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Abstract
Diclofenac (DCF) is a non-steroidal anti-inflammatory drug used for the treatment of different diseases such as rheumatoid 
arthritis, spondylitis, arthritis and sport injuries. Increased use of DCF has initiated a significant worry regarding their 
presence in the environment. This study reports a sensitive and selective electrochemical sensing platform based on poly 
glycine modified carbon nanotube paste electrode (PGMCNTPE) for the simultaneous determination of DCF and dopamine 
(DA) by differential pulse voltammetry (DPV). The characterisation techniques like cyclic voltammetry (CV) and electro-
chemical impedance spectroscopy (EIS) accomplished in 1 mM K4 [Fe (CN)6], displays that the electroactive surface area 
of PGMCNTPE is augmented and the charge-transfer resistance is diminished in comparison to the bare carbon nanotube 
paste electrode (BCNTPE). Various parameters responsible for the peak improvement such as accumulation time, accumu-
lation potential, pH and number of polymerisation cycles were optimised. Scan rate studies done by CV technique reveals 
that the process is irreversible and adsorption controlled in 0.2 M solution of phosphate buffer (PBS). The deposition of 
the poly glycine film on the BCNTPE surface enhanced the sensors electronic transfer rate, which reveals a heterogeneous 
rate constant (k0) of 3.13 × 10–3 s−1. PGMCNTPE shows two linear ranges with an increase in DCF concentration from 4 
to 100 μM and a detection limit calculated by considering second linear range was found to be 0.21 μM. The selectivity of 
PGMCNTPE towards DCF was investigated in the existence of various interfering molecules and inorganic metal ions with 
fivefold higher concentration. The pertinence of the proposed sensor was analysed by quantification of DCF in pharma-
ceutical samples. The prepared sensor exhibits a virtuous performance in detection of DCF due to excellent repeatability, 
reproducibility and stability.
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1  Introduction

DCF is a non-steroidal anti-inflammatory drug of wide use 
around the world with strong anti-pyretic, analgesic and anti-
inflammatory properties. Humans suffering from inflamma-
tory conditions like rheumatoid arthritis and osteoarthritis 
use DCF as a clinical medicine for their treatment [1]. 
Inflammatory diseases create a complex and heterogeneous 
group of diseases, which is a significant source of disability. 
DCF is a non-selective cyclo-oxygenase inhibitor belonging 
to a non-steroidal anti-inflammatory drug, with an exten-
sive capacity to induce inflammation [2]. As an analgesic, 
it has a fast onset and an extended duration of action. DCF 
is commercially retailed in the name of Voltaren. Studies 
were conducted for a long time on the use of DCF by oral 

 *	 J. G. Manjunatha 
	 manju1853@gmail.com

1	 Department of Chemistry, FMKMC College, Constituent 
College of Mangalore University, Madikeri, Karnataka, 
India

2	 Department of Chemistry, N.M.A.M. Institute of Technology, 
Visvesvaraya Technological University, Nitte, Udupi District, 
Belgavi, Karnataka 574110, India

3	 Chemistry Department, College of Science, King Saud 
University, P. O. Box 2455, Riyadh 11451, Saudi Arabia

4	 Department of Civil, Environmental and Mechanical 
Engineering, University of Trento, Via Mesiano, 77, 
38123 Trento, Italy

http://orcid.org/0000-0002-0393-2474
http://crossmark.crossref.org/dialog/?doi=10.1007/s11244-022-01567-9&domain=pdf


	 Topics in Catalysis

1 3

consumption and topical administration. Analysis showed 
that topical administration was more effective to treat and 
caused minimal damage to the gastric, renal, liver and 
cardiac complications [3]. Once consumed, they are sub-
jected to human metabolism. Overdose of DCF can lead to 
toxic side-effects. Health issues caused by the consumption 
of acidic pharmaceuticals by animals at low levels is not 
understood, but the decline in vulture population in Asia is 
reported due to DCF. It is also known as a compound that 
affects organ histology and gene expression in fish [4–9].

Considering the expansive pharmaceutical application of 
DCF, numerous methods have been established and prac-
tised over the last few years for quantitative and qualitative 
determination of DCF. Certain prominent methods include 
liquid chromatography–tandem mass spectrometry [10], 
spectrofluorimetry [11], gas chromatography-mass spec-
trometry [12], High performance liquid chromatography 
[13], Capillary electrophoresis [14], Spectrophotometry 
[15], Electroanalytical methods [16–18]. Electroanalytical 
methods prove to be more advantageous and a versatile ana-
lytical method due to their potential benefits like specificity, 
high sensitivity, easy sample preparation procedure which 
does not generally require the separation and extraction 
of interferents, relatively inexpensive instrumentation and 
usage of miniatured sensors.

Carbon nanotube (CNT) discovered in the year 1991, 
have been the target of many investigations due to their 
unique properties. CNT which are built from sp2 carbon 
units present a seamless structure with hexagonal honey-
comb lattices, being some nano-meters in diameter and sev-
eral microns in length [19]. CNT which is known as buck 
tubes is composed of a concentric arrangement of numerous 
cylinders which has become as one of the strong studied 
nanostructured material [20–25]. CNT constitutes graphitic 
carbon comprising exceptional mechanical, electronic, 
and chemical properties. These properties make CNT very 
attractive for the task of electrochemical sensing. Recently, 
some studies showed that CNT can impart strong electro-
catalytic activity and minimize surface fouling of the elec-
trode [26].

The redox path at the BCNTPE occur at over potential 
due to slow electron transfer rate. To enhance the electro-
catalytic behaviour of CNT, the electrode surface has to be 
modified by the conductive catalytic material. Surface modi-
fication reduces the over potential and increases the elec-
tron transfer rate at the electrode and the analyte interface 
[27]. Using polymers as modifiable material for electrode 
surface, has involved enormous attention in electroanalysis 
[22–24, 28–32]. The basic properties of polymers like stabil-
ity, biocompatibility and homogeneity have attracted a lot of 
consideration in electro catalysis. Poly amino acids play a 
pivotal role in drug delivery, sensor fabrication and environ-
mental analysis. Glycine (GLY) an important proteinogenic 

amino acid, is a building block for protein that has a single 
hydrogen atom as its side chain [33]. Research has proved 
that Poly (GLY) has favourable electro catalysis effects [34]. 
Electrochemical polymerization of GLY on the surface of 
BCNTPE is a preferable and affordable method because of 
its advantages like modest preparation process, consistency 
in electrochemical deposition, good selectivity, excellent 
sensitivity, superior stability and robust adhering ability to 
the surface of the electrode [35–38]. Hence, PGMCNTPE 
is used for the specific sensitive determination of DCF in 
the presence of DA.

2 � Experimental

2.1 � Instrumentation

Electrochemical analyser CHI-6038E model (CH Instru-
ments, Inc. Austin, USA) was used at an ambient tempera-
ture to study the electrochemical activities of the analyte 
under investigation. This analyser is integrated with an 
electrochemical cell consisting of three electrodes in which 
PGMCNTPE and BCNTPE of 3 mm diameter acts as a 
working electrode, KCl saturated calomel electrode and 
platinum wire from Equiptronics (Mumbai, Maharashtra, 
India), acts as a reference electrode and auxiliary electrode 
respectively.

2.2 � Chemicals and Reagents

All the commercially available chemicals used are of high-
est quality and are used without further purification. DCF 
was purchased from Molychem, Mumbai, India. DA, Potas-
sium hex cyanoferrate (II) trihydrate and Potassium chloride 
(KCl) were procured from Sigma Aldrich, India. Silicone 
oil (used as a binder), GLY, Sodium salts of monobasic 
phosphate and dibasic phosphate were obtained from Nice 
chemicals, Ernakulam, Kerala, India. Multi walled carbon 
nanotubes (MWCNTs) used for the electrode fabrication 
with a dimension of 30–50 nm and length 10–30 μM was 
purchased from Sisco Research Laboratory Ltd. Maharash-
tra, India. DCF, DA (25 × 10–4 M) and GLY (25 × 10–3 M) 
stock solutions were prepared by dissolution of appropriate 
quantity of respective chemicals in distilled water. 0.2 M 
PBS solution of required pH, was prepared by inter mix-
ing the desired quantity of NaH2PO4 (0.2 M) and Na2HPO4 
(0.2 M).

2.3 � Preparation of BCNTPE and PGMCNTPE

Carbon nanotube paste (CNTP) was prepared by mixing 
CNT powder and silicone oil in the proportion of 60% and 
40%, mass percentages was mixed thoroughly in the agate 
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mortar with the help of a pestle to get a consistent mixture. 
For voltammetry assays the resultant mixture was filled 
firmly into the teflon tube of 3 mm diameter. To get a smooth 
surface and to avoid incorporation of air bubbles the elec-
trode surface prior to modification was rubbed on a smooth 
tissue paper. Hence, BCNTPE with homogeneous surface 
was obtained. A copper wire implanted into the teflon tube 
enables a connection between the analyte and the electro-
chemical analyser. Voltammetric modification of CNTPE 
was achieved by running ten sequential cycles of cyclic vol-
tammetry in PBS of pH 5.7 containing 1 × 10–3 M GLY. The 
poly (GLY) film was deposited on the surface of BCNTPE 
in the potential gap of − 0.6 to + 1.8 V. After each voltam-
metric assay, the working electrode surface was replenished 
by removing the superficial layer of carbon nano tube paste.

3 � Results and Discussions

3.1 � Electrochemical Polymerisation of GLY

The PGMCNTPE was fabricated by running uninterrupted 
ten CV cycles (scan rate of 0.1  V/s) in 0.2 M PBS of pH 5.7 
containing 1 × 10–3 M GLY. Figure 1A shows effective poly-
merisation within the potential window − 0.6 to + 1.8 V. The 
redox current was found to increase progressively in each of 
CV cycles, which confirms the development of electroactive 
polymer film of poly (GLY) over the electrode surface [39]. 
The nitrogen atom in amino group of GLY forms a strong 
nitrogen—carbon linkage with the carbon atom at the elec-
trode surface. During electro polymerization, one hydrogen 
radical is eliminated along with the formation of GLY free 
radical and in turn the GLY free radical formed gets attached 

to the BCNTPE surface. The attached molecule thus inter-
acts with another GLY molecule with the removal of water 
molecule and the length of the polymer chain increases. The 
probable electrochemical polymerisation is represented in 
Fig. 2. The polymer film deposited on the BCNTPE was 
methodically rinsed with double distilled water to eliminate 
traces of GLY monomer.

The extent of thickness of the polymer film on the elec-
trode surface has a substantial impact on the current sensi-
tivity of the target electroactive species. Poly GLY film of 
different thickness were obtained by varying the number of 
scan cycles from 5 to 25. Figure 1B clearly indicates that the 
peak currents of DCF in 0.2 M PBS of pH 7 (v = 0.1 V/s) 
increased up to 10 scan cycles and thereafter showed a 
steady decline. As the thickness of the polymer film on 
the electrode surface increases the electron transfer rate 
decreases due to the deficient disclosure of reactive sites on 
the electrode. Therefore 10 repetitive scan cycles were fixed 
as an optimum condition for the fabrication of PGMCNTPE.

3.2 � Surface Topography Studies of Working 
Electrodes by FE‑SEM

The surface topography of the CNT based working sensor 
was examined using FE-SEM. FE-SEM images of randomly 
aligned CNTs before and after electro polymerisation of poly 
(GLY) are shown in Fig. 3A and B, respectively. Figure 3A 
displays a densely packed surface which exposes a charac-
teristic tube-like structure of CNTs. After electro polymeri-
zation of GLY on the BCNTPE surface, a porous structure 
was visualised (Fig. 3B). The formation of the flake-like 
structure and variations in the topography of the BCNTPE 
supported the formation of poly GLY on the bare surface 
which establishes the development of active sites [40].

3.3 � Electronic Impedance Studies

EIS spectra of 1 mM K4[Fe(CN)6] in 0.1 M KCl was recorded 
for the proposed sensor before and after modification with 

Fig. 1   A Cyclic voltammogram of electrochemical polymerisation of 
1 × 10−3 M GLY in 0.2 M PBS of pH 5.7 within the potential win-
dow − 0.6 V to 1.8 V at a scan rate 0.1 V/s. B Plot of the oxidative 
peak current of 1 × 10−3 M GLY versus the number of polymerization 
cycles

Fig. 2   Probable electro polymerisation mechanism of GLY
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an intent of obtaining information about the electron trans-
fer kinetics (Rct) between the electrode—solution interface. 
Figure 4 displays the Nyquist plot concerning to EIS which 
has two parts where the linear part present at lower frequen-
cies represents the diffusion-controlled process and the semi-
circular portion present at higher frequencies corresponds to 
electron transfer limited process [41]. Rct value is depend-
ent on the diameter of the semicircle and from the Nyquist 
plot (Fig. 4) it is observed that the semi-circular portion of 
BCNTPE is larger than that of PGMCNTPE. Rct value of 
BCNTPE is 100.6 kΩ and the Rct value for PGMCNTPE is 
5.9 kΩ which signifies that the polymer film formed on the 
bare electrode surface is presumed to enhance the conduct-
ance of the modified sensor.

3.4 � Evaluation of Electrode Surface Area

The rate of a reaction and peak current is proportional to 
the electrochemically active surface area of the fabricated 
electrode. The electrochemically active surface areas of 
BCNTPE and PGMCNTPE were evaluated by considering 
the peak current density obtained for the reversible redox 
couple like [Fe (CN)6]3−/[Fe (CN)6]4− by CV. The obtained 
peak current, was used in the Randles–Sevcik equation 
(Eq. 1) to calculate the electrochemically active surface area 
of the working electrodes.

n: electron transfer number (n = 1) during the redox 
reaction, A(cm2): surface area of the fabricated electrode, 
D(cm2/s): diffusion coefficient, Co (mol/cm2): concentra-
tion of the redox probe and v (V/sec): potential sweep rate. 
On substituting the significant values, the electroactive 
surface area of PGMCNTPE was found to be 0.048 cm2 

(1)Ipa = 2.69 × 105 n3∕2 ACo D
1∕2

v
1∕2

Fig. 3   A FE-SEM image of BCNTPE. B FE-SEM image of PGMCNTPE

Fig. 4   Nyquist diagrams of EIS of PGMCNTPE (curve a) and 
BCNTPE (curve b)

Fig. 5   Cyclic voltammograms of 1  mM K4[Fe (CN)6] at BCNTPE 
and PGMCNTPE in 0.1 M KCl at a scan rate of 0.1 V/s
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while that of BCNTPE was 0.025 cm2. Figure 5 displays 
that the oxidation and reduction peak currents of modified 
electrode (scan rate of 0.1 V/s) was more sensitive and 
well-defined with an anodic and cathodic peak potential 
difference (∆Ep) of 0.110 V. However, for BCNTPE the 
current sensitivity decreased but the ∆Ep value increased 
to 0.165 V. This voltammetric display validates that the 
activated surface of the modified electrode shows the 
enhanced catalytic role due to the increase in electroac-
tive surface area and the GLY polymer film enable the 
conducting bridges for the electron-transfer. The ratio of 
Ipa/Ipc remained unity and this specifies that the Fe (II) to 
Fe (III) transformation is a reversible process [42, 43].

3.5 � Optimisation of Accumulation Time 
and Accumulation Potential

Accumulation time (ACT) has the tendency to provide effi-
cient electrochemical response with enhanced sensitivity. 
Hence, the effect of ACT from 0 to 120 s on the oxida-
tion peak current of DCF was analysed in 0.2 M PBS of 
physiological pH. The DPV recorded at various ACT is 
depicted in Fig. 6A. The peak current of DCF increased 
with the increase in ACT from 0 to 60 s then showed a 
steady decline with further increase in ACT up to 120 s. 
The maximum current sensitivity was obtained at 60 s, sig-
nifying a full surface coverage of PGMCNTPE and later it 
leads to saturated adsorption [44, 45]. Therefore, the plot 
between peak current and ACT (Fig. 6B) reveals that 60 s 
is the optimum ACT.

Figure 7 depicts the plot between accumulation poten-
tial (AP) and peak current. From the plot it was observed 
that the current sensitivity shows an increase in peak cur-
rent with the shift in potential from 0.09 to 0.1 V and with 
the later shift in potential from 0.15 to 0.2 V the peak 

current shows a decline. Hence an AP of 0.1 V was chosen 
as an optimum condition for subsequent determinations.

3.6 � Effect of pH

Protonation mechanism of organic species will have substan-
tial effect on the redox process and hence the optimisation of 
pH was assessed by DPV. The effect of the supporting elec-
trolyte on the electro-oxidation of DCF was investigated in 
the solutions of different pH ranging from 5.5 to 8. The high-
est peak sensitivity was found in pH 7.0 (Fig. 8A), and low 
electrochemical response of DCF in higher pH was observed 
due to the lack of sufficient protons. Linear relationship was 
observed in the plot of Epa vs. pH (Fig. 8B) where with the 
increase in pH the oxidative peak potentials steadily declined 
towards the less positive side and the linear shift in peak 
potential was probably due to the deprotonation process 
involved in the oxidation of the analyte. The linear regres-
sion equation can be expressed as, Epa (V) = 0.605 − 0.045 
pH with R2 = 0.9972. The slope value gives an idea of the 
involvement of electrons and protons. The probable electro-
chemical mechanism is represented in Fig. 9. According to 

Fig. 6   A Differential pulse 
voltammograms obtained for 
1 × 10–4 M DCF at various 
ACT ranging from 0 to 120 s 
in 0.2 M PBS of pH 7. B Plot 
of anodic peak current of 
1 × 10−4 M DCF at PGMC-
NTPE as a function of ACT​

Fig. 7   Plot of anodic peak current of 1 × 10−4  M DCF at PGMC-
NTPE as a function of accumulation potential in 0.2 M PBS of pH 7 
at a scan rate of 0.1 V/s
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the plot of Ipa vs pH (Fig. 8C) the peak current increases 
from pH 5.5 to 7 and after that the peak current shows a 
decline. The most favourable electro-oxidation of DCF was 
obtained at physiological pH and hence pH 7 was considered 
optimum for further investigations [46, 47].

3.7 � CV, DPV and LSV Behaviour of DCF 
at PGMCNTPE

The electrochemical behaviour of 1 × 10–4 M DCF was 
analysed by CV in 0.2 M PBS of pH 7. Figure 10A shows 
the CV at PGMCNTPE and BCNTPE, where PGMCNTPE 
shows two oxidation peaks, but the peak at a potential of 
0.382 V is sharp with an enhanced current sensitivity of 

106.0 μA and a reduction peak is obtained at a potential of 
0.250 V with a current sensitivity of − 103.0 μA. The poten-
tial difference (∆Ep) between these two peaks is greater than 
0.059 V and hence it implies that the electrochemical reac-
tion of DCF is quasi-reversible. But in contrast, BCNTPE 
under alike condition exhibits a diminished current sensitiv-
ity due to the slower rate of electron transfer [48].

DPV shows higher current sensitivity and sharp resolu-
tion compared to CV. Figure 10B shows the DPV of DCF 
(1 × 10–4 M) at the modified sensor and the bare electrode at 
a scan rate of 0.1 V/s. PGMCNTPE in contrary to BCNTPE, 
shows an enhanced current sensitivity at a potential of 
0.288 V with a peak current of 195.8 μA [49].

Linear sweep voltammetry (LSV) investigation of 
1 × 10–4 M DCF was performed under optimised condition 
(Fig. 10C). As per the observation from LSV, the modified 
sensor displays enhanced current sensitivity of 89.05 μA 
at a potential of 0.369 V. The increase in electroanalytical 
signal at PGMCNTPE by all the three methods was due to 
the electro-oxidation of DCF with enhanced electrochemi-
cal kinetics. The polymeric layer of poly (GLY) with large 
number of active sites acts as an proficient promoter in the 
transfer of electrons.

Fig. 8   A DPV response of 1 × 10−4 M DCF at PGMCNTPE in 0.2 M PBS of pH in the range 5.5–8.0 at a scan rate of 0.1 V/s. B Plot of anodic 
peak potential (Epa) vs pH. C Plot of oxidation peak current (Ipa) versus pH of solution

Fig. 9   Proposed redox mechanism of DCF
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3.8 � Influence of Scan Rate

The study of scan rate influence on various parameters like 
the speed at which reaction proceeds, the type of process 
taking place at the electrode surface, reaction pathways 
and number of electrons transferred were analysed by CV 
method [50]. Figure 11A displays the CV for the variation 
of scan rate from 0.025 to 0.20 V/s for the oxidation of 
1 × 10–4 M DCF in 0.2 M PBS of pH 7.0 at PGMCNTPE. 
The PGMCNTPE showed increase in the peak current sig-
nals with increasing scan rate along with the shift in anodic 
peak potential to the more positive side. Electron transfer 
rate is considered to be slow if the extent of the peak poten-
tial separation increases and this slower rate increases with 
the upsurge of scan rate. The linearity observed in the plot 
of Ipa versus scan rate (Fig. 11B) signifies that the process is 
adsorption-controlled. The corresponding equation can be 
stated as Ipa (μA) = 7.668 + 911.5 v (V/s); R2 = 0.9932. Line-
arity was observed between log Ipa and log υ (Fig. 11C), and 
the corresponding equation can be stated as log Ipa = 2.997 
log υ + 1.008; R2 = 0.9932. The slope value of 1.008 is close 
to the anticipated value for adsorption-controlled elec-
trode process. Linearity between the plot of Epa and log ʋ 

(Fig. 11D) displays relatively linear relationship with regres-
sion equation Epa = 0.467 + 0.080 log v; R2 = 0.9924.

The heterogeneous rate constant (k0) value was found to 
be 3.13 × 10–3 s−1 which was calculated by using the exper-
imental peak potential difference (ΔEp) in Eq. 2 [51];

Number of electrons, ‘n’ participating in the electro-
chemical reaction of DCF was calculated by using the 
Laviron expression (Eq. 3) was found to be 1.70 and was 
considered to be two [52].

The value of charge transfer coefficient α was calculated 
by using Bard and Faulkner equation (Eq. 4) which was 
found to be 0.54 [53].

Surface concentration (Γ) was evaluated by using Eq. 5 
[54]:

(2)ΔEp = 201.39log
(

�∕k0
)

301.78

(3)Epa = K +
RT

(1 − a)nF
ln v

(4)ΔEp =
47.7

an

Fig. 10   A CV response of 1 × 10−4 M DCF at BCNTPE and PGMC-
NTPE at a scan rate of 0.1  V/s in 0.2  M PBS of pH 7. B DPV 
response of 1 × 10−4 M DCF at BCNTPE and at PGMCNTPE under 

optimum condition. C LSV response of 1 × 10−4 M DCF at the sur-
face of BCNTPE and PGMCNTPE under optimum condition
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The evaluated value of Γ was found to be 2.80 nmol/cm2.

(5)Q = ΓnFA 3.9 � Calibration Curve and Detection Limit

Under the optimized experimental conditions relationship 
between the oxidation peak current and DCF concentra-
tion was analysed by DPV since sharper and better-defined 

Fig. 11   A CV response of 1 × 10−4 M DCF at PGMCNTPE in 0.2 M PBS of pH 7 at various scan rates from (0.025 to 0.200 V/s). B Plot of Ipa 
vs v. C Plot of log Ipa vs log v. D Plot of Epa vs log v 

Fig. 12   A DPV curve for the variation of concentration of 1 × 10−4 M DCF in 0.2 M PBS of pH 7 at PGMCNTPE. B Calibration plot between 
anodic peak current values of DCF and the altered concentrations of DCF at PGMCNTPE in 0.2 M PBS of pH 7 at a scan rate of 0.1 V/s
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peaks were observed at lower concentrations of DCF 
than those obtained by cyclic voltammetry. Figure 12A 
demonstrates that the peak current increased with the 
increasing concentration of DCF but the peak poten-
tial remained unaltered. The calibration plot (Fig. 12B) 
shows two linear ranges within the concentration range 
of 4 to 100 μM. Underneath the optimised preconditions 
the linearity equation for the first linear range from 4 to 
15 μM, is expressed as Ipa (μA) = 1.777 × 10−4 + 0.132 
[DCF] (M); (R2 = 0.9903) and for the second linear 
range from 20 to 100 μM the equation is expressed as Ipa 
(μA) = 1.694 × 10−4 + 0.574 [DCF] (M); (R2 = 0.9986). The 
LOD and LOQ values calculated by using second linear 
range and was found to be 0.21 μM and 0.71 μM respec-
tively. (LOD = 3S/N, LOQ = 10 S/N where S and N rep-
resents the standard deviation of 5 voltammograms and 
slope of calibration plot) [55]. The experimentally obtained 
results for detection of DCF at PGMCNTPE are compared 
in Table 1 with other electrodes reported in the referral 
publications. The compared value of linear range and LOD 
of the present electrode is in par with certain electrodes but 
depicts lower LOD than certain electrodes.  

3.10 � Simultaneous Determination of DCF Along 
with DA

The selectivity of PGMCNTPE for the analysis of DCF 
was investigated by considering any sort of interference 
encountered from endogenic substances like DA. DA is a 

vital neurotransmitter that is present in the central nervous 
system of mammals. It plays a pivotal role in biological and 
pharmacological processes. Variation in DA levels is associ-
ated with diseases like Parkinson’s which is caused by the 
neural inflammation leading to degradation of DA level. 
DCF is a commonly used nonsteroidal anti-inflammatory 
drug that swiftly cross blood brain barriers and stimulates 
nuclear factor peroxisome proliferator which is a neuropro-
tector [63, 64]. The effect of DCF was considered for its 
antidepressant effect in diverse in vivo and in-vitro models 
of rats. DCF was found to restore DA levels by prevent-
ing neuronal loss and cellular damage in Parkinson’s model 
through its anti-inflammatory effects [65]. DA belongs to 
catecholamine group and it is readily oxidised like DCF 
because of which it is well characterized by its electro-
chemical activity [66]. Hence, under optimal condition the 
equipped sensor was effectively used to determine DCF 
and DA (1 × 10−4 M) simultaneously. From Fig. 13A it was 
observed that PGMCNTPE exhibited enhanced current sen-
sitivity with well resolved peaks at a potential of 0.1444 V 
for DA and at 0.2974 V for DCF. 

Figure 13B displays the DPV obtained by changing the 
concentration of DCF and DF simultaneously. The peak 
current of DCF and DA increased with the increase in the 
concentrations from 10 µM to 60 µM, respectively. Plot of 
Ipa versus the concentration of DCF (Fig. 13C) exhibits a 
respectable linear relation and the calculated LOD value in 
the presence of DA at PGMCNTPE was 0.46 μM, which 
is almost nearer to the LOD value obtained in the absence 

Table 1   Comparative study of 
the LOD values of PGMCNTPE 
with previously reported sensor 
for voltammetric analysis of 
DCF

a Carbon nanotube paste electrode
b Normal pulse polarography
c Ionic liquid-modified carbon nanotubes paste electrode
d Multiwalled carbon nanotube and ionic liquid-modified carbon ceramic electrode
e Boron-Doped Diamond Electrode
f Flow-Injection Amperometric
g Plasticised ion selective electrode
h Cu-doped zeolite-modified expanded graphite-epoxy composite electrode
i Dysprosium nano wire carbon paste electrode
j Fast Fourier Transform Square-Wave Voltammetry

Electrode Linear range
(M)

Detection limit
(M)

Method Reference

CNTPEa 2–100 μ 0.8 μ NPVb [56]
IL/CNTPEc 0.5–300 μ 0.2 μ DPV [57]
MWCNT-IL|CCEd 0.05–50 μ 0.018 μ DPV [58]
BDDEe 5–50 µ 0.14 μ FIAf [59]
Plasticized/ISEg 10–1000 μ 4.0 μ Potentiometry [60]
CuZEGEh 0.2–30 μ 0.05 μ CV [61]
DyNW/CPEi 0.01–1 μ 2.0 n FFT SWVj [62]
PGMCNTPE 20–100 μ 0.21 μ DPV Present work
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of DA. Figure 13D shows the DPV response which was 
obtained by increasing the DA concentration from 10 µM to 
60 µM while keeping the DCF concentration constant. The 
peak current response of DA increased linearly while the 
current response of 10 µM DCF remained unaltered. Hence, 
PGMCNTPE can be used for simultaneous determination of 
DCF and DA, since DCF responses at the detection base is 
not relative to the presence of DA.

3.11 � Interference Studies

Pharmaceutical samples contain certain inactive substance 
formed along with the active component of the prescribed 
medication, which will have a significant impact on the 
selectivity of the modified electrodes [67, 68]. DPV analy-
sis of DCF (1 × 10–4 M) at PGMCNTPE was done under 
optimized condition in the existence of highly concentrated 

solutions of certain foreign substance like uric acid, glucose, 
urea, starch and ascorbic acid. The selectivity of the modi-
fied sensor was also studied by adding some cations like Fe 
3+, K+, Mg 2+, Na+, Ca 2+ which are biologically present 
in human body. The results showed that the presence of 
potential interferents does not have impact on the oxidation 
potential of DCF and hence PGMCNTPE can be effectively 
used for the specific determination of DCF.

3.12 � Stability, Repeatability and Reproducibility

Stability of the PGMCNTPE was evaluated by document-
ing 30 CV cycles under optimised experimental condition. 
The experimental outcome obtained exhibited that 86% of 
the initial current signal was retained. The repeatability of 
the proposed sensor for DCF sample of different concentra-
tions was assessed by intraday study through CV measure-
ments. The relative standard deviation (RSD) was found to 

Fig. 13   A DPV response for simultaneous determination of DA and 
DCF (1 × 10–4 M) at PGMCNTPE and BCNTPE in 0.2 M PBS of pH 
7 at a scan rate of 0.1 V/s. B DPV response for simultaneous analy-
sis with varying concentration from 10 to 60 μM of DA and DCF in 
0.2 M PBS of pH 7 at a scan rate of 0.1 V/s. C Plot of Ipa vs concen-

tration variation of DCF under optimum condition. D DPV response 
for simultaneous analysis by DCF (concentration kept constant) and 
DA (concentration varied) in 0.2  M PBS of pH 7 at a scan rate of 
0.1 V/s
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be 3.23% (n = 3) which signifies that equipped PGMCNTPE 
has high repeatability with good shelf-life and precision. The 
reproducibility of the proposed sensor was also investigated 
via intraday study, by independently fabricating the modi-
fied electrode for five times and the CV data of DCF sam-
ple under identical condition was recorded each time. The 
calculated RSD value of 3.45% signifies that PGMCNTPE 
maintains good reproducibility which is an essential aspect 
for analytical applications.

3.13 � Analytical Application of PGMCNTPE

DCF tablet (from local drug store) was crushed into fine pow-
der using a pestle and mortar. Suitable amount of the tablet 
powder was dissolved in deionised water and then filtered to 
get a clear solution. Considering the dilution factor different 
concentration of clear filtrate solution was added to 0.2 M PBS 
of pH 7 and the DPVs were recorded at PGMCNTPE. From 
the experimental outcome recovery was calculated and a good 
percentage of recovery was obtained in the tablet with a mean 
recovery of 99.57% (Table 2) which justifies the noteworthy 
application of PGMCNTPE in determination of DCF in phar-
maceutical sample.

4 � Conclusion

PGMCNTPE displays a significant role in simultaneous 
determination of DCF and DA by DPV method. The sur-
face characterisation of the proposed sensor was accom-
plished by FE-SEM, EIS and CV. The modified sensor 
exhibits definite characteristics like strong adsorptive 
property, enlarged active surface area of 0.048 cm2, soar-
ing conductivity with upgraded sensitivity. When com-
pared to BCNTPE, PGMCNTPE shows strong electro 
catalytic activity in the electro-oxidation of DCF with a 
high current sensitivity. Scan rate studies revealed that 
the process was adsorption controlled and reversible in 
0.2 M PBS of pH 7 with a heterogeneous rate constant 
(k0) of 3.13 × 10–3 s−1. LOD value achieved was found to 
be 0.21 μM. The developed sensor’s analytical applicabil-
ity was proved by employing it to analyse potential inter-
ferents and determine DCF in a pharmaceutical sample. 
The general analytical performance of PGMCNTPE was 

determined to be beneficial because to its accuracy, sim-
plicity of instrumentation, and quick analysis procedure.
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