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Abstract
Ceftizoxime (CFX) is used to reduce the infection caused by both gram-negative and gram-positive bacteria. In this report, 
a novel electrochemical sensor for CFX comprising a Cu(Him)2 nanoparticles and ionic liquid (IL) hybride modified car-
bon paste electrode (CPE) has been developed. The structural properties of Cu(Him)2 nanoparticles was characterized 
using energy-dispersive X-ray spectroscopy (EDX) analyses, X-ray diffraction (XRD), and field emission scanning electron 
microscopy (FESEM). The results illustrate that Cu(Him)2/ILCPE exhibits an excellent electrocatalytic effect in the elec-
trooxidation of CFX that leads to a considerable improvement in the corresponding anodic peak current. Under the best 
experimental conditions, the sensor exhibited a linear response to CFX from 2.0 to 1000.0 μM, with a limit of detection 
(LOD) of 0.5 nM. Finally, this also allows the development of a highly sensitive voltammetric sensor for the determination 
of CFX in pharmaceutical and biological samples.
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1 Introduction

Ceftizoxime (CFX) has been proposed as the third descend-
ant cephalosporin antibiotic, which activates against aero-
bic of the gram-positive and -negative bacteria and declines 
putrefaction via interference in the wall by rupturing the wall 
and thus decays the bacteria [1, 2]. In fact, CFX has been 
introduced as one of the active agents against putrefaction 
with the extensive uses the treatment of susceptible infec-
tion like lung infections, skin and soft tissue, bone, and joint 
infections and other abdominal infection. Therefore, it is of 
special significance to quantitatively detect the analgesics 
and antibiotics in the biological fluids for the drug metabo-
lisms [3, 4].

Researchers have presented numerous procedures like 
chromatography [5–7] and spectrophotometry [8, 9] to 
detect CFX. Nonetheless, such compounds consisting of 
sulfur cannot be efficiently detected by spectrophotometry 
due to the lack of light absorption of the compounds by them 
[10, 11]; hence, their derivatization would be developed. In 
other hand, the above techniques include difficult extraction 
phases for analyzing the real sample. Additionally, multi-
ple materials must be consumed [12, 13]. For this reason, 
experts in the field must provide rapid sensitive analytical 
techniques.

Currently, researchers have largely employed electro-
analytical procedures to the biomedical and pharmaceutical 
analyses as the biological reactions in humans and electro-
chemical reactions at the interface of the solution electrode 
undergo the same set of the electron transfer pathways. 
Electrochemical methods, due to their rapid response, sim-
plicity, low cost, higher sensitivity, real-time detection, and 
acceptable selectivity with in-situ analysis are considerably 
studied in the pharmaceutical major compounds with the 
electrochemical activities [14–24].

Modification of the surfaces of such sensors with nano-
materials can enhance these advantages [25, 26].

As a result of easier fabrication process, compatibility with 
diverse kinds of modifier, as well as renewability, CPEs are 
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considerably employed as one of the proper matrices to pre-
pare the modified electrodes. Additionally, the CPEs exhibit 
lower background currents than that of the noble metal elec-
trodes or solid graphite [27–32].

Recently, nanomaterials have attracted increasing interest in 
different fields [33–36]. According to some studies, it is possible 
to design nanomaterials of the different types like single or hybrid/
combinatorial nanostructures with distinct characteristics with the 
considerable differences from the common bulk materials. Nano-
sized materials the extensive uses for preparing electrochemical 
sensors due their large surface areas, unique electronic, structural, 
mechanical and catalytic properties [37–39]. Hence, it would be 
of special significance to illustrate electronic and physicochemical 
interactions at the interface of the nano-material based electrodes 
with the intended analytes in order thoroughly apply the potential 
of the modern electro chemical sensors [40–48].

According to some studies, hybrid materials enjoy a com-
bination of the organic and inorganic elements for generating a 
synergic effect of the greater functions of specific components 
that act by themselves. Moreover, researchers have largely con-
sidered the metal–organic hybrids as the modified-electrode 
substances because of their large surface areas, proper pore 
volumes, available cages, higher biocompatibility as well as 
uniform structures [49, 50].

The ligands consisting of imidazole have been considered 
to be poorer π-acceptors and more acceptable π –donors than 
that of the analogous pyridine consisting of the ligands act-
ing as a reasonable acceptor because of the nearly low-lying 
π*-orbitals. Moreover, the deprotonation of the amino N–H pro-
ton may result in the perturbation of the electronic features of 
the metal complexes via establishing a metal–ligand interaction 
[51–54]. Because of the existence of the nitrogen donor atoms, 
imidazole may have coordination with diverse transition metal 
ions. In addition, researchers have introduced copper as one 
of the rich and more cost-effective transition metal elements 
on Earth and therefore copper-based catalyst has been greatly 
examined to design an inexpensive electro-catalyst [55–57].

Furthermore, deprotonation/protonation of imidazole moiety 
on the copper complexes can largely regulate electrochemical 
and redox features of the copper complexes [58–61]. Here, 
we proposes the construction of an electrochemical sensor to 
detect CFX by modification of a carbon paste electrode with 
Cu(Him)2 and ionic liquid.

2  Experimental

2.1  Chemicals and Devices

Electrochemical properties were evaluated by Eco Che-
mie Autolab PGSTAT30 Potentiostat/Galvanostat System, 
the Netherlands. Then, we implemented a general purpose 
electrochemical system (GPES) software for monitoring the 
empirical conditions and applied conventional 3-electrodes 

cell at 25 ± 1 °C. Moreover, this research utilized the Ag/
AgCl/KCl (3.0 M) electrode, the Cu (Him)2/ILCPE as well 
as a platinum wire as the reference, working and auxiliary 
electrodes, respectively. Finally, we applied Metrohm 710 
pH-meter to measure pHs.

Element analysis EDX was carried out by using the 
MIRA3 instrument. Examination of X-ray diffraction (XRD) 
patterns could be done through the use of XRD device model 
X’Pert Pro made in the Netherlands. Scanning electron 
microscope (FE-SEM, MIRA III, Czech Republic) was used 
to determine the morphology of composition Cu(Him)2.

Purity common commercial products were the solvents and 
reagents employed in our research. Copper(II) sulfate, Imida-
zole (Him), Sodium bicarbonate  (NaHCO3), were bought from 
Sigma-Aldrich and each reagent was of analytical grade. All 
other reagents and ceftizoxime were Merck (Darmstadt, Ger-
many) with analytical grade. In addition, orthophosphoric acid 
as well as the respective salts  (KH2PO4,  K2HPO4, and  K3PO4) 
with a pH ranging between 2.0 and 9.0 has been utilized to 
procure buffer solution (Table 1).

2.2  Preparation of Cu (Him)2

The preparation of Cu(Him)2 support was according to the 
literature. Briefly, a solution of Copper(II) sulfate (2.5 g, 
10.1 mmol) into a 100 ml flask, Him (1.36 g, 20 mmol), and 
sodium bicarbonate (6.6 g, 78.56 mmol) were stirred for 3 h. 
The mixture is cooled to filter at environment temperature. The 
residue was washed with deionized water, to give the product as 
a blue powder. Then, we sealed autoclave and heated at 110 °C 
for 20 min.

2.3  Preparation of the Electrode

In this step, we mixed 10 mg of Cu (Him)2 nanoparticles, 
900 mg of graphite powder, as well as a certain content of ionic 
liquid and liquid paraffin for making Cu (Him)2/ILCPE with 
a mortar and pestle. Afterwards, we poured the paste into the 
end of the glass tube (ca. 3.4 mm i.d. and 15 cm in length), and 
place a copper wire in paste for the electrical connection devices. 
Under certain circumstances, the excessive paste was pushed 

Table 1  Structural specifications of Cu(Him)2

Variable Value

Molecular formula Cu(C3H3N2)2

Molecular weight, g/mol 197.7
ʎ max, nm 250
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out of the tube and polished by a weighing paper for preparing 
a new surface.

In order to make comparisons, ionic liquid modified CPE 
(ILCPE) without Cu (Him)2, Cu (Him)2 carbon paste elec-
trode (Cu (Him)2/CPE) without ionic liquid and unmodified 
CPE in the absence of both ionic liquid and Cu (Hin)2 NPs 
were similarly provided.

2.4  Procedure of Real Samples Preparation

CFX ampoule (with the labling 10 mg, Jaber Ebne Hayyan 
Pharmaceutical Company: Iran) was diluted with phosphate buffer 
solution (PBS) pH 5.0 and then, different amounts of the diluted 
solution was transferred into a 25 ml volumetric flask and diluted 
to the mark with the PBS at a pH of 5.0. Volume of CFX was 
analyzed by our procedure using the standard addition technique.

In the case of the urine samples, each sample was refrigerated 
shortly after collection. To perform the analyses, 10 ml of each 
sample was taken and centrifuged at 2000 rpm for a quarter, the 
supernatant was separated and filtered using a 0.45 µm filter paper. 
The solution was then transferred into and diluted to the mark in 
a 25 mL volumetric flask using PBS (pH = 5.0).Various amounts 
of SFX were spike into the samples for the purpose of analyses.

3  Results and Discussion

3.1  Characterization of Cu (Him)2 Nanoparticles

3.1.1  EDX Analyses of Cu(Him)2

The results of EDX show that all the elements; Cu, N and 
C in the sample are present. The weight percent of the ele-
ments Cu, N and C are 84.9, 9.11, 5.99 respectively. (Fig. 1 
and Table 2).

3.2  Analysis of the X‑Ray Powder Diffraction

XRD profiles of Cu(Him)2 is shown in Fig. 2. The crystal 
phase is unique for Cu(Him)2. This pattern shows which 
Cu(Him)2 is pure crystalline phases without any impurities 
of the intermediates. As we have seen from the XRD pattern, 
this zeolite imidazole framework particle is well crystal-
lized. This pattern shows the average size of particles about 
15.6 nm.

3.3  Sample Morphology

The surface morphologies of Cu(Him)2 particles were stud-
ied by FESEM and are shown in Fig. 3. From these figures 
can be seen all particles have nanotube structure and also 
samples average size are about 74 and 90 nm.

Fig. 1  EDX spectrum of Cu(Him)2 particles

Table 2  Quantitative results EDX spectrum of Cu(Him)2 particles

Elt Line Int Error K Kr W% A% ZAF Ox% Pk/Bg Class LConf HConf Cat#

C Ka 28.6 97.2235 0.0471 0.0428 5.99 20.08 0.7137 0 17.87 A 5.66 6.33 0
N Ka 53.4 97.2235 0.0887 0.0805 9.11 26.16 0.8833 0 10.46 A 8.74 9.48 0
Cu La 502.3 47.4222 0.8642 0.7842 84.9 53.76 0.9236 0 36.68 A 83.77 86.03 0

1 0.9074 100 100 0 0

Fig. 2  Powder XRD pattern of the blue polymorph Cu(Him)2
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3.4  Electrochemical Profile of the CFX on the Cu 
(Him)2 /ILCPE

Studies in the field have shown the dependence of the 
electro-chemical behaviour of CFX on the pH-value of 
the aqueous solutions. Hence, pH optimization would be 
of high importance for obtaining the electrocatalytic oxi-
dation of CFX. It is notable that we examined the electro-
chemical behaviour of CFX in 0.1 M PBS at various pH-
values (2.0 < pH < 9.0) at the Cu(Him)2/ILCPE surface using 
CV. Furthermore, electro catalytic oxidation of CFX at the 
Cu(Him)2/ILCPE surface was acceptable in acidic condition 
as compared to the basic or neutral media. From the highest 
current obtained in acidic conditions, pH 5.0 was selected 
as an optimized pH to electro catalyze CFX oxidation over 
Cu(Him)2/ILCPE surface (Fig. 4). In addition, equal electron 

as well as proton contributed to the CFX electrochemical 
reaction at surface of Cu(Him)2/ILCPE through the Ep slope 
vs. pH plot (Fig. 5).

Figure 6 represents the CV response for electrochemi-
cal oxidation of 500.0 nM CFX at the unmodified CPE 
(curve a), Cu(Him)2/CPE (curve b), ILCPE (curve c) and 
Cu(Him)2/ILCPE (curve d).

Figure 6 depicts the anodic peak potential of ~ 880 mV 
for CFX oxidation on the bare CPE surface (curve a) and 
780 mV on the Cu(Him)2/ILCPE surface (curve d). As 
seen in the curves, the peak potential CFX oxidation on the 
surface of the modified electrode switched from 100 mV 
to the negative values in comparison to the surface of the 
bare electrode. With regard to the CFX oxidation on the 
surface of Cu(him)2/CPE (curve b) and Cu(Him)2/ILCPE 

Fig. 3  FESEM images of the 
Cu(Him)2

Fig. 4  Current-pH curve for electrooxidation of 100.0 nM CFX at the 
surface of Cu(Him)2/ILCPE at various pH values (2.0–9.0) in 0.1 M 
phosphate buffered solution at a scan rate of 50 mV  s−1

Fig. 5  E plot versus pH for electrooxidation of 100.0 nM CFX at the 
surface of Cu(Him)2/ILCPE at various pH values (2.0–9.0) in 0.1 M 
phosphate buffered solution at a scan rate of 50 mV s −1
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(curve d), the anodic peak current enhanced on Cu(Him)2/
ILCPE compared to the Cu(Him)2/CPE, which reveals the 
greater peak currents by ionic liquids (ILs) presence in the 
CPE. Researchers have shown several benefits for ILCPE 
like fast electron transfer, appropriate antifouling features, 
the catalytic nature of the ILs, as well as greater conductiv-
ity. Therefore, we put the IL mass into the paraffin oil and 
carbon which link the granules and observed that ILCPE 
conductivity significantly improved that matches our elec-
trochemistry results. With regard to Fig. 6 (curves c & d), 
the oxidation peak current on the Cu(Him)2/ILCPE surface 
is higher than that on the Cu(Him)2/CPE surface. Moreover, 
we observed the Cu(Him)2on IL surface on the electrochem-
ical response, which is possibly caused by the probable fea-
tures of Cu(Him)2, such as the greater surface area, accept-
able electrical conductivity and stronger chemical stability.

3.5  Effect of Scan Rate on the Results

In this step, we addressed the impacts of the rates of poten-
tial scan on the CFX oxidation current (Fig. 7) and showed 
the induced increase of the peak current via enhancing the 
potential scan rate. Moreover, we monitored diffusion in the 
oxidation processes, which was shown by linear dependence 
of the anodic peak current (Ip) on the square root of the 
potential scan rate (ν1/2).

Tafel-plot based on the outputs of the ascending sec-
tion of the curve for current–voltage registered at the scan 
rate equal to 10  mVs−1 for CFX as depicted in Fig. 8. The 

mentioned section that is also called voltammogram referred 
to the Tafel area has been influenced through the kinetics of 
electron transfer between Cu(Him)2/ILCPE and the substrate 
(CFX). Moreover, Tafel slopes of 0.1037 V was observed, 
showing the consistency with contribution of one electron at 
the rate determining step of the electrode procedure, assum-
ing the charge transfer coefficient α = 0.43.

Fig. 6  CVs of bare CPE (a) Cu(Him)2/CPE (b) ILCPE (c) and 
Cu(Him)2/ILCPE (d) in exposure to CFX (500.0 nM) at the pH of 5.0 
and the scan rate of 50 mV/s

Fig. 7  CVs of Cu(Him)2/ILCPE 0.1  M PBS (pH 5.0) containing 
500.0 nM of CFX at various scan rates; 1–9 correspond to 10, 20, 40, 
80, 100, 200, 300, 400 and 500 mV  s−1, respectively. Inset: variation 
of anodic peak current with square root of scan rate

Fig. 8  LSV (at 10 mV  s−1) of a Cu(Him)2/ILCPE in 0.1 M PBS at a 
pH 5.0 consisting of 500.0 nM CFX. These points represent outputs 
applied in Tafel plot and inset presents the Tafel plot obtained from 
LSV
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3.6  Calibration Curve and LOD

It is possible to apply electro-oxidation peak currents of 
CFX at the surface of Cu(Him)2/ILCPE for CFX detection 
in the solution. It is well-known that greater sensitivity and 
specific features for analytical uses have been proposed as 
the advantages of differential pulse voltammetry (DPV), 
we utilized Cu(Him)2/ILCPE in 0.1 M PBS of various 
concentrations of CFX for DPV procedures (Fig. 9) (Step 
potential = 0.002 V, Modulation Amplitude = 0.02505 V). 
As seen in the figure, electro-catalytic peak current of the 
CFX oxidation at the surface of Cu(Him)2/ILCPE has a 
linear dependence on the CFX concentration above ranges 
from 2.0 to 1000.0 μM (with a correlation coefficient of 
0.9996) whereas LOD (3σ) equalled 0.5  nM. Table  3 

presents a comparison of electrochemical techniques for 
the detection of CFX at the prepared electrode in this work 
and some other works.

3.7  Real Sample Analysis

We applied this method to detect CFX in urine and CFX 
ampoule specimens for evaluating the utility of the modified 
electrode in the real samples. Moreover, we implemented the 
standard addition method. Table 4 reports the findings. As 
seen, CFX recoveries are reasonable and generalizability of 
the results has been shown with regard to the mean relative 
standard deviation (RSD).

4  Conclusion

The present research showed feasible quantification of the 
CFX concentration at the micromolar level by combining 
certain catalytic features of IL with the specific features of 
Cu (Him)2 NPs like a greater surface area in a carbon paste 
environment. Cu (Him)2/ILCPE sensor showed catalytic 
impact on the CFX oxidation via elevating its oxidation 

Fig. 9  DPVs of Cu(Him)2/ILCPE in 0.1  M PBS (pH 5.0) consist-
ing of various concentrations of CFX. 1–11 relative to 2.0, 7.5, 15.0, 
30.0, 75.0, 100.0, 200.0, 400.0 600.0 and 800.0 and 1000.0  μM of 
CFX, respectively. The inset: the peak current plot as the function of 
CFX concentrations in ranges from 2.0–1000.0 µM

Table 3  A comparison of electrochemical techniques for the detection of CFX at the prepared electrode in this work and some other works

Electrochemical sensor Method Linear range LOD References

Hollow gold nanoparticles/reduced graphene oxide/pencil graph-
ite electrode

Stripping differential pulse 
voltammetry

1 ×  10–12-1 ×  10–9 M 3.5 ×  10−13 M [1]

Nano diamond-graphite nano mixture decorated with Ag nano-
particles/glassy carbon electrode

Linear sweep voltammetry 0.02–7 µM 6 nM [4]

Poly(o-anisidine)/sodium dodesyl sulfate /Ni/carbon paste elec-
trode

Linear sweep voltammetry 100–2000 µM 80 µM [10]

Fullerene/glassy carbon electrode Square-wave voltammetry 2.96–25.4 µM 0.00066 µM [62]
Cu(Him)2/ILCPE DPV 2.0–1000.0 μM 0.5 nM This work

Table 4  Ceftizoxime detection in real specimens via Cu(Him)2/
ILCPE. Each concentration is expressed in μM (n = 3)

Sample Spiked Found Recovery (%) R.S.D. (%)

Blood serum 0 3.0 – 3.5
1.0 3.9 97.5 2.1
2.0 5.2 104.0 1.9
3.0 5.9 98.3 3.0
4.0 7.1 101.4 2.4

Tablet 0 – – –
5.0 4.9 98.0 2.9
7.0 7.2 102.9 2.8
9.0 8.8 97.8 1.7
11.0 11.1 100.9 3.0
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peak. The linear current response to CFX concentration 
was obtained to be from 2.0 to 1000.0 μM with a detection 
limit of 0.5 nM and a sensitivity of 0.0143 μA μM−1. Hence, 
researchers have designed a more sensitive electro-chemical 
technique to detect CFX in pharmaceutical and clinical sam-
ples. Such an electrode would offer specific advantages over 
the common electrodes due to easier construction processes, 
very good catalytic activities, simplicity as well as sensitiv-
ity. Hence, Cu(Him)2/ILCPE has shown to be highly promis-
ing for potential sensing utilizations.
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