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Abstract
Water is necessary for agriculture, industry, and human consumption. Reportedly, freshwater resources are scarce, and it is 
obvious that industrial and agricultural activities can contaminate water. Consequently, there is a need to continue searching 
for affordable and environmentally friendly technologies for treating water. Adsorption is a method that saves money and 
has become popular because it allows for the least amount of garbage to be disposed of. Hence, the contemporary situation 
and the primary challenges with adsorption as one of the utmost technologies for water monitoring and remediation are 
briefly discussed in this review article. A number of significant topics that have been extensively covered in the literature, 
such as adsorbent materials, adsorption operation mode, modelling, regeneration process, and operation procedure using 
actual samples, are all highlighted in this paper. Conclusively, the paper also outlined what directions, in the form of future 
prospects, will probably serve as the next steps needed to advance new perspectives and original research in the application 
of adsorption techniques for treating water vis-à-vis innovative techniques for water monitoring and remediation.
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1  Introduction

Life depends on water, and there is a finite supply of 
freshwater on earth [1, 2]. According to the World Health 
Organization [3], about 50% of the world’s population is 
anticipated to reside in water-harassed regions by 2025. 
Water is necessary for human consumption, but freshwater 
resources are scarce. Water is necessary for agriculture, 
industry, and human consumption. It is obvious that indus-
trial and agricultural activities can contaminate water [4, 
5]. According to the literature, a variety of contaminants, 
such as heavy metals (HMs) [6, 7], dyes [8–10], pesti-
cides [11], pharmaceuticals [12–15], personal care prod-
ucts [16], hormones [1], viruses [1], radioactive elements 
[17], and phenol-derived chemicals [1], can be found in 
industrial wastewaters, groundwater, and surface water [1]. 
It is well established in the literature that the presence of 
these compounds in waters and wastewaters poses a threat 
to the ecosystem and the general welfare [18–23]. In real-
ity, it is our responsibility as scientists and researchers 
working in the field of environmental science to create 
the tools, materials, techniques, and technologies needed 
to manage, purify, and reuse water.

Globally, the viability of water resources and the safety 
of the environment are now seriously threatened by surface 
water pollution [24, 25]. Surface water, however, could 
not be remedied using conventional concentrated treatment 
methods, such as conventional coagulation and sedimenta-
tion for the polluted surface water, due to its abundance 
and widespread distribution. (e.g., adsorption, extraction, 
ion exchange, and membrane separation). Additionally, the 
total nitrogen and total phosphorus concentrations in con-
taminated surface waters are typically lower than those in 
raw wastewater, i.e., 10 mg/L and 1.0 mg/L, respectively. 
As a result, it may not be practical or cost-effective to 
use the same treatment methods and machinery used to 
treat domestic or commercial wastewater [26]. In order 
to stop the degradation of surface water quality (such as 
eutrophication) and maintain a healthy aquatic ecosystem, 
it is essential to develop novel remediation technologies.

Nowadays, water contamination is a worldwide prob-
lem that affects the majority of nations. Monitoring water 
quality is necessary so that officials are made aware of 
water pollution and can take swift action [27–29]. Thus, 
a method for monitoring water quality is thought to be 
the best way to offer early evaluations of contaminants in 
water. More research is required to determine the advan-
tages and disadvantages of the different traditional and 
contemporary approaches to water quality monitoring and 
remediation techniques. The approaches include cyber-
physical systems, virtual sensing, optical techniques, arti-
ficial intelligence, the Internet of Things (IoT), micro- and 

nanorobots and other innovative smart systems [28–37]. 
Thus, a method for monitoring water quality is thought to 
be the best way to offer early evaluations of contaminants 
in water [27, 38]. Government, non-public sectors, and 
society all need to treat water pollution as a significant 
problem. A reliable system for continuously monitoring 
water quality in real-time is necessary to help officials 
decide on the best course of action and to produce use-
ful output data. Thus, there is a need to look into earlier 
water quality monitoring techniques, contrast traditional 
and contemporary techniques, and examine various tech-
niques from different nations.

The cyber-physical system is a device that seamlessly 
integrates physical elements into a computational algorithm. 
The future of embedded computers is cyber-physical system. 
Contrary to embedded systems, a full-fledged cyber-physical 
system is typically designed as a network of cooperating 
components with physical input and output rather than as 
stand-alone devices. In the end, cyber-physical system pro-
vides more advantages because it manages the intricacy 
of data points produced by numerous sensor nodes, also 
referred to as sensor arrays, by using a user-friendly decision 
support system such as fuzzy logic [39]. Lee [40] asserts 
that Wiener, who created the technology for aiming and 
launching anti-aircraft guns during World War II, was the 
one who created the cyber-physical system. IoT, Industrial 
4.0, the Industrial Internet, and machine-to-machine com-
munications are just a few of the modern technologies that 
make up cyber-physical system. Cyber-physical system can 
be used for a variety of purposes, including healthcare appli-
cations where the system gives patients real-time access to 
medical experts and services [41]. To create effective work-
ing and living conditions, cyber-physical system can also 
be used in big commercial and residential structures [41]. 
The four components of cyber-physical system for water 
sustainability—sensing and instrumentation, communica-
tions and networking, computing, and control—have been 
addressed by Wang [42] along with the opportunities and 
difficulties they present. Imen and Chang [43] conducted 
additional research on the cyber-physical system for water 
sustainability and developed a five-level architecture for the 
cyber-physical system to manage drinking water infrastruc-
ture in a smart and sustainable manner. These levels include 
smart connection level, data-to-information connection 
level, cyber level, cognition level, and configuration level. A 
water quality monitoring device using CPS, which included 
sensing and computing tools for computational modelling, 
was developed by Bhardwaj et al. [39]. However, a system-
atic review by Zainurin et al. [27], describes in detail the 
improvements in water quality monitoring based on different 
sensing techniques.

As reported by Wang et al. Wang et al. [44], physical, 
chemical, and ecological techniques have all been studied 
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in recent years to remove contaminants from surface water-
ways (see Table 1 as adapted from Wang et al. [44],). Sur-
face water pollution can be briefly reduced through physi-
cal methods such as dredging sediment, mechanical algal 
removal, aeration, and water diversion, but these effects are 
transient [45, 46]. The redox potential and pH of surface 
water must be changed by chemical agents and adsorbents 
in order for suspended particles and organic matter to be 
adsorbed and precipitated [47]. Water pollutants will be 
separated and recovered by agents and pollutants, or they 
will be changed into harmless compounds. Although the 
chemical technique works quickly, it requires the addition 
of numerous expensive chemical agents that are also likely 
to result in secondary pollution. (e.g., chemical sludge). 
Additionally, the sewage treatment plants must treat the pro-
duced chemical sludge, which adds a significant quantity of 

additional work and complicates the operation of sewage 
treatment plants [44].

Ecological remediation is a recent innovative in-situ 
remediation technique that uses microbes and plants to 
jointly remove pollutants from the atmosphere [48–51]. 
Utilizing the metabolic processes of plants and microbes 
to ingest, assemble, or degrade environmental pollutants is 
the primary method of in-situ ecological remediation. When 
compared to other remediation methods, in-situ ecological 
remediation has a number of benefits, including cheap costs, 
fewer negative environmental effects, and no secondary pol-
lution production [44]. For the bioremediation of contami-
nated surface water, numerous in-situ remediation processes, 
including ecological floating bed techniques and constructed 
wetlands, have been devised and have shown satisfactory 
results [48, 50].

Table 1   Key methods for remediating surface water

Remediation procedure Procedure principle Characteristics

Physical technique
 Artificial aeration Increase the amount of dissolved oxygen in the 

water body, lower the quantity of dissolved 
pollutants in the water, and enhance the 
aquatic creatures' living conditions

High expense, requires combining with other 
techniques

 Sediment dredging Dredging the entire or a portion of the river 
with significant deposition to restore the 
river's usual flow

large-scale mechanical changes that affect cur-
rent biosystems

 Removal of algal mechanically Utilizing an ultrasonic pulse (wave) to cause an 
algal cell to burst, shatter, lose its ability to 
float, and precipitate inside an airbag

Non-sustainable technique

Chemical technique
 Chemical precipitation Controlling eutrophication by adding iron or 

aluminium salts results in chemical formation 
of inorganic phosphate through adsorption or 
flocculation

 Enhanced coagulation Decontamination is accomplished through 
adsorption, chemical precipitation, destabili-
zation flocculation, and adsorption bridging 
after adding the proper coagulant

The use of chemicals increases costs and causes 
additional pollution

 Acid–alkali neutralization To balance the pH, satisfy increasing demand, 
and promote species reproduction in the 
aquatic ecosystem, substances that are either 
acidic or alkaline are added to the water body

 Removal of algal mechanically chemically The result is impressive when you use a chemi-
cal algal removal product

damage to the water table, high danger

Ecological method
 Constructed wetlands uses components from natural wetlands to cre-

ate artificial wetlands that are similar to the 
real thing

Bulky floor space

 Ecological floating bed Plants are planted in water employing the prin-
ciple of the soilless cultivation, and they take 
nutrients straight from the water

Usually utilized to restore small lakes and rivers

 Ecological revetment River revetment has been artificially altered to 
fortify or restore its ecological ability, which 
can safeguard the riverbank and decontami-
nate the water

Appropriate for the long-term environmental 
remediation procedure
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An innovative technique for water remediation known as 
ecological floating beds is based on the conventional con-
structed wetland, which is characterized by the predomi-
nance of terrestrial or aquatic plant growth on the surface of 
a body of water [44]. Plants absorb pollutants from the water 
during their development phase and offer attachment sites 
for microorganisms to grow through their developed plant 
roots as an essential part of the ecological floating bed [44]. 
Using water spinach and sticky rice, Sun et al. [52] examined 
the viability of ecological floating-bed systems for remedia-
tion and discovered that the rates of total nitrogen elimina-
tion were 92.3% and 81.2%, respectively. In the meantime, 
adding the right carrier to the ecological floating bed can 
encourage plant development and enhance their capacity to 
withstand contamination stress. Green zeolite was found to 
be the finest substrate for Acorus calamus L. to uptake met-
als, and removal efficiencies of Cr and Cd were up to 95.24% 
and 91.8%, respectively, in research using the plant Acorus 
calamus L. in the ecological floating bed [53].

As reported by Wang et al. [44], the integrated remedia-
tion in rural river network area (RRNA) project, sponsored 
by the China’s Ministry of Science and Technology, has 
been started to achieve the integrated remediation of sur-
face/groundwater and soil in the rural river network area 
(see Fig. 1 as adapted from Wang et al. [44]). Three Chinese 
institutions (Tongji University, Central South University, and 
Donghua University) are partners in the 38-months (that is 

from 2019 to 2022) integrated remediation in RRNA study. 
Accordingly, the integrated remediation in RRNA will con-
centrate on developing key technologies for surface water, 
underground water, and soil environmental remediation in 
rural river network areas; implementing the integration of 
remediation technologies for surface/groundwater and soil 
in rural river network areas; and applying interdisciplinary 
and methodological knowledge to clarify the transportation 
and transformation of pollutants in water and soil during 
surface/groundwater interaction [44].

As recently reported by Urso et  al. [38], micro- and 
nanorobots are designed to expedite and enhance the water 
purification process (remediation). The adsorption of heavy 
metals and soluble organic contaminants at the solid–liquid 
interface is improved by the mutual interaction between their 
active motion and material characteristics [38]. However, 
details on smart micro- and nanorobots for water remedia-
tion (purification) are contained a recent study by Urso et al. 
[38].

Water treatment uses a variety of technologies (see 
Fig. 2), each with benefits and disadvantages [1]. However, 
the emphasis in this present review work is on adsorption. 
A method of contaminant removal known as “adsorption or 
biosorption” involves the passive binding of contaminants 
such as HMs and/or dye ions into non-living biomass (bio-
sorbents). The method is similar to bioaccumulation, where 
pollutants are actively metabolized by living things [54]. It 

Fig. 1   System for integrated remediation in RRNA for contamination surface water/groundwater and soil
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involves the removal of contaminants ions after their binding 
to both living and non-living biomass. The rate of biosorp-
tion is affected by a number of variables, including the size 
and type of the bio-sorbent, ionic strength, biomass dose, 
temperature, initial pH, and solvent concentration [55]. A 
fluid (in this instance, water) and a solid phase are involved 
in the unit operation of adsorption/bio-sorption (the adsor-
bent). One or more dissolved contaminants are found in the 
fluid phase (the adsorbate). Water is purified as the dissolved 
pollutants are moved from the liquid phase to the adsorbent 
surface [56–58].

The active binding sites employed, the protein structure, 
and the functional groups of biosorbents are the variables 
that affect the solubility of contaminants in solutions. Tech-
niques like surface complexation, chelation, ion exchange, 
and biologic adsorption are used in the biosorption process 
to remove trace metals (or HMs) and dyes from contami-
nated surroundings. Additionally, biosorption is influenced 
by the environment in which pollutants are present and the 
particular microbial cell metabolism process in use [2]. 

Due to the high efficiency of the technique, the capacity to 
reuse biosorbents, the environmentally friendly nature of the 
technique, and the capacity to recover the pollutants with 
little secondary waste, the biosorption of HMs and dyes, 
especially from polluted water, is widely acknowledged to 
be effective [55]. Microbial cells, either dead or alive, like 
those of fungi, algae, and bacteria, are examples of preva-
lent biosorbents. The cell walls of the microbial biosorbents 
contain functional groups like carbonyl, hydroxyl, carboxyl, 
and amino moieties that interact with the pollutants' ions to 
remove them from contaminated solutions [59]. Toxic trace 
metals (or HMs) and dyes can be removed by extracellular 
accumulation and precipitation or by precipitation on the 
cell membrane, depending on where the pollutant is located. 
Figure 3 summarizes the biosorption mechanisms based on 
the configuration of sorbed pollutants and the presence or 
lack of metabolic activity.

Adsorption is presently used to treat water because it has 
a number of benefits, including low cost, high efficiency, 
simplicity in use, the ability to use a variety of solids as 

Fig. 2   Treatment methods or 
technologies for contaminants 
in water and land

Fig. 3   Mechanisms of adsorp-
tion
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adsorbent materials, and the ability to recover both the 
adsorbent and the adsorbate [1, 21, 60].

The competitive and effective nature of adsorption as a 
polishing process must be emphasized when contaminants 
are present in water at concentrations between ng L−1 and 
mg L−1 [1, 21]. There are many inexpensive materials that 
can be used as adsorbents to remove pollutants from contam-
inated land and water. They can be categorized as follows:

•	 Agricultural waste-based biosorbents
•	 Industrial waste-based biosorbents
•	 Natural/organic biosorbents
•	 Microbial-based biomass biosorbents

According to the literature in the last few years, the selec-
tion, development, and characterization of the adsorbent 
material; the development and optimization of the adsorp-
tion mode; the mathematical modelling; the choice and 
development of the regeneration process; and the application 
in actual samples are the crucial aspects of being evaluated 
to apply adsorption for water treatment. Also, the cost analy-
sis (evaluation) is evidently crucial. Cost, however, is a fac-
tor in each of the aforementioned aspects and must be taken 
into account individually. To give you an idea, the costs for 
most technologies to treat water vary from 10 to 450 US 
dollars per m3 of treated water, while those for adsorption 
are 5.0–200 US dollars per m3 [1, 21]. The filter is respon-
sible for about 70% of these expenses [61]. Hence, the short 
review will attempt to briefly discuss all of the aforemen-
tioned aspects of adsorption for water treatment. Also, some 
the major challenges as well as the prospects with adsorp-
tion for treating water are highlighted. The implication and 
rationale for consideration of this present review work is 
that it will serve as a quick guide to the literature, which 
will encourage new perspectives and original research in 
the application of adsorption techniques for treating water 
vis-à-vis innovative techniques for water monitoring and 
remediation.

2 � Adsorbent/Bio‑sorbent Materials

Key considerations in the characterization of an adsorption 
method for the treatment of water include the selection, 
development, and characterization of the adsorbent mate-
rial sources [1, 21]. The following features are necessary 
for an appropriate absorbent for water treatment sources [1]:

2.1 � Cost Effectiveness and Availability

Since the adsorbent accounts for 70% of the operating 
expenses, a significant quantity of the adsorbent material 

must be quickly produced or bought and transported to the 
treatment facilities.

2.2 � Stability of the Chemical

This is necessary because various water matrices have dif-
ferent chemical properties (conductivity, pH, strength of the 
ions, etc.), which can affect the adsorbent.

2.3 � Mechanical Stability

Since constant water treatment is carried out in columns, the 
adsorbent also needs to be stable mechanically to prevent 
high-pressure drops and preferred pathways.

2.4 � Decent Textural and Physicochemical Features

A good adsorbent should have a high surface area, a large 
pore volume, and functional groups on the surface that can 
interact with pollutants. It should also have good textural and 
physicochemical properties. The following three points are 
impacted by these important traits.

2.5 � High Adsorption Capacity

This is required because there must be a high pollutant 
absorption rate per gram of adsorbent. This reduces the 
amount of adsorbent needed for the therapy, facilitates phase 
separation following adsorption, and reduces the amount of 
physical space needed for the procedure.

2.6 � High Efficiency

In accordance with the specific rules, a high percentage of 
contaminants that are removed from the water and trans-
ferred to the adsorbent should be achieved.

2.7 � Quick Kinetics

The properties of the adsorbent should enable rapid attain-
ment of high adsorption capacity and effectiveness. As a 
result, the total treatment time is brief, which has an impact 
on the treatment plant's size and capital expense.

2.8 � Regeneration and Reuse Potential

The adsorbent should, if at all possible, be easily regener-
ated and used more than once to cut down on operational 
expenses.

Naturally, it is challenging to create an adsorbent with 
all of the aforementioned qualities. In this regard, various 
studies have been conducted to create a number of adsor-
bents for the treatment of water. For the adsorption-based 
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method of treating water, carbon-derived materials such as 
chars, biochar, activated carbons, coals, and nanomateri-
als (NMs) have been created [62–64]. Chitin and chitosan-
derived materials are a different class of adsorbents for the 
treatment of water [1, 65, 66]. Additionally, biosorbents and 
agro-industrial pollutants are receiving more attention [67, 
68]. The inorganic-based materials are a different family that 
includes zeolites, layered double hydroxides, and geopoly-
mers [69, 70]. Metal–organic frameworks were created with 
the intention of removing impurities from water [71].

Additionally, silica-based substances are used as adsor-
bents for the purification of water [1]. The literature is exten-
sive in terms of preparation methodologies and sophisticated 
characterization techniques for the bulk of these adsorbent 
materials. In general, we can state that there are a number 
of suitable, well-developed, and characterized materials for 
adsorbents for water treatment. There is no question, how-
ever, that in order to achieve all of the aforementioned quali-
ties and create more effective adsorption processes for the 
treatment of water, it is essential to continuously develop 
novel adsorbent materials sources [1, 21].

3 � The Mode of Operation of Adsorption

The mode of operation of adsorption is crucial because it 
directly impacts the costs of water treatment, the amount 
of treated water produced, the amount of space needed for 
the equipment at the treatment plant, and the length of time 
needed to decontaminate the water sources [1, 21, 72]. With-
out a doubt, the primary method for treating water described 
in the publication (batch adsorbers) is discontinuous batch 
adsorption [1, 21, 73]. In this method of operation, the 
adsorbent is inserted into a tank filled with contaminated 
water. The mixture is stirred until it reaches equilibrium, or 
a capacity that is very near equilibrium. After that, decan-
tation, filtering, or centrifugation are used to separate the 
solid from the liquid. This is a liquid phase (purified water) 
and a solid phase (the adsorbent filled with the contami-
nant) at the conclusion of the process [1, 21]. This method 
of operation is helpful for optimizing adsorption parameters 
like adsorbent dosage, concentration of the contaminant, 
time of contact, time of equilibrium, pH, and others at the 
laboratory scale [1, 2, 21]. Large volumes of water, on the 
other hand, necessitate more physical space and extra unit 
operations for solid–liquid separation, so it is ineffective for 
the treatment of large volumes of water sources [1]. The 
primary large-scale treatment application, fixed-bed opera-
tion mode, is only ostensibly recorded in the literature [1, 
2, 21]. In this instance, the contaminated water is poured 
into a column that contains the adsorbent. The process con-
tinues until the column achieves saturation, where the con-
centrations of contaminants at the inlet and outlet are equal. 

Throughout the trial, the contaminant concentration at the 
column outlet is tracked. With the help of these statistics, 
the breakthrough curve can be built, allowing the adsorption 
process to be scaled up [1, 2, 21, 74]. Variables like bed 
height and flow rate can be assessed through this method of 
operation [1, 75]. Fixed-bed operation eliminates the need 
for extra separation processes and enables the treatment of 
large water volumes in constrained physical spaces. How-
ever, fluid-particle interaction does not always work well. 
Hydro-dynamic restrictions, such as the development of 
preferential pathways and high-pressure drops, can affect 
this working mode [1].

In the background of mode of operation of adsorption, we 
can state that batch adsorbers should be used on a labora-
tory scale to optimize the experimental adsorption condi-
tions because they are well documented in the literature. 
In contrast to batch adsorption, operations in a fixed bed 
are not extensively studied at the laboratory scale, though 
their design and efficiency are. Evidently, the commercial 
scale-up of water treatment procedures can be accomplished 
through fixed-bed operations. The primary issue at hand is 
the creation and design of alternative operating modes that 
enable easier phase separation and more effective fluid-par-
ticle contact. As a result, we can benefit from factors such as 
a smaller physical area needed for the treatment, quicker pro-
cessing periods, the ability to treat larger volumes of water, 
and lower costs. Studies involving fluidized beds, spouted 
beds, simulated moving beds, continuous stirred tank reac-
tors, and multi-batch adsorption reactors are encouraged as 
possible alternatives sources [1, 21].

4 � Modelling of the Adsorption Process

The literature has extensively examined the modelling of the 
adsorption process for the treatment of water. The study of 
isotherms, kinetics and thermodynamics is frequently used 
to clarify a defined adsorption process [76–78]. Additionally, 
mathematical tools such artificial neural networks (ANN), 
GAMS, fuzzy and neuro-fuzzy networks, and response sur-
face methodology (RSM) can be used to improve the oper-
ational parameters [77, 79]. The isotherm curves depict a 
relationship between the amount of contaminant adsorbed in 
the adsorbent and the amount of contaminant remaining in 
the water under thermodynamic equilibrium circumstances 
[1]. All adsorption systems depend on these curves. Freun-
dlich, Henry, Langmuir, Redlich-Peterson, Sips, Tóth, and 
other isotherm models are normally used to describe iso-
thermal curves [80].

Additionally, other theories and statistical physics-based 
models are being created in this regard [81–83]. Although 
the literature contains all of this information, most of it 
only pertains to particular systems. The thermodynamic 
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equilibrium constant is typically estimated from the iso-
therm parameters obtained at various temperatures, which 
is then used to compute the Gibbs free energy change [84]. 
The Van't Hoff plot is then utilized to determine the enthalpy 
and entropy changes [84]. Despite being widely used in the 
literature, this method's validity was questioned by some 
writers because of its shaky thermodynamic foundation [1, 
85]. Specifically, the difficulties here pertain to the devel-
opment of isotherm models for multicomponent systems 
and methods for precisely estimating the thermodynamic 
parameters.

Also, kinetic studies are essential for adsorption in water 
purification. Plots of adsorption capacity versus time or con-
taminant content versus time can be used to depict kinetic 
curves in batch systems. The representation in the case of 
a fixed-bed can be carried out using either dimensionless 
contaminant concentration at the column output versus time 
or dimensionless contaminant concentration at the column 
outlet versus bed volumes [86]. The adsorption rates are 
effectively modelled by a number of empirical and semiem-
pirical models [6]. For batch adsorption, it can be referenced 
in pseudo-first order, pseudo-second order, general order, 
Avrami and Elovich [1], Bangham [6], and for fixed-bed 
systems (Adams-Bohart, Clark, Thomas, and Yoon-Nelson) 
[87]. These models are straightforward mathematically, but 
they are only useful for a limited variety of experiments [6].

The majority of the models mentioned above are unable 
to estimate basic mass transport parameters, which hinders 
scale-up. Diffusional mass transfer models, such as the exter-
nal mass transfer model, uniform surface diffusion model, 
surface diffusion model, pore volume diffusion model, and 
pore volume and surface diffusion model, are also helpful in 
this regard and well-documented in the literature [88–90]. 
These models are more difficult mathematically, but they 
can estimate the mass transport properties by taking into 
consideration the mass transport steps that take place during 
the adsorption process. Scale-up is therefore feasible [91]. 
The estimation of mass transfer factors affects the resolution 
of diffusional models (effective pore diffusion coefficient, 
external mass transfer coefficient, and surface diffusion coef-
ficient) [1].

There haven't been any fundamentally based correlations 
to determine the surface diffusion coefficient up until now in 
the literature. For single systems, diffusional and empirical 
models are both well established, but there is not enough 
data to model multicomponent systems. The formation and 
use of diffusional models for multicomponent systems and 
the formation of correlations to estimate the surface diffu-
sion coefficient present intriguing challenges in adsorption 
kinetics for water treatment. The adsorption behaviour for 
water treatment is also studied using mathematical methods, 
such as ANN, RSM, fuzzy, and neuro-fuzzy [77, 79]. RSM 
is used to plan and optimize experiments with the goal of 

locating an area of interest or the best operating conditions 
[1]. ANNs are layered algorithms that draw their inspiration 
from the way the human brain functions. These mathemati-
cal tools, which are dependable and strong, can relate non-
linearity between input and output variables from a series of 
trials [1]. Although fuzzy and neuro-fuzzy neural network 
models are also based on neural networks, they combine the 
learning and reasoning effects of ANNs to produce a more 
accurate outcome [1]. As a result of adjusting a number of 
input variables, such as contaminant concentration, contact 
time, temperature, stirring rate, adsorbent dosage, pH, and 
adsorbent characteristics (surface area, type, point of zero 
charge), it is possible to optimize a determined response 
variable (for instance, increasing the adsorption capacity or 
reducing the contaminant concentration in the liquid phase) 
(binary component, single component, molecular volume 
or molecular size). It is believed that these procedures are 
appropriate for representing multi-component systems where 
it is challenging to anticipate the interactions as well as vari-
ables that are not included in diffusional models (such as 
pH and specific properties of adsorbate and adsorbent). The 
difficulties here pertain to any advances in mathematics 
that can speed up calculations, cut down on the number of 
experiments needed, and shorten computation time. Studies 
on mixed models that couple isothermal and kinetic models 
with RSM, ANN, fuzzy, and neuro-fuzzy neural networks 
are also encouraged. Consecutive cycles should keep the 
adsorbent's potential, efficiency, and characteristics, and if at 
all possible, the adsorbate should be recovered. The renewal 
of adsorbent materials can be accomplished in a number 
of ways, including thermal, chemical, and microbiological 
ones [1].

Chemical reagents, electrical currents, microorganisms 
or physical waves can all act as regeneration agents. The 
renewal process can be triggered by leaching or extraction, 
pH changes, thermal desorption, reaction, or degradation 
[1]. Although most of these techniques are ineffective for 
recovering adsorbate, they were effective for regenerat-
ing adsorbent. Each of these regeneration techniques, of 
course, has benefits and disadvantages, and how they are 
used will rely on the particular adsorption system in ques-
tion. It is crucial to clarify that regeneration is not always 
a possibility. For instance, if regeneration produces more 
waste than the actual adsorption process, if regeneration 
necessitates more operational effort than adsorption, and 
if the creation of the adsorbent is simpler than regenera-
tion, therefore, it is preferable to use the refuse treatment 
techniques of incineration and landfill disposal in these 
circumstances. The primary issue in this regeneration field 
is the creation of new, environmentally friendly regenera-
tion methods that reduce waste production, reduce costs, 
and increase the number of cycles that can be applied to 
the adsorbent while enabling the recovery of the adsorbate. 
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This is undoubtedly a significant weak spot in the litera-
ture when it comes to the use of adsorption to treat actual 
water samples. The bulk of aqueous phase adsorption 
studies are concerned with treating synthetic solutions 
that only contain one adsorbate and water [92–96]. Two 
or three adsorbates may occasionally be used [97, 98]. In 
other situations, effluents with multiple pollutants are used 
[99, 100]. The remedies, however, are always artificial. 
The removal of pharmaceuticals and other contaminants 
of growing concern from complex treated wastewaters 
has been the subject of several adsorption studies, either 
alone or in combination with other processes using real 
or pilot set-ups [1, 101]. These pieces, however, make up 
a very tiny portion of the literature. The aforementioned 
factors, including adsorbent substance, operation mode, 
modelling, and regeneration, are of course crucial in actual 
water and wastewater treatment systems. Additionally, it 
is crucial to increase the selectivity of the adsorbents for 
particular contaminants [1, 21]. In a complicated mixture, 
this enables the adsorbent to only absorb the desired con-
taminant. Phase separation following adsorption is a cru-
cial step in effective wastewater remediation.

Depending on the operation mode, decantation, filtra-
tion, or centrifugation are necessary for solid–liquid sepa-
ration. In order to avoid these additional unit operations, 
there is a progress in the development of magnetic adsor-
bents, which can be easily separated from the liquid by a 
simple application of a magnetic field [102–107]. Con-
cerning the application of adsorption to treat real water 
and wastewater samples, we agree that, initially, studies 
should be performed in synthetic solutions because the 
physicochemical and fundamental aspects of adsorption 
only can be elucidated in controlled conditions. On the 
other hand, an adsorbent can be excellent in laboratory 
studies but often inefficient in real cases. Centrifugation, 
decantation, or filtration may be required for solid–liquid 
separation, depending on the method of operation. The 
development of magnetic adsorbents, which can be eas-
ily separated from the liquid by a simple application of a 
magnetic field, has advanced in order to avoid these extra 
unit operations [102–107]. It is agreed that studies should 
initially be conducted in synthetic solutions before apply-
ing adsorption to actual water and wastewater samples 
because the physicochemical and basic aspects of adsorp-
tion can only be clarified under controlled circumstances. 
An absorbent, on the other hand, may perform admirably 
in lab tests but frequently poorly in practical situations. 
Evidently, adsorption research in laboratory settings is 
important, and it has been thoroughly recorded and con-
solidated [1]. However, there aren't many studies that have 
applications in the actual world. To move forward in this 
situation, we must first research and perfect adsorption 

under controlled circumstances before applying it to real-
world situations.

5 � Regeneration of the Adsorption Process

Adsorption in water purification also relies heavily on the 
regeneration of the adsorbent and its use with actual water 
samples [1, 21]. The process's operational expenses and 
environmental friendliness are directly impacted by the 
adsorbent regeneration and its repeated use [1, 21]. The char-
acteristics, potential, and efficacy of the adsorbent should be 
preserved throughout subsequent cycles of the regeneration 
process, and if at all feasible, the adsorbate must be recov-
ered. The renewal of adsorbent materials can be accom-
plished in a number of ways, including thermal, chemical, 
and microbiological ones [1, 21]. Physical impulses, elec-
trical currents, chemical reagents, or microorganisms can 
all act as regeneration agents. The renewal process may be 
triggered by leaching or extraction, pH changes, thermal 
desorption, reaction, or degradation [1, 21].

Although most of these techniques are ineffective for 
recovering adsorbate, they are effective for regenerating 
adsorbent. Each of these regeneration techniques has, of 
course, its benefits and disadvantages, and how they are used 
will depend on the particular adsorption system in ques-
tion. It is crucial to clarify that regeneration is not always 
a possibility. For instance, it is preferable to use the waste 
treatment techniques of incineration and landfill disposal 
in situations where regeneration produces more waste than 
the adsorption process itself, requires more operational work 
than adsorption, and is simpler to create an adsorbent than 
regeneration [1, 21].

The primary issue in this regeneration field is the crea-
tion of new, environmentally friendly regeneration methods 
that reduce waste production, reduce costs, and increase the 
number of cycles that can be applied to the adsorbent while 
enabling the recovery of the adsorbate. This is undoubtedly 
a significant weak spot in the literature when it comes to the 
use of adsorption to treat actual water samples. The bulk of 
aqueous phase adsorption studies are concerned with treat-
ing synthetic solutions that only contain one adsorbate and 
water [92–95]. Two or three adsorbates may occasionally be 
used [97, 98]. Other times, effluents with a variety of pollut-
ants are applied [99, 100].

The remedies, however, are always artificial. The removal 
of pharmaceuticals and other contaminants of growing con-
cern from complex treated wastewaters has been the subject 
of several adsorption studies, either alone or in combination 
with other processes using real or pilot set-ups [1, 21, 101]. 
These pieces, however, make up a very tiny portion of the 
literature. The aforementioned factors, including adsorbent 
substance, operation mode, modelling, and regeneration, are 
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of course crucial in actual water and wastewater treatment 
systems. Additionally, it is crucial to increase the selectivity 
of the adsorbents for particular contaminants [1, 21].

In a complicated mixture, this enables the adsorbent to 
only absorb the desired contaminant. Phase separation fol-
lowing adsorption is another crucial component of effec-
tive wastewater remediation. Centrifugation, decantation, 
or filtration may be required for solid–liquid separation, 
depending on the method of operation. The development 
of magnetic adsorbents, which can be easily separated 
from the liquid by a simple application of a magnetic field, 
has advanced in order to avoid these extra unit operations 
[102–107]. We concur that studies should initially be con-
ducted in synthetic solutions before applying adsorption 
to treat actual water and wastewater samples, owing to the 
fact that the physicochemical and basic aspects of adsorp-
tion can only be clarified under controlled circumstances. 
An absorbent, on the other hand, may perform admira-
bly in laboratory tests but frequently poorly in practical 
situations. Undoubtedly, laboratory adsorption studies are 
important, and they have been thoroughly documented 

and consolidated. Table 2 contains analysis of the maxi-
mum sorption capacity (qm) of some studies on biosorbents 
for some selected HMs and dyes in water. However, there 
aren't many research studies that have practical applications. 
Here, we must move forward; that is, we must research and 
improve adsorption under controlled circumstances before 
using it in actual situations sources [1, 21].

6 � Conclusion

The generation and treatment of effluents are an increasing 
concern today due to increased urbanization and industriali-
zation. To address the problem of rising environmental risks, 
a variety of effluent treatment techniques, including physical, 
chemical, and biological (primary to secondary treatment) 
methods, are used. The potential for producing secondary 
pollution is increased by the use of various cleaning tech-
niques. The use of different materials as adsorbents is the 
most efficient way to treat effluents with the least amount 
of secondary pollution generation. Adsorption is a vital 

Table 2   analysis of the qm of some biosorbents/NMs for some selected HMs and dyes in water

Bisorbents qm (mg/g) References

Cr(VI)
 Synthesized triethylenetetramine-pea peels 312.50 [7]
 Amine-modified passion fruit peel biosorbent 675.65 [108]
 Nano-composites of the functionalized multi-walled carbon nanotubes (MWCNTs)-quartzite 

nano-composite decorated with the stem bark extract of dacryodes edulis
192.50 [109]

 Mango and jackfruit 517.24 and 207.6 [110]
Cu (II)
 Dragon fruit peel, rambutan peel, and passions fruit peel 92.59, 192.31, and 121.95 [111]
 Humulus scandens biochars 221.0 [112]
 Biochar-NH2 140.85 [56]

Methylene blue dye
 Synthesized sawdust ozone biochar, synthesized sonicated sawdust biochar and synthesized puri-

fied sawdust biochar
200.0, 526.3 and 769.23 [8]

 Activated carbon from Ulva Lactuca 344.83 [113]
 Algae D. Antarctica 702.9 [110]
 Activated rice husk biochar 356.99 [114]

Direct blue 106 dye
 Oxidized MWCNTs 500.0 [115]

Acid orange 7 Dye
 Activated biochar gotten from mandarin peels 312.5 [78]
 Spherical-shaped nanocarbons 185.18 [116]
 Polypyrrole/nanosilica composite 181.40 [117]

Malachite green dye
 Untreated and treated oil palm empty fruit bunch 714.30 and 1250.00 [118]
 Activated potassium hydroxide clove leaves 131.58 [58]
 Mn-doped CuO-nanoparticles 320.69 and 233.02 for single 

and binary solutions respec-
tively

[119]
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process that is both effective and affordable. This technique 
primarily employs the adsorption procedure and mechanism 
to remove toxicants from effluents. Along with any possible 
techniques of adsorption for water treatment, some of the 
major challenges as well as the prospects for adsorption for 
treating water are highlighted. This also makes it clearer how 
these sorbents can be modified or given special treatment to 
increase their efficacy.

The significant study gaps and potential directions for 
future research on adsorption vis-à-vis innovative techniques 
for water monitoring and remediation are also highlighted 
in the next section. However, the main goal of this present 
review study was to explore the issues and potential ben-
efits of adsorption applications for treating water vis-à-vis 
environmental safety. This study specifically addressed the 
present situation and the main challenges with the adsorp-
tion applications for environmental safety in relation to water 
purification. As a result, this review serves as a convenient 
reference for fresh ideas and original studies in the field. 
Finally, the review suggests what ought to be the subsequent 
actions required to advance this aspect.

7 � Future Insights on Adsorption Vis‑à‑Vis 
Innovative Techniques for Water 
Monitoring and Remediation

Nevertheless, contemporary adsorption technologies are 
urgently needed to ensure high-quality water, reduce chemi-
cal and biological contaminants, and enhance agricultural 
and industrial production processes for environmental safety 
[1, 120–122]. Up to this point, the majority of research 
findings have involved modest laboratory tests. The lack of 
knowledge about pilot-scale systems is the main weakness 
of substituting cost-effective adsorbents for activated carbon 
and other costly treatment technologies [21]. Before pro-
moting the widespread use of unconventional adsorbents, 
more study is required. Nanotechnology, which includes the 
adsorption of contaminants using NMs, is one of the best 

techniques for contemporary contamination treatment pro-
cesses [68, 123, 124].

It has been effective to conduct research on the treat-
ment of contaminants, and numerous different NMs have 
been developed. These include a few that are noteworthy; 
photocatalysts, electrocatalysts, nanofilms, and nano-adsor-
bents based on the metals [1, 21, 120, 125]. These NMs 
can also be introduced to biological processes to improve 
the effluent treatment procedure's efficiency (like microbial 
fuel cells, algae membranes, and anaerobic fermentation). 
Each technology varies in how well it removes contaminants 
and has advantages of its own [1, 21, 120, 125, 126]. Nano-
adsorbents can be used to filter out potentially hazardous 
substances from wastewater [123, 127]. With the help of NM 
photocatalysts, harmful contaminants can now be treated 
without the use of expensive synthetic UV radiation, thanks 
to the modification of the catalyst substance.

As previous stated, there is a need to look into earlier 
water quality monitoring techniques, contrast traditional 
and contemporary techniques, and examine various tech-
niques from different nations. As reported by Zainurin et al. 
[27], there is a thorough overview of various approaches 
for monitoring water quality, including the cyber-physical 
system approach, electronic sensing methods, virtual sens-
ing systems, IoT approach, and optical techniques. Accord-
ing to the Zainurin et al. [27], cyber-physical systems are 
appropriate and suitable for use in water quality monitoring 
systems. In addition, a cyber-physical system connects the 
physical and digital realms by using software and data to 
communicate with sensors, environments, and people in the 
physical world. Figure 4 shows an outline of virtual sensing 
development stages as adapted from Zainurin et al. [27]; 
Paepae et al. [128].

The potential of early warning in the water quality man-
agement system is made possible by the indirect real-time 
monitoring of water quality [25]. As a result, it is possible 
to identify water pollution and evaluate the water's qual-
ity before it is suitable for consumption. Future monitoring 
methods will be able to combine advanced optical tech-
niques with cyber-physical system technology to produce 

Fig. 4   An outline of virtual sensing development stages



151Topics in Catalysis (2024) 67:140–155	

1 3

systems with high reliability and sensitivity because current 
monitoring techniques have trouble getting accurate meas-
urements of water quality parameters in real-time and are not 
cost-effective with continuous data collection [44]. There 
have been some tool limitations in the past that have necessi-
tated improvements to the current water quality evaluations.

Also, as previously mentioned, micro- and nanorobots are 
designed to expedite and enhance the water purification pro-
cess (remediation). Self-propulsion has added an engineer-
ing component to micro- and nanomaterials, enabling the 
creation of groups of intelligent, small-scale machines that 
move in reaction to exterior cues and collaborate to carry out 
specific tasks. Micro- and nanorobots have proven successful 
in water remediation applications, where the effectiveness 
and speed of the purification process are important. This is 
because of the interaction between active motion and pro-
grammed contaminant removal and degradation processes 
achieved through material design. Although the effective-
ness of micro- and nanorobots against contaminants vary-
ing in type and size (from mm- to atomic-scale) is wide, 
there are still a number of obstacles to overcome for practical 
uses. For uses involving water remediation, self-propelled 
micro- and nanorobots are more effective than static materi-
als. For all the contaminants examined, the elimination and 
degradation efficiencies are also insufficient. As an illustra-
tion, it is especially difficult to completely decompose plastic 
debris because polymers contain UV stabilizers to increase 
their stability. Combining various degradation processes in 
a single robot or programming it to specifically target the 
most enduring contaminant are two feasible solutions. These 
characteristics increase complexity and manufacturing costs 
because they call for the integration of numerous compo-
nents. Thus, in order to satisfy the demands of mass produc-
tion, the design of micro- and nanorobots must be kept as 
basic as feasible, for example, by utilizing high-throughput 
fabrication techniques (for example, 3D bioprinting) [38]. 
The increase in small-scale machines in the environment 
should be considered a danger. Utilizing readily available, 
safe, and impermanent natural materials like microalgae is 
a desirable choice in this situation. The widespread use of 
toxic chemicals in agriculture to increase agricultural output 
puts soil and plants at high risk of contamination. Micro- 
and nanorobots can be used to clean up these areas. Small-
scale machines that are biocompatible and environmentally 
benign could break down poisons into harmless substances 
on the spot. The robots require a liquid medium, just like in 
water remediation, to allow their active movement as well 
as the removal and degradation of pollutants. Under sunny 
conditions, the pesticides could be broken down at the water-
soil and water-plant interfaces by suspending the robots in 
water sprinkled on the soil or plant surfaces. They could also 
be made to specifically target bugs, taking the place of harm-
ful poisons [38]. The enormous promise of using micro- and 

nanorobots for water remediation has been demonstrated in 
numerous studies. To satisfy market demands, however, the 
development of this technology into practical uses requires 
the combined efforts of scientists from various disciplines.

Since NMs are still more expensive than conventional 
materials, future studies should concentrate on effective pro-
cesses that only require small concentrations of NMs (such 
as activated carbon) [123, 126]. Furthermore, more work is 
needed to develop low-cost methods of NM synthesis and 
to conduct large-scale efficiency assessments for practical 
field uses. The following research voids must be filled in 
the future:

•	 Understanding how adsorbents function in wastewater 
filtration requires research at the cellular and molecular 
levels.

•	 More work needs to be done on pilot-scale and field-scale 
experiments in addition to laboratory testing.

•	 Cost-effect benefits need to be estimated and computed 
prior to performing pilot-scale experiments.

•	 It is crucial to look into how well the adsorbents men-
tioned here work in conjunction with other treatment 
modalities, especially carbon-based adsorbents.

•	 Investigating microbial interactions in aquatic environ-
ments is crucial.

•	 It is necessary to conduct more research on how geo-
environmental factors affect sorption processes.
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