̂a are defined by

P̂a �
Z

la

dz jzihzj ð6Þ

and
P

a P̂a ¼ ÎS in accordance with the definition of a

POVM. Assuming that the coherent states jzi are minimum

uncertainty wave packets of S, and that the cells la have

dimensions in position and momentum that are larger than

the position and momentum widths of the state jzi (so that

their phase space volume exceeds �h � 1), the operators in

this POVM will also constitute an approximate PVM,8 so

that

P̂aP̂b � dabP̂a: ð10Þ

We can then extend the set fP̂ag to an approximate PVM

on the total Hilbert space HS �HE of the system SE by

defining the set of operators fP̂ag, where P̂a � P̂a � ÎE,

with ÎE the identity on HE. In what follows, we will make

use of this approximate PVM to analyze the branching

structure of the pure state evolution of the closed system

SE. This particular choice of approximate PVM is moti-

vated by the fact that the coherent states jzi are pointer

states of S under its interaction with E; this entails that the

different branch states defined using this PVM will be

mutually orthogonal at each time, which in turn entails the

existence of a branching structure for the overall state

evolution.

To see this more clearly, let us decompose the unitary

evolution of the pure state of SE using the approximate

coherent state PVM just defined. Dividing the time interval

between t ¼ 0 and t[ 0 into N equal steps Dt ¼ t
N

, we can

rewrite the unitary state evolution as follows:

jWðtÞi ¼ e�iĤNDtjW0i ð11Þ

¼
X

a0;...;aN

Ĉa0;...;aN
jW0i; ð12Þ

where

Ĉa0;...;aN
jW0i � P̂aN

e�
i
�hĤDtP̂aN�1

. . .e�iĤDtP̂a1
e�

i
�hĤDtP̂a0

jW0i.
It can be seen straightforwardly from the definition of the

POVM operators in (6) that environmental decoherence

relative to a pointer basis of coherent states for S entails (by

virtue of the definition of the operators P̂a) that at each

time NDt, these branch vectors satisfy the condition

hW0jĈ
y
a0

0
a0

1
;...;a0

N
Ĉa0a1;...;aN

jW0i � 0 ð13Þ

for ak 6¼ a0k for any 0	 k 	N. Thus, the unitary evolution

of the total quantum state follows the progression,

Unitary Branching Evolution

jW0i�!
e�iĤDt X

a1

Ĉa1
jW0i�!

e�iĤDt X

a1a2

Ĉa1a2
jW0i�!

e�iĤDt

� � � �!e�iĤDt

X

a1a2;...;aN

Ĉa1a2;...;aN
jW0i;

ð14Þ

where for every 1	 i	N, hW0jĈ
y
a0

0
a0

1
;...;a0

i
Ĉa0a1:::ai

jW0i � 0

if ak 6¼ a0k for any 0	 k 	 i. Each index added to the sum at

each new time step Dt captures a separate branching of the

quantum state.

Thus far, our analysis has assumed that the quantum

state of the system SE evolves unitarily according to

equation (4). However, the world of our experience—

which is characterized by determinate values of position

and momentum for systems like the ones we see behaving

classically—can only be associated with one particular

branch. Given the branching structure that is carved out by

the unitary dynamics through decoherence, we can asso-

ciate to each branch at time t ¼ iDt an effective, normal-

ized ‘‘branch state,’’ 1
Wa1 ;...;ai

Ĉa1;...;ai
jW0i, where

8 A projection-valued measure (PVM) on a Hilbert space H is a set of

self-adjoint operators fP̂ag on H such that
X

a

P̂a ¼ Î; ð7Þ

P̂aP̂b ¼ dabP̂a; ð8Þ

where there is no summation over repeated indices in (8). The concept

of a positive operator-valued measure (POVM) on H generalizes the

notion of a PVM by relaxing the requirement of orthogonality in (8).

Thus, a positive-operator-valued measure (POVM) on a Hilbert space

H is a set fP̂ag of positive operators such that
X

a

P̂a ¼ Î: ð9Þ

Recall that an operator Ô is positive if it is self-adjoint and

hWjÔjWi
 0 for every jWi 2 H. Note that every PVM is also a

POVM.
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Wa1;...;ai
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hW0jĈ
y
a1;...;ai

Ĉa1;...;ai
jW0i

q

. It is then possible to

define an effective, stochastic evolution for the branch-

relative state of the system SE as follows:

Stochastic Branch-Relative State Evolution

1

Wa1

Ĉa1
jW0i������!

prob:
jWa1a2

j2

jWa1
j2 1

Wa1a2

Ĉa1a2
jW0i

�������!
prob:

jWa1a2a3 j2

jWa1a2 j2 1

Wa1a2a3

Ĉa1a2a3
jW0i��������!

prob:
jWa1a2a3a4 j2

jWa1a2a3 j2

� � � �!
prob:

jWa1a2 ;...;aN�1aN j2

jWa1a2 ;...;aN�1
j2 1

Wa1a2:::aN

Ĉa1a2;...;aN
jW0i:

ð15Þ

A quick calculation will show that the transition probability
�
�
�
�

Wa1 ;...;aiaiþ1

Wa1 ;...;ai

�
�
�
�

2

at the ith time step is simply the square mag-

nitude of the ath
iþ1 component of the time-evolved state

e�iĤDt 1
Wa1 ;...;ai

Ĉa1;...;ai
jW0i ¼ 1

Wa1 ;...;ai

P

aiþ1
Ĉa0

1
;...;a0

i
aiþ1

jW0i, in

accordance with the usual Born Rule prescription for col-

lapse. The physical justification for taking a single branch

state rather than the overall superposition as the effective

state of SE and for adopting the above succession of Born

Rule collapses as the effective evolution of this state will

depend on the particular collapse mechanism and interpre-

tation of quantum mechanics that is ultimately taken as the

basis of the analysis. In Rosaler (2015a), I discuss the

manner in which various realist interpretations purport to

underwrite this sequence of collapses or effective collapses,

and in Rosaler (2015b) show in more detail how this

interpretation-neutral account can be specially tailored to

the specific context of the de Broglie–Bohm interpretation.

My central concern here is with reduction rather than

with the interpretation of quantum mechanics. Putting

questions of interpretation to the side and assuming that our

effective, stochastic, branch-relative state evolution above

is underwritten by some mechanism for collapse or effec-

tive collapse, we can associate a point in classical phase

space CS to each effective branch state at each time by

taking the branch-relative expectation values of S’s posi-

tion and momentum operators,

Furthermore, to each stochastic, branch-relative state

evolution (3) we may associate the following stochastic,

quasi–classical, branch-relative evolution in classical phase

space:

Xq
a1

Dtð Þ;Pq
a1
ðDtÞ

� �

�������!
prob:

jWa1a2 j2

jWa1 j2

Xq
a1a2

ð2DtÞ;Pq
a1a2

2Dtð Þ
� �

�������!
prob:

jWa1a2a3 j2

jWa1a2 j2

Xq
a1a2a3

3Dtð Þ;Pq
a1a2a3

3Dtð Þ
� �

�������!
prob:

jWa1a2a3a4 j2

jWa1a2a3 j2

� � � �������!
prob:

jWa1a2 ;...;aN�1aN j2

jWa1a2 ;...;aN�1 j2

Xq
a1a2a3;...;aN

ðNDtÞ;Pq
a1a2a3;...;aN

ðNDtÞ
� �

: ð18Þ

Note that the discreteness of the timesteps Dt here is

superimposed artificially on a dynamical process of

entanglement and branching that occurs continuously in

time. By making the time intervals Dt successively smaller,

our discrete, stochastic, branch-relative phase space tra-

jectories provide successively better approximations to a

continuous, stochastic ‘‘quantum’’ phase space trajectory

Xq tð Þ;Pq tð Þð Þ for the system S.

Thus far, my analysis has suggested how stochastic quasi–

classical trajectories can be recovered from our effective,

branch-relative state evolution. However, I have not given

any argument as to why these quasi–classical trajectories

should be approximately classical over relevant time-

scales—that is, I have not given any argument as to why these

trajectories should approximate solutions to classical equa-

tions of motion (e.g., Newton’s or Hamilton’s equations).

Taking Xq tð Þ;Pq tð Þð Þ to represent the phase space trajectory

associated with the stochastic evolution of the branch-rela-

tive expectation values of position and momentum, and

Xc tð Þ;Pc tð Þð Þ to represent the deterministic classical trajec-

tory with the same initial condition as this quantum trajec-

tory, so that Xqð0Þ ¼ Xcð0Þ and Pqð0Þ ¼ Pcð0Þ, the recovery

of classical behavior requires us to show that, with proba-

bility 1 � �, for very small �, the relation

Xq(t) − Xc(t) < δX

P q(t) − P c(t) < δP ,

ð19Þ

Xq
α1...αN

(NΔt) ≡ 1
|Wα1...αN

|2 Ψ0|Ĉ†
α1...αN

X̂S ⊗ ÎE Ĉα1...αN
|Ψ0

P q
α1...αN

(NΔt) ≡ 1
|Wα1...αN

|2 Ψ0|Ĉ†
α1...αN

P̂S ⊗ ÎE Ĉα1...αN
|Ψ0 .

(16)

(17)
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holds for t\T , where dX and dP are the margins of error and

T the timescale within which the Newtonian model is known

to approximate the behavior of the system S itself. A seldom-

discussed form of Ehrenfest’s Theorem, formulated for a

certain class of open systems S (the familiar form of

Ehrenfest’s Theorem only concerns closed systems), ensures

that

d Tr½q̂SP̂�
dt

¼ �Tr q̂S

oV̂ðXÞ
oX

 �

; ð20Þ

or more concisely,

dhP̂i
dt

¼ � oV̂ðXÞ
oX

� �

; ð21Þ

where q̂S is the reduced density matrix of S, hP̂i ¼ Tr½q̂SP̂� and

hX̂i ¼ Tr½q̂SX̂� (Joos et al. 2003), Ch. 3. If we now impose the

restriction to density matrices q̂S for which the position-space

probability distribution hXjq̂SjXi is narrowly peaked about

some particular X0, with a width that is small by comparison

with the characteristic length scales of V, it follows that

dhP̂i
dt

� � oVðXÞ
oX

�
�
�
�
hX̂i

: ð22Þ

Combined with the relation
dhX̂i

dt
¼ hP̂i

M
, this entails that the

expectation values hX̂i and hP̂i follow an approximately

Newtonian trajectory as long as hXjq̂SjXi remains suitably

narrow by comparison with the dimensions of V, and to a

measure of approximation determined by the width of the

distribution hXjq̂SjXi. Thus, the timescales on which the

expectation values hX̂i and hP̂i follow an approximately

Newtonian trajectory will depend on the rate at which the

‘‘ensemble’’ distribution hXjq̂SjXi spreads over time.9 As I

argue in further detail in Rosaler (2015a), it follows that

over timescales where ensemble spreading can be ignored,

the only branch-relative phase space trajectories that have

non-negligible probability of occurring on our stochastic,

branch-relative phase space evolution are ones that are

approximately (i.e., to within margin of error given by the

width of the distribution hXjq̂SðtÞjXi) Newtonian in form.

As a general rule of thumb, these timescales will be larger

when the mass of S is large, and smaller when the effects of

chaos—as quantified, for example, by the Lyapunov

exponent in the classical Hamiltonian HS—are significant.

Environmental decoherence also contributes somewhat to

the rate of ensemble (as opposed to coherent) spreading;

see Schlosshauer (2008), Ch. 3 for discussion of this point.

To complete this analysis, one must show that the

timescales on which ensemble spreading in S can be

ignored are at least as long as the timescales over which

Newtonian trajectories are known to approximate of the

actual trajectory of the system in question. Otherwise, the

branch-relative phase space evolutions prescribed by the

quantum model of the system would not describe the

behavior of the system at least as well as the classical

model, and empirical reduction of the classical to the

quantum model would fail. Calculation of the timescales

for ensemble spreading requires more detailed specification

of the particular quantum model of the system in question.

The timescales and margins of error within which classical

Newtonian trajectories can be expected to track the sys-

tem’s behavior are a matter for empirical investigation;

from a practical point of view, it may only be possible to

specify them imprecisely within certain broadly specified

bounds. Moreover, as was already discussed, one must

provide some justification for the ad hoc collapse posited

by (15). Competing interpretations of quantum theory all

offer different accounts of collapse. For further discussion

of the manner in which the collapse mechanisms associated

with different interpretations can be fit into this account of

classical behavior, see Rosaler (2015a).

On this account of the empirical reduction between

classical and quantum models of the same physical system

S, the quantum mechanical quantities 1

jWa1 ;...;aN
j2

hW0jĈ
y
a1;...;aN

X̂S � ÎE

� �

Ĉa1;...;aN
jW0i and 1

jWa1 ;...;aN
j2

hW0jĈ
y
a1;...;aN

P̂S � ÎE

� �

Ĉa1;...;aN
jW0i represent the very same

physical degrees of freedom as are represented by the

phase space point Xc tð Þ;Pc tð Þð Þ in the classical model of S.

In this sense, the two variables—quantum and classical—

may said to co-refer, even if their agreement is only

approximate. If the physical assumptions of the above

analysis are correct, we see that whatever can be modeled

classically in terms of a point evolving in classical phase

space can be modeled quantum mechanically in terms of

the stochastic evolution of branch-relative expectation

values of the system’s position and momentum operators.

This analysis supports something close to Belot’s cri-

tique of Batterman’s claim that quantum mechanics is

explanatorily inadequate because it requires reference to

the resources of classical mechanics for the explanation of

certain phenomena. Belot writes that ‘‘the mathematics of

the less fundamental theory is definable in terms of the

mathematics of the fundamental theory and… only the

latter need be given a physical interpretation...so we can

view the desired explanation as drawing only on the

resources internal to the more fundamental theory’’ (Belot

2005). While it is not quite correct to say that a classical

phase space point is defined in terms of the branch-relative

expectation values of position and momentum on our

account, we can say that both quantities represent the same

9 It is important to note that the ensemble distribution hXjq̂SðtÞjXi
reflects a distribution across branches, which originate in some initial

narrow state q̂0
S.
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physical degrees of freedom, so that any physical system

whose behavior is well-described by the classical evolution

of a point in phase space can equally well be described by

the quantum-mechanical evolution of branch-relative

expectation values of position and momentum. Thus,

quantum mechanics does not require classical mechanics

for the description of phenomena in the domain of classical

mechanics and offers its own counterparts to any physi-

cally salient features of classical theory.

The analysis of quantum–classical relations given in this

section provides a general strategy for understanding how

any situation that is successfully modeled in classical

mechanics can also be modeled at least as precisely in

quantum mechanics, and so provides the outline of an

account of the empirical reduction of classical mechanics

to quantum mechanics. It enables us to understand the

behavior of any real classical system—say, the center of

mass of a golf ball in mid-flight—not only in the familiar

setting of classical mechanics, but also in the more intricate

framework of quantum mechanics.

3.1 Open Questions Concerning the Decoherence-

Based Account of Empirical Quantum–Classical

Reduction

It is doubtful that the singular limits highlighted in Bat-

terman’s analysis have much, if any, bearing on the via-

bility of the decoherence-based approach to empirical

reduction that I have outlined here. The basic assumptions,

methodologies and concerns guiding the two analyses are

simply too different. However, it is still reasonable to have

doubts about the sort of decoherence-based account of

empirical reduction described above insofar as it relies

heavily on a number of unproven assumptions. Among the

most important of these unproven assumptions are the

following:

1. It was assumed that the pointer states of the system

S are narrowly peaked wave packets. Zurek and others

have argued that this is a fairly generic feature of

systems of the sort that have concerned us here.

However, such arguments have a strongly heuristic

character, and it is important to ask whether it is

possible to give a more rigorous justification of the

claim that narrowly peaked coherent states are gener-

ically pointer states in the systems we know to behave

classically.

2. It was assumed implicitly in our analysis that the

branching of the quantum state associated with deco-

herence is an effectively irreversible process. By close

analogy with the problem of the arrow of time in

classical statistical mechanics, this irreversibility must

be reconciled with the time-reversal symmetry of the

fundamental Schrodinger evolution. The question of

how to reconcile the irreversibility of decoherence

processes with the fundamental reversibility of the

Schrodinger evolution from which they emerge

remains open. For discussion of the origins of

irreversibility associated with branching of the quan-

tum state, see Wallace (2012), Ch. 9.

3. The open-systems version of Ehrenfest’s Theorem,

which was used to show that branch-relative phase

space trajectories are approximately Newtonian on

timescales where ensemble spreading is small,

assumes that the evolution of the reduced density

matrix q̂S of the system S is governed by a ‘‘master’’

equation of the specific form given above (see Joos

et al. 2003). A complete reduction of classical to

quantum here requires a derivation of this master

equation from the microscopic Schrodinger equation

for the closed combination of system and environment.

It is important to note, however, that the details of the

microscopic quantum model may vary significantly

from one classical system to another.

4. It should be shown explicitly for the system in question

that the rate of ensemble wave packet spreading in the

quantum model is consistent with the timescales on

which classical trajectories are known to track the

system’s behavior. As was shown above, faster

ensemble spreading causes the total quantum state to

branch more rapidly, which in turn makes it more

likely that branch-relative trajectories will exhibit

significant stochastic fluctuations away from classical-

ity on shorter timescales. One must show that ensem-

ble spreading is sufficiently slow so that with

probability extremely close to 1, the branch-relative,

quantum phase space trajectory of the system S will

approximate the classical trajectory with the same

classical initial conditions over timescales for which

the classical trajectory tracks the system’s behavior. In

answer to concerns about the capacity of quantum

theory to recover classically chaotic behavior, Zurek

has argued that the incorporation of decoherence

addresses these worries. However, this is by no means

a consensus view. For discussion of the connection

between decoherence and chaos, see Zurek and Paz

(1995), Zurek (1998), Bokulich (2008) and references

therein.

Because of these remaining open questions, the deco-

herence-based framework for recovering classical

behavior outlined above should be viewed as a research

program that consists in providing further support for its

various assumptions and extending it to new cases,

including the empirical reduction of classical to quantum

field theory.
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4 Conclusion

I have juxtaposed two alternative analyses of the purported

reduction of classical to quantum mechanics. The first of these

analyses, due to Batterman, denies the possibility of reducing

classical to quantum mechanics on the grounds that the limit

�h ! 0 is singular and that a certain formal construction

associating wave functions with a special class of surfaces in

classical phase space breaks down in chaotic systems. The

second analysis, drawn from the literature on decoherence

theory, suggests that it is possible to effect a reduction of

classical to quantum mechanics by incorporating the system’s

interaction with its environment and paying careful attention

to the branching evolution for the quantum state that results.

By distinguishing between ‘‘formal’’ and ‘‘empirical’’ senses

of reduction, I have argued that the decoherence-based

account offers a viable strategy for empirical reduction while

the issues raised by Batterman potentially pose problems for

reduction only in the formal sense.

As Berry has noted, questions about inter-theoretic

reduction are highly mathematical in nature. However, if

our concern is with whether successive theories in physics

do in fact offer progressively more universal and precise

depictions of physical reality, then it is a mistake to think

that reduction in this sense is solely a question of mathe-

matics. In such contexts, it is the empirical rather than the

formal sense of reduction that is relevant. While questions

about empirical reduction are partially mathematical in

nature, assessing whether one theory reduces empirically to

another requires further empirical input regarding the set of

circumstances under which the reduced theory furnishes an

accurate representation of the behavior of some actual

physical system; without such information, it would not

generally be possible to assess whether one theory

encompasses the domain in which the other is successful.

Therefore, empirical reduction is not a two-place relation

between theories, but a three-place relation connecting the

theories and the real physical systems they describe. It is

likely that the distinction between formal and empirical

reduction, and between formal and empirical approaches to

inter-theory relations more generally, can usefully be

applied to the study of other inter-theory relations as well.
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