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Abstract In this article, I will discuss the relationship

between mathematical intuition and mathematical visuali-

zation. I will argue that in order to investigate this relation-

ship, it is necessary to consider mathematical activity as a

complex phenomenon, which involves many different cog-

nitive resources. I will focus on two kinds of danger in

recurring to visualization and I will show that they are not a

good reason to conclude that visualization is not reliable, if

we consider its use in mathematical practice. Then, I will

give an example of mathematical reasoning with a figure, and

show that both visualization and intuition are involved.

I claim that mathematical intuition depends on background

knowledge and expertise, and that it allows to see the gen-

erality of the conclusions obtained by means of visualization.

Keywords Mathematical intuition � Mathematical

visualization � Diagrammatic reasoning � Problem-solving

Once more, we are forced to retrace our steps and

make ourselves aware of phenomena that we have

been taking for granted.

- Gian Carlo Rota

1 Introduction: Mathematical Intuition

and Visualization

The term ‘mathematical intuition’ designates a particular

kind of cognitive relationship between mathematicians

and their activity of doing mathematics. Nonetheless, in the

literature there does not seem to be an agreement about

what kind of knowledge this type of cognitive relationship

produces, nor about which aspects of mathematical activity

it refers to. Indeed, there are several ways of defining

mathematical intuition.

We can think of intuition as the immediate cognition of

mathematical objects.1 But mathematical intuition has also

been related to the discovery of mathematical proofs:

intuition would involve an unconscious preparation similar

to a gestation, and afterwards an illumination by means of

which we get to a new conclusion.2 In some cases, math-

ematical intuition has also been discussed as fallible

and defeasible, in analogy with other cognitive relation-

ships such as perception: if physical laws are known by
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1 For example, at the dawn of set theory, Cantor discusses how to

access transfinite numbers. According to him, we get to Cantorian sets

operating a double act of abstraction from sets of concrete things. The

first act of abstraction brings us to the ‘ordinal number’ or

enumeration; the second act of abstraction brings us to the cardinal

number or power of the same set. The cardinal number of M, then, is

the general concept that arises from the aggregate M by means of our

active faculty of thought. It is thanks to this faculty that we can

abstract, and, because of that, provide definitions. By abstracting, we

obtain a whole Einheit (‘‘Unity’’) of undifferentiated Einsen
(‘‘Ones’’): according to Cantor, these are ‘objects of our intuition’.

See Cantor (1915).
2 According to Hadamard, both the preparation and the illumination

are mostly subconscious. Nevertheless, he does not deny that

conscious thinking is necessary. In fact, once this unconscious

illumination has occurred, it must be verified by means of conscious

thinking. Intuition allows the mathematician to see the conclusion;

then, it is only afterwards that this conclusion will be proved by

traditional means. See Hadamard (1945).
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perception, then axioms are known by intuition.3 To sum

up, intuition is defined as intuition of mathematical objects,

mathematical proofs, or logical axioms; nonetheless, what

seems to be a common feature of all these definitions is the

idea that when we reason by intuition, these objects, proofs,

or axioms ‘force themselves upon us as being true’, to use

Gödel’s expression.4 Mathematical intuition is thus even-

tually described as a form of rationality that puts mathe-

maticians in the position of accepting some mathematical

facts, without feeling the urgency of justifying their beliefs:

recurring to intuition, mathematicians find a way of

‘speeding up’ their reasoning, and as a consequence arrive

at some mathematical conclusion.

Another particular kind of cognitive relationship

between mathematicians and their mathematical activity is

‘mathematical visualization’. It can be claimed that math-

ematical visualization and mathematical intuition are

linked. In fact, an alternative way of describing mathe-

matical intuition would be to define it as the capacity of

perpetuating the function of vision, but by means other

than the eyes: when mathematicians cease being able to

visualize a proof, it is then that they turn to intuition. If this

is true, then there would be a clear discontinuity between

mathematical visualization and mathematical intuition.

Nevertheless, there is at least a sense in which the two are

similar. First of all, both mathematical visualization and

mathematical intuition have a distinct non linguistic char-

acter, and it is for this very reason that they have been

traditionally opposed to other aspects of mathematical

activity that typically possess a propositional and linguistic

character, i.e. axioms or deductive proofs. Intuition and

visualization are intrinsically not linguistic: therefore, they

are supposed not to be reliable and are not legitimate

elements of the mathematical discourse.

In this article, I will go against this line of thought.

Mathematical intuition and mathematical visualization may

well be two different kinds of mathematical cognitive

processes, that is to say, mathematicians may well ‘grasp’

by intuition precisely what they cannot ‘see’. Nonetheless,

if we focus on visualization and on its role in the practice

of mathematics, we find that at least in some cases of

mathematical reasoning, intuitive thinking and visualiza-

tion are intertwined. To argue in favor of this claim, I will

reject the two following misleading assumptions, according

to which:

1. in mathematical reasoning, there is a sharp opposition

between visual processes and linguistic processes;

2. mathematical intuition as well as mathematical visu-

alization represent a kind of direct access to mathe-

matical facts.

In sect. 2, I will explain why assumption (1) should be

given up in order to explore the complex phenomenon of

mathematical activity, which involves lots of different

cognitive resources. It is only once this conception of

mathematics is assumed as a background, that we can

consider the role of intuition and visualization in it. I will

present two strategies to reach this goal. In sect. 3, I will

focus on two kinds of danger in making use of visualiza-

tion. In sect. 4 I will show how these dangers are not a good

reason to conclude that visualization is not reliable, if we

consider its use in mathematical practice. I will give an

example of mathematical reasoning with a figure, and show

how both visualization and intuition are involved in it, if

assumption (2) is rejected. Finally, in sect. 5, I will put

forward some conclusions.

2 A (Necessary) Digression on Explanation

and Understanding in Mathematics

To discuss the role of intuition and visualization in math-

ematics means to discuss their role in relationship to other

aspects that are central in mathematical activity, but that

have been surprisingly neglected by most of the literature

on mathematics of the most recent years. Without their

acknowledgement, it is difficult to find a way to consider

the contribution of informal reasoning in general to the

process of mathematical research. According to Barwise

and Etchemendy, this neglect was caused by the primacy of

a particular notion of mathematical proof, which they

define as the ‘dogma’ of logocentric reasoning. This dogma

is very well summarized in the words of Tennant, who

claims that

[The diagram] is only an heuristic to prompt certain

trains of inference; […] it is dispensable as a proof-

theoretic device; indeed, […] it has no proper place in

the proof as such. For the proof is a syntactic object

consisting only of sentences arranged in a finite and

inspectable array.5

3 According to Gödel, in physics as well as in logic, we are able to

describe, and in fact we do describe, the ultimate reality of things.

This happens because we access this nature by means of some

immediate capacity: by perception in the case of physics, and by

intuition in the case of mathematics. It is mathematical intuition that

provides mathematical content. The analogy between perception and

intuition can be pushed further. Like perception, intuition is fallible:

we can fail in our attempts to get to know the abstract world we are

facing. This may mean that further and new intuitions are needed.

Therefore, axioms are analogous to physical laws, since it is by means

of them that we gain knowledge of the relationships among ‘things’,

and we expect experiences to occur in accordance with what these

laws prescribe. See Gödel (1986).
4 Gödel (1986, p. 268). 5 Barwise and Etchemendy (1996, p. 3).
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According to the dogma, a proof:

(a) is a syntactic object

(b) consists only of sentences arranged in a finite and

inspectable array

I will not elaborate further the reasons that may have

brought to this definition of proof. Rather, I will argue that

there are two possible strategies to go against it. My aim is

to recover a conception of mathematics as a complex

phenomenon, which involves different cognitive resources.

I will argue that the second strategy is more successful.

2.1 Barwise and Etchemendy’s Program

The first strategy is represented by Barwise and Etch-

mendy’s program.6 Their project was to reject claim (b)

and to reformulate claim (a), arguing that in a mathematical

proof semantics does play a role as well as syntax.

According to Shin’s reconstruction,7 the reasons to

undertake this project were of three kinds. First, Barwise and

Etchemendy relied on the observation of students’ perfor-

mances: in teaching logic, semantic concepts are of help to

carry out formal proofs in a deductive system. In fact, they

assumed that reasoning is an heterogenous activity: in the

process of reasoning human beings obtain information

through many different kinds of media, including diagrams,

maps, smells, sounds, as well as written or spoken state-

ments. Finally, they wanted to restore the unity of teaching

and research: there is no reason to think that we have to

choose between the merit of modern logic, i.e. its formal-

ization and rigor, and the merit of multi-modal reasoning,

i.e. its practical power, and not to have both of them. Their

objective was then to evaluate the logical dimension of

diagrams and to create a system which allowed for their

rigorous formalization. Formal logic develops out of our

daily valid reasoning: it is possible to widen logic in such a

way that it finally includes visual representations as well as

linguistic propositions. Figures and diagrams are not only

good heuristic tools, but proper elements of mathematical

proofs. The territory of logic is eventually expanded by

freeing it from a single mode of representation, and ordinary

reasoning appears not to be in conflict with what has been

done in logic and mathematics.

One of the outcomes of the project was Shin’s work on

Venn diagrams, aimed at giving explicit rules for their

rigorous use.8 A second outcome was the creation of a

software to teach logic, Hyperproof. As their previous

software, Tarski’s World, this new software used graphics

to teach the syntax and semantics of first-order logic.

Nonetheless, Hyperproof was also teaching the inference

making reference to graphics: in fact, it incorporated het-

erogenous reasoning rules which moved information back

and forth between graphical representations of blocks-

worlds in a windowpane and sentences of first-order logic

below it.

Despite these interesting results, Barwise and Etch-

emendy strategy seems to work only up to a certain extent,

for the following reasons.

The first problem is summarized by Mancosu, who

claims that ‘‘the work carried out by Barwise and Etch-

emendy on visual arguments in logic and mathematics is

motivated in great part by the proof-theoretic foundational

tradition’’.9 To wit, Barwise and Etchemendy chose to

simply reformulate claim (a) without feeling the urgency of

re-discussing the very notion of proof as it has been

received by the proof-theoretic tradition. They certainly

succeeded in widening the class of proof-theoretical devi-

ces, in such a way that it includes diagrams as well, but

their intention was to do for visual reasoning what Frege

and his followers have done for the language-based one.

This shows how they were still largely motivated by the

proof-theoretic framework: they focused on visual rea-

soning, but still they had nothing to say about the phe-

nomenology of visualization. In fact, it is the very setting

up of the question about mathematical visualization within

the traditional framework that is problematic: there is very

little clarity on what criteria one can appeal to in order to

distinguish linguistic systems from visual systems, beside

the fact that only the first ones convey rigorous proofs. The

real challenge is to study how in general in a representa-

tional system, its linguistic, geometrical and topological

features affect its expressivity.

Let us recapitulate what I have been presenting. To dis-

cuss informal aspects of mathematical activity such as dia-

grammatic reasoning, Barwise and Etchemendy’s program

was aimed at showing that it is possible to add to the tra-

ditional model of linguistic rigor rigorous forms of inference

with diagrammatic elements in them. I argue that this is not

enough, since it only provides a ‘diagrammatic’ extension of

standard 20th century logic, without giving us any insight

into what working with diagrams genuinely involves.

A diagrammatic logic such as Shin’s treatment of Venn

circles surely provides a formal system which includes

diagrams as well as sentences. Remember that the aim is to

reflect what happens in logical reasoning, and how students

seem to go back and forth from syntactic to more semantic

information, and Hyperproof is an attempt to exploit this

capacity. Nevertheless, what I claim is that this aim is not

completely met. In fact, giving explicit rules to apply in

order to visualize as in Shin’s system case, or giving explicit6 Ibid.
7 Shin (2004).
8 Shin (1994). 9 Mancosu (2005, p. 23).
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interpretations for each first-order logic sentence as in

Hyperproof, seems to deprive visualization of its effec-

tiveness and straightforwardness, which are on the contrary

its more interesting aspects from a cognitive point of view.

Diagrams are given a new formal and rigorous life, in line

with the proof-theoretic tradition, but at the same time they

seem to lose their character of offering themselves as pos-

sible ‘reasons’ for the truth of some mathematical fact. No

argument is given to explain how visualization seems to be

more intuitive. Moreover, providing simple models for first-

order logic is only a first step in pursuing this strategy, if we

want it to be applied to all mathematics. In fact, it is not clear

how this model could work in relationship to forms of

visualization in mathematical theories that are richer than

first-order logic. If we want to widen logic so that it includes

more complex and multi-modal reasoning, then we should

account also for the most common mathematical cases.

I propose that to reach this aim, it is necessary to reject

assumption (1) in sect. 1: there is no opposition between

visual and linguistic mathematics.

2.2 Mathematical Practice as Searching for Reasons

Let us explore a second strategy, which rejects both claims

(a) and (b) and the very opposition between visual pro-

cesses and linguistic processes in mathematics in assump-

tion (1). As long as this opposition is maintained, visual

proofs will always be defined on the basis of what the

received notion of proof prescribes: nevertheless, this

opposition obscures phenomena that populate the history of

mathematics. Instead of focusing on the proof-theoretic

notion of mathematical proof, therefore, let us consider

mathematical proofs in the light of mathematical practice.

I will first discuss which features of mathematical activity

emerge once we reject assumption (1), and then I will show

how these relate to intuitive thinking and visualization.

Let us look for example at the notion of mathematical

explanation of mathematical facts. Mancosu points out that

it could be reasonably argued that a full proof might

not serve as an explanation in the classroom. Indeed,

often pictures or informal arguments will play an

ideal ‘explanatory’ role, whereas a full proof will be

no explanation at all in that context.10

Actually, often mathematical proofs that are in line with

claims (a) and (b) do not coincide with an effective

mathematical explanation. This seems to be a peculiarity of

mathematics, or better of mathematics as it is seen through

the lens of proof-theoretic tradition. From the perspective

of the received view, there seems to be a gap between the

written version of a result, which is the syntactic and

sentential proof, and what is needed in order to understand

the same result, which can also rely on other kinds of

elements such as pictorial or informal arguments. The

activity of ‘proving’ in this narrow sense seems to have

obscured the activity of ‘searching for reasons’. As Rota

explains,

A realistic look at the development of mathematics

shows that the reasons for a theorem are found only

after digging deep and focusing upon the possibilities

of the theorem. The discovery of such hidden reasons

is the work of the mathematician. Once such reasons

are found, the choice of particular formal sentences to

express them is secondary. Different but exchange-

able formal versions of the same reason can and will

be given depending on circumstances.11

Mancosu tries to challenge the proof-theoretic idea of

visualizations as nothing more than useful heuristic tools,

and assumes that the investigation of different case studies

taken from the history of mathematics can assess the plau-

sibility of the role of diagrams in mathematical explanations:

the connections that they reveal maybe do not count as

necessary and truth preserving, but still they can count as

reasons. As Rota suggests, verification is proof, but verifi-

cation might not be reason; mathematicians are not satisfied

with proving conjectures, since what they want is reasons.

There is also another respect why assumption (1) should

be rejected. It could be argued that the distinctive nature of

visual proofs would be their being non-linguistic: because

of that, visual proofs prove the particular statement ‘all

together’, i.e. in a single display. Most of the time, this is

expressed by locutions such as ‘reading off’ information

from a diagram, or extracting information ‘at zero cost’.

These claims may have a kind of prima facie appeal, since

they oppose these intuitive features of visual representa-

tions to the seriality and sequentiality of language. Nev-

ertheless, these particular advantages can be questioned.

First of all, visual proofs are not really ‘proofs without

words’.12 No one would say that using a diagram is only a

matter of possessing some kind of perceptual capacity: we

have to know the mathematical statement in question to be

able to find it ‘in’ or ‘represented by’ the diagram. If we do

not, then reasoning with a diagram would be equivalent to

finding the solution of a riddle such as ‘‘from this figure,

find the statement in it’’ or ‘‘which statement is represented

by the figure?’’. In other words, we always need some

linguistic explanation or justification for our use of that

particular diagram. Moreover, a mathematical problem is

not a riddle because there is a historical context it refers to.

Secondly, visual proofs are not really conveying different

10 Mancosu (2001).

11 Rota (1997, p. 191).
12 ‘Proofs without Words’ is the title of Nelsen (1997, 2001).
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pieces of information simultaneously, where proofs as

defined by claims (a) and (b) would do that in discrete

steps. In fact, a visual proof consists as well in step by step

instructions on how to organize space. As I will show, in a

diagram the process of discovery appears to be intertwined

with the process of justification: the diagram convinces us

without putting us in the position of explaining this feeling

of confidence we experience.

This second strategy therefore rejects assumption (1)

and gives an account of mathematics as the activity of

searching for reasons. In this context, proofs are not the

objects prescribed by claims (a) and (b), but they involve

different kinds of multi-modal reasoning. If this is the case,

then it is a matter of finding good historical case studies

which show how intuitive thinking or visualizations are

proper elements in the process of finding a solution to a

problem or in feeling justified in our beliefs.

Wa can now rephrase the limitations of Barwise and

Etchemendy strategy. According to them, a mathematical

proof proves the truth of a single proposition, and it does

that because there are some truth-preserving rules of

inference that have been defined and that have been shown

to be reliable. Shin’s system makes Venn circle rigorous,

and Hyperproof goes back and forth from sentences to the

concrete-world model: they both give explicit criteria for

having a correct and reliable visualization. Nevertheless,

this strategy does not seem to reflect what actual mathe-

matical proofs are: in providing a proof, we happen to

intuitively recur to visualizations, and we do that not

because we apply some explicit rules that have been given,

but simply because the recourse to visualizations may in

some cases have a role in our searching for reasons.

In the rest of this article, I will discuss to what extent

intuition and visualization have a proper role in this

searching for mathematical reasons. According to Fefer-

man, looking at mathematical practice, it is easy

to recognize the ubiquity of intuition in the common

experience of teaching and learning mathematics, and

the reasons for that […]. In sum, no less than the

absorption of the techniques of systematic, rigorous,

logically developed mathematics, intuition is neces-

sary for the understanding of mathematics.13

I will try to give evidence to suggestions such as this,

and I will argue that to do that it is necessary to reject also

assumption (2). Intuition as well as visualization are not a

kind of direct access to mathematical facts, but rather they

are mediated by background knowledge and expertise. In

the next section, I will present two dangers in relying on

visualizations and intuition. In sect. 4, I will give my

proposal for a general framework that accounts for them.

3 Two Problems

3.1 Dangerous Discoveries

I will present here the first danger in visualizing: figures

can induce false conclusions. This danger would call into

question the possibility that giving a visualization is helpful

in mathematical discovery and creativity, and is an

important issue for mathematical research.

In 1908, Klein presented the case of a diagram which is

apparently impeccable, but which in fact induces us to

draw a false conclusion. His aim was to show that figures

are not reliable. His example is the unsound proof that

brings to the conclusion, false, that all triangles are

isosceles.

Consider an arbitrary triangle ABC and draw the bisector

line from the angle A and the perpendicular to side BC

which goes to its middle point D. If these two lines were

parallel, the bisector would also be the altitude of the tri-

angle and the triangle would obviously be isosceles.

Assume instead that these two lines meet. Two cases are

possible: the meeting point O may be inside the triangle or

outside the triangle. In both cases, draw the segments OE

and OF that are perpendicular to AC and AB, respectively.

Finally, join O to B and to C.

In Fig. 1, O is inside the triangle. The right triangles

AOE and AOF are congruent: they have the hypothenuse

AO in common; the angles in A are equal; also the two right

angles are equal. Therefore, AF = AE. Analogously, the

two right triangles OCD and OBD are congruent: they have

OD in common, DB = DC, and the right angles are equal.

Therefore, OB = OC. Now, because of the first congru-

ence, OE = OF; then, it is possible to derive the congru-

ence of triangles OEC and OFB. Hence, FB = EC. If we

add equals to equals, we get to the conclusion that

AB = AC. Therefore, the triangle ABC would be isosceles.

In Fig. 2, O is outside the triangle. In the same way, it

can be inferred that the pairs of triangles OFA and OEA,

OBD and OCD, OBF and OCE are all congruent. There-

fore, AF = AE, FB = EC. If we subtract equals to equals,

we get to the conclusion AB = AC. The triangle ABC

would be once more isosceles.

The proof took into account the two possible cases, and

in both cases it showed that the triangle ABC is isosceles:

something must have gone wrong. According to Klein,

‘‘the only thing in this proof that is false is the figure’’,

because ‘‘the argument is always based upon inaccurate

figures, with perverted order of points and lines’’.14 In the

first attempt, the error which yields the false conclusion is

the assumption that the point O is inside the triangle,

because such a situation will never occur. In the second

13 Feferman (2000). 14 Klein (2004, p. 202).
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attempt, the error which yields the false conclusion is the

claim that OF and OE can be drawn like in Fig. 2. The

right figure is Fig. 3: of the two feet E and F, one must lie

inside, the other outside the side on which it lies, as shown.

If this is the case, then AB = AF - BF, and AC =

AE ? CE = AF ? BF.

Klein’s worry is clear: if there exist such inaccurate

figures, then we should not give credit to them and to what

they show. Intuition and visualization would not be reliable

in the process of mathematical discovery. In the next par-

agraph I will elaborate more on this kind of worry.

3.2 Dangerous Familiarities

The second danger in visualizing is that figures can mislead

our reasoning. This can happen when the reasoning is

performed on the particular image that represents the

mathematical statement without considering the conse-

quences implied by it. This would call into question the

idea that giving a visualization is helpful because it pro-

vides a more ‘familiar’ format on which to reason, and is

an important issue for mathematical education.

In this section, I will first present the results of a recent

study conducted by Bråting and Pejlare on Klein’s ideas on

the limits of our spatial intuition, and secondly a simple

example given by Fischbein. Before discussing the exam-

ples, I will introduce some ideas on the importance and the

limits of intuition in mathematical visualization.

In 1873, Klein distinguished between naive and refined

intuition. He characterized naive intuition as inexact and

fallible. For example, if we imagine a line, it is impossible

for us to imagine it not having a certain thickness, because

it is only with some approximation that we imagine a sign

that corresponds to what the mathematical definition pre-

scribes. But it is only this first kind of intuition that is

subject to these limits: refined intuition is instead the log-

ical deduction starting from the axioms which are consid-

ered as exact truths. Nevertheless, these axioms are neither

arbitrary nor a priori truths, but they constitute an ideali-

zation of the inexact data that are obtained by applying

naive intuition. Informal reasoning plays therefore a role in

the practice of mathematics and especially in mathematical

discovery: mathematics do not coincide with logic intended

in the narrow sense.

Also according to Fischbein, there is a perceptual ele-

ment which appears to be a crucial element of intuition.

This element is extremely important and ubiquitous in

mathematics (Fischbein 1987). Beliefs, expectations, pic-

torial prompts, analogies and paradigms are not mere

residuals of more primitive forms of reasoning, but proper

components of mathematical reasoning—and, in general,

of every kind of scientific reasoning. These properly

mathematical features are genuinely productive as they are

active ingredients of any type of reasoning: without this

direct intervention of empirical information, many subjects

would not be able to spontaneously rely only on their

logical schemas for drawing correct formal conclusions.

Nevertheless, as for Klein’s naive and refined intuition,

there exists a deep tension between the nature of

Fig. 3 The right figure
Fig. 1 O is inside the triangle

Fig. 2 O is outside the triangle
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mathematical reasoning and the nature of mathematics.

The possible practical connotation of some mathematical

notion—for example, the fact that the notion of number is

linked to the notion of concrete magnitude—is not a

criterion for the acceptance of that mathematical notion

as mathematically valid: on the contrary, mathematical

validity is based on the possibility of giving definitions and

of being consistent with certain given axiomatic structures.

Let us turn to my first example now, and consider a case

in which students use figures in order to speculate on a

theorem, but they do not realize that they are in fact

speculating on the properties of the very image and not on

the theorem itself. Bråting and Pejlare’s aim was to eval-

uate this informal and fallible form of intuition and to show

what the role of expertise is in reasoning with visualiza-

tions.15 Do students have problems in seeing some math-

ematical conclusion as correct in a visualization?

To answer to this question, they took into account the so

called ‘snowflake’. This visualization was elaborated by

the Swedish mathematician von Koch to represent an

everywhere continuous but nowhere differentiable func-

tion. Weierstrass had already given a formalization of this

kind of function, but von Koch was not satisfied by this

analytic version of it because, according to him, the ana-

lytic version did not reflect the intrinsic geometrical nature

of the function. By contrast, von Koch believed that in

order to understand something, it is necessary to ‘see’ it.

This is what the snowflake does: it makes an everywhere

continuous but nowhere differentiable function visible. It is

precisely thanks to what Klein has labeled naive intuition

that we see that it is not possible to draw the tangent in any

point of the curve. Bråting and Pejlare disagree: to recog-

nize this impossibility is a matter of possessing the nec-

essary expertise, and not of giving the right visualization.

Thirty-nine university students in mathematics were

given the following task.

Consider the construction that follows (represented in

Fig. 4):

• Start with an equilateral triangle where each side has

length 1.

• On the middle third of each of the three sides, build an

equilateral triangle with sides of length 1/3. Erase the

base of each of the three new triangles.

• On the middle third of each of the twelve sides, build an

equilateral triangle with sides of length 1/9. Erase the

base of each of the twelve new triangles.

• Repeat the process with this 48-sided figure.

Please answer the following questions as carefully as

you can!

1. For how long can you repeat the process?

2. What figure will you get at the end? Is it continuous? Is

it differentiable?

This curve has the property of auto-similarity, that means

that in each of its parts there is a set of details that are as rich

and as complex as the preceding ones, and this process can

go on at infinity. For this reason, the snowflake is continuous

but it does not admit any unique tangent in any point: each

part of the flake, also the smallest one, possesses the prop-

erty of auto-similarity, that means it contains in turn a

richness of details and of minuscule snowflakes.

The results show that the majority of students do not

have problems with the first question, and are perfectly

aware that the process can go on at infinity. The difficulties

come with the second one, which is answered in very

different ways. Sixteen students think that the figure at the

limit is uniform everywhere except in a certain finite

number of points. Seven among these 16 students believe

that it is going to be a circle or a square, and 9 of them a

‘flower’. One student in this last group comments that at

the limit the triangles will become so small that the figure

will become an uniform curve, continuous and differen-

tiable. Fourteen students do not think that the figure at the

limit will be everywhere uniform, and therefore show to be

familiar with the flake curve. Nine students do not give

pertinent answers.

It could be possible to object that this case is so prob-

lematic because it has to do with infinity. Maybe it is the

use of a figure brought ‘to the limit’ that is problematic,

and not the figure per se. Nevertheless, there are also

simpler cases in which the use of a concrete reference for

reasoning on a mathematical statement is misleading. For

this reason, let us turn to our second example.

Fig. 4 Bråting and Pejlare

(2008, p. 355) (With kind

permission of Springer Science

and Business Media)

15 Bråting and Pejlare (2008).
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As I have already discussed, Fischbein argued that there

exists a tension between two different poles typical of

mathematical activity. The first pole is represented by the

research of an ideal model; the second pole by the use to this

aim of tools which possess concrete and psychological

constraints. His hypothesis is that in some cases concrete

objects are introduced to study abstract ones, as they provide

more familiar and meaningful interpretations. Nevertheless,

once this is done, we should be careful not to apply to these

objects kinds of manipulations that are proper to the con-

crete objects in question, but that do not correspond to any

sort of manipulation of the abstract objects they represent.

According to Fischbein, intuition is a particular kind of

cognition, that is our natural way of treating mathematical

conditions as if they were more like practical and empirical

conditions. This intuition is not mediated by language, and

the mathematical system would be sterile without it.

Nevertheless, visualization can bring students to errors.

Consider two parallel axes X and Y. Draw two parallel

lines AB and CD perpendicular to X and Y. Let a be the

constant distance between AB and CD. Draw two curves

EF and GH such that the distance between two corre-

sponding points, measured on a line parallel to the X and

the Y axes, remains constant and equal to a as in Fig. 5.

Subjects were asked to compare the areas of the figures

ABCD and EFGH. In general, they affirmed that the area

EFGH is greater than the area ABCD. They insisted that it

was because EFGH was ‘longer’. The areas are instead

equivalent.

Therefore, also from these two examples, it would seem

that intuition and visualization, despite their importance in

mathematical reasoning, and not reliable and therefore

cannot be proper elements of mathematical valid reason-

ing. In the following section, I will argue against this

conclusion.

4 Learning (and Teaching) a Practice of Manipulation

4.1 How to Solve it Revised

Polya in 1945 tried to answer to the question about the

process that brings to the solution of a mathematical

problem.16 According to him, a problem is solved in the

following four phases:

I. Understanding the problem

II. Devising a plan

III. Carrying out the plan

IV. Looking back to check the result

In phase (I), the problem solver is recommended to draw a

figure and to introduce a suitable notation. Why? Polya’s

suggestion is that a detail pictured in our imagination may

be forgotten; but the detail traced on paper remains, and,

when we come back to it, it reminds us of our previous

remarks and it saves us some of the trouble we have in

recollecting our previous consideration. But what exactly

does this mean? Let us consider once again the nature of

mathematical explanation and mathematical understanding

along the lines that I have discussed in sect. 2 and revisit

the examples of errors and non reliability of visualization

that I have given in the previous section.

Concerning the triangle example, we can object to

Klein’s interpretation.17 In fact, in this case, it is not the

figure that is incorrect and that brings us to the false con-

clusion according to which all triangles are isosceles.

Rather, what is misleading is the reasoning ‘behind’ the

figure. We are wrong in thinking that the right figure can be

traced as in Figs. 1 and 2, because there is a series of

hypotheses behind these two figures that are incorrect.

These incorrect—propositionally expressed—hypotheses

activated an inaccurate figure, and this is what brings to a

false conclusion. Klein claims that the order of points and

lines is perverted in the figure, because point O lies outside

the triangle and point E and F are misplaced. Nevertheless,

this does not mean that the figure is incorrect as a figure,

but as the activation of some incorrect hypotheses. In other

terms, the incorrect figure is like an impeccable identikit

obtained from the description given by an unreliable wit-

ness. Therefore, the error is in the informal reasoning

which is behind the construction of these figures, and not in

Fig. 5 Fischbein’s example (With kind permission of Springer

Science and Business Media)

16 Polya (1945).
17 See Giardino and Piazza (2008), Ch. III.
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the very figures, or in the possibility of putting them to the

test.

This kind of error in using figures is pre-visual, since it

depends on wrong hypotheses that are made before the

figures are drawn.

Concerning von Koch example, Bråting and Pejlare

conclude from their results that, though students know the

mathematical concepts of continuity, derivability, and con-

vergence, most of them are not capable of solving the

snowflake test. Therefore, knowing the right mathematical

definitions is not sufficient to visualize in the right way: what

is necessary is also to know how to use them in order to

visualize. As a consequence, it is not true that to provide a

visualization of the Weierstrass function immediately

translates into seeing that the function is continuous but not

differentiable at any point. Moreover, the student who says

that the figure at the limit will be uniform, continuous and

differentiable, is not able to discern the figure on the paper

from the mathematical object, since he thinks that the edges

will become so many and so small that the curve will become

uniform and singularities will disappear. The same kind of

error occurs in the area example. According to Fischbein,

this example recalls the Piagetian clay ball problem and the

non-conservation reaction of pre-operational children. If we

take a ball of clay and roll it into a long thin rod, or even split

it into ten little pieces, the pre-operational child, who is under

7 or 8 years old, does not understand that there is still the

same amount of clay. The analogy between these two mis-

interpretations is explained by Fischbein in the following

way: in the area problem, as in the clay-ball problem, sub-

jects are focusing only on one dimension – the length – which

becomes the dominant one. By contrast, they do not consider

enough the width dimension.

These kinds of error in using figures are post-visual,

since they depend on wrong hypotheses that are made on

the drawn figure.

The interesting point in discussing these pre-visual and

post-visual errors is that they show that visualizations,

hypotheses and propositional knowledge are all intertwined

to make up a particular proof. To give a visualization is to

give a contribution to the organization of the available

information: in visualizing, we are referring also to back-

ground knowledge with the aim of getting to a global and

synoptic representation of the problem. As Fischbein sug-

gests, such visualizations can sometime play a role in

anticipating the solution, because they are based on the

way they are constructed and can be manipulated, and as a

consequence they are of help in transforming the problem

into a problem of figurative composition.

What is at stake in giving a mathematical proof is not

the knowledge of single propositions and of the reliability

of the connections among them. What is at stake in giving a

mathematical proof, be it visual or not, is not a set of more

or less explicit given rules but a set of procedures. In fact,

what is a stake is manipulation practices that mathemati-

cians apply in doing mathematics and that students should

learn. Syntactic rules are piecemeal while procedures are

holistic: the visualization becomes the mathematician’s

worksite, where operations, plans, and experiments are

made in a search for solutions and for reasons for these

solutions. The antidote against the logocentric approach to

mathematics is to acknowledge that there is a continuous

‘dialogue’ between language and figures, that is a solid

interaction that has as outcome the manipulation of the

figure with the aim of obtaining a conclusion.

My proposal then is that a diagram is dynamic and

invites to apply some procedure; it is for this very reason

that it can bring about an experiment by means of the

application of these procedures. Informal inferences take

the form of transformations, but in the range of all possible

transformations only some of them are legitimate within

the theory considered. It is only when one knows which

manipulations are legitimate and which are not, that one

demonstrates to know how the representational system in

question works. The rules of diagrammatic representations

are normally externalized as procedures. As a consequence,

what we learn is not a single manipulation, but rather a set

of procedures, not abstract rules, but instructions on how to

act on the diagram and to read and interpret it correctly.

Even though this framework is promising, there is still the

problem on how the application of these instructions is

safeguarded from the possible pre-visual or post-visual

errors. I will analyze an example in order to show which

place intuition has in this account.

4.2 Intuition and Generality

In the famous example of the Platonic dialogue Meno, the

slave has to solve the problem of finding a square which is

twice the area of a given square. To do that, he is invited to

use a figure like Fig. 6:

Fig. 6 The figure to solve Meno’s problem
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According to my framework, seeing this figure is not a

brute act of perception. In fact, many visual properties of

Fig. 6, such as its color or its dimension, are not relevant to

solve the problem, though they are clearly visible. It is only

once the slave has individuated the problem that his visual

exploration of the figure omits accidental information and

discards non salient conditions. To do that, the slave must

already possess the knowledge that ‘a square has 4 sides’,

that ‘the diagonal of a square divides the square into two

right triangles’, that ‘a right triangle has a right angle’, and

so on. If the slave possesses this knowledge, then he will

immediately identify these properties as such. The slave,

like the mathematicians or the students of the previous

examples, should have the geometrical experience of see-

ing what he has to see, that is to focus on the particular

spatial and topological properties of the figure that are

relevant to find the solution of the problem.

The slave then understands Fig. 6 as the figure that is

able to dynamically correlate three different squares of

three different sides and areas: he sees the figure as a large

square which contains five smaller squares and at the same

time eight small triangles. At the beginning, the slave has

thought that the solution of the problem would have been a

square of side 2. But now he sees that this is not the right

solution, since the area of the square of side 2 is equivalent

to the area of four squares of side 1. By contrast, what he

needs is a square whose area is equivalent to the area of

two squares of side 1, that is to the area of four triangles.

Therefore, the solution to the problem is now evident: the

square in the middle, rotated of 45� degrees, whose side is

the diagonal of the square of side 1, contains four triangles.

It is precisely at this point that I propose that intuition plays

a role, since it is by intuition that the slave sees that the

figure in Fig. 6 is generic, that is to say that it will be valid

for squares in general, and not only for those particular

squares. As a consequence, the conclusion forces itself

upon the slave as being general. To clarify, this happens

not because of some direct access the slave has to the truth

of the conclusion, but because of its knowledge of the

mathematical practice. Assumption (2) is rejected.

As Netz suggests for Greek mathematics, mathematical

proofs constitute practical invariances, that is to say that

proofs are learnt as such because they can be repeated.18

Once the slave, who is a rational agent, has understood the

figure, then he can reproduce it, in a non mechanical way

and without ‘damages’. Figures, be them drawn on a piece

of paper or on a blackboard, or shown on a computer

screen, preserve the topological and geometrical properties

of the space where they are placed. Moreover, they are

intentional objects, that means that they are intended to

have been drawn by the producer with a particular aim. For

these reasons, the user must possess the cognitive control

that allows the figure to be effective in relation to the

problem.

There is one last thing to be noticed. The slave visual-

izes because he learns how to apply the instructions that he

has learnt. If asked to describe his use of the figure, he

would make the temporal order of the different construc-

tion steps explicit. That means that he would neither refer

to some explicit and truth preserving syntactic rules nor to

some visual properties of the figure, but to the message that

the figure contains, which is about how to organize the

space. The slave checks for the consistency between the

process of arriving at his conclusion and the practice of

Euclidean geometry. His mathematical knowledge is not

the knowledge of single truths, but of a set of intercon-

nected facts. His belief becomes stable only when the slave

does not see it as an isolated belief, but as an element in a

vast system of knowledge. At the end, the slave grasps by

intuition and it is because of the figure that his conclusion

is general.

What about being safeguarded against possible errors?

We do not have to assume that the process I have just

described is error-free; rather, there is a possibility to be

misled by intuition and visualization, since both of them

are defeasible. Nevertheless, it is their being intertwined

with the rest of the shared system of knowledge, practices

and procedures that serves as guarantee for their reliability.

In particular, one must always check that (i) the hypotheses

introduced are correct and consistent with the system of

knowledge that is presupposed (checking for pre-visual

errors), and that (ii) the visual medium does not introduce

constraints of its own on the representation of the target

area (checking for post-visual errors). Now, it can be surely

argued—as Mancosu does—that this is an issue that can be

settled by a detailed case by case analysis rather than

a priori. Nonetheless, for the moment it suffices to realize

that ‘‘after all, mathematicians have been doing just that

for more than two thousand years’’19: assumptions (1) and

(2) in sect. 1 are abandoned, and the territory of mathe-

matical activity reemerges in all its complexity.

5 Conclusions

In this article, I have discussed the relationship between

mathematical intuition and mathematical visualization. I

have argued that to give an account of their relationship, it

is necessary to abandon the assumptions according to

which (1) there is an opposition between visual and lin-

guistic reasoning in mathematics and (2) mathematical

intuition as well as mathematical visualization represent

18 Netz (1999). 19 Mancosu (2005, p. 26).
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some direct cognitive access to mathematical objects,

proofs or axioms.

If we disregard the received view of the proof-theoretic

tradition and consider mathematical practice, then it will be

clear that mathematical activity results from the intercon-

nections between acquired knowledge and unstable beliefs:

the system of mathematical knowledge is dynamic and

constantly open to reconfiguration. In fact, Barwise and

Etchemendy were pointing in the right direction: multi-

modality of reasoning is important for mathematical

research and teaching. Nevertheless, to account for it and

for the role it has in mathematical explanation and under-

standing, it is necessary to abandon traditional notions and

to look back at what the history of mathematics teaches us.

If we consider examples taken from mathematical

practice, we see that the appeal to visualization is not

direct, because it strongly depends on expertise. Moreover,

discovery by visualization is mediated by the intuition of

the generality of the conclusions obtained by means of it.

Finally, this process is not error-free. On the contrary it can

be fallacious, at least in two senses. First, there can be pre-

visual errors, if an erroneous hypothesis is made on how to

draw the figure; secondly, there can be post-visual errors, if

an erroneous hypothesis is made on properties of the figure

which are not relevant to the mathematical problem.

Nevertheless, intuition and visualization are interconnected

parts of a vast web of knowledge that results in the learning

and in the application of a mathematical practice. It is the

preservation of these interconnections that allows for the

intuition of the generality of some conclusion and the

consequent stabilization of certain beliefs. If the new

conclusion is not in line with other stable beliefs, then it

will be necessary to retrace our steps and make ourselves

aware of phenomena that we have been taking for granted.

That is what we do once we check for the generality of the

conclusions we have arrived at in the examples I have

given.

The absorption of the techniques as well as more intu-

itive practices such as visualization are all controlled by

expertise. There is nothing like mathematical intuition ex

nihilo: it all depends on how much we are acquainted with

the relations in our web of mathematical knowledge as

well as on how experienced we are with mathematical

manipulations.
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