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Abstract
Recent developments in computational catalysis have allowed the routine reduction of the dimensionality of complex reac-
tion networks to a few descriptors based on linear scaling relations. Despite this convenient benefit, linear scaling relations 
fundamentally limit the activity and selectivity of a given class of materials towards a given reaction. Here, we show an 
example by offering a novel description of the fundamental limits on the activity of CO hydrogenation to methanol; a reac-
tion that offers a sustainable route to obtaining value-added chemicals from syngas. First, we show that there is a strong 
linear correlation between the formation energy of CO* (where * denotes an adsorbed species) and those of the transition 
states of a number of elementary steps along the methanol synthesis pathway on these surfaces. Using microkinetic mod-
eling, we cast this information into activity volcano plots with the formation energies of a given transition state and CO* 
as independent descriptors. This analysis reveals the fundamental limits on activity imposed by the aforementioned linear 
scaling relations, and invites a vigorous search for novel materials that escape these linear scaling relations as a necessary 
condition for achieving improved activity towards methanol from CO hydrogenation. Specifically, we point out the transi-
tion states H–CO* and  CH3O–H* as key transition states to be stabilized independently of CO* for improved activity and 
selectivity towards methanol synthesis.

Keywords Methanol synthesis · Density functional theory · Linear scaling relations · Catalyst design · Microkinetic 
modeling

1 Introduction

There is a general scientific consensus that global warm-
ing is driven by anthropogenic emissions caused by our 
current energy infrastructure which releases the carbon 

fixated in fossil fuels into the atmosphere as  CO2 [1]. To 
mitigate this crisis, fossil fuels must be replaced by more 
sustainable fuels that can be produced from  CO2 directly 
or indirectly (e.g. through biomass) [2, 3]. Methanol is a 
convenient basis fuel molecule [4–7], a liquid at ambient 
conditions, a hydrogen carrier [8], a feed to direct methanol 
fuel cells [9], a blend to gasoline in combustion engines 
[8], and a platform molecule for the production of gasoline, 
diesel, jet fuel, or higher value chemicals [10, 11]. Today, 
methanol is industrially produced from syngas -a mixture 
of predominantly CO and  H2 with 2–8 vol% of  CO2—on a 
Cu/ZnO/Al2O3 catalyst at 30–120 atm and 200–300 °C [7, 
12–14]. In a descending order of molar amounts, Cu rep-
resents the active component of the catalyst, ZnO modifies 
and disperses Cu in porous aggregates partially covered by 
Zn or ZnO, while  Al2O3 plays the role of a structural pro-
moter [15–25]. A strong metal support interaction (SMSI) 
effect brings about a much-prized synergy in this catalytic 
system, by partially covering the Cu surface with Zn/ZnO, 
which strongly stabilizes crucial intermediates and transition 
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states along the hydrogenation pathway (particularly of that 
of  CO2) [26–29]. Despite this synergistic collection of the 
catalyst components, turnover frequencies for methanol 
synthesis from syngas often do not exceed an unimpressive 
 10−2 s−1 [26, 30–33]. This rate is much lower than that of 
the intimately intertwined water–gas-shift-reaction, allow-
ing the interconversion between CO and  CO2 to equilibrate 
under the industrial conditions of methanol synthesis [34].

Density functional theory (DFT) is well positioned to 
contribute to advancements in catalysis thanks to the ever-
growing computational capabilities and increasing accuracy 
of exchange correlation functionals [35–38]. In the context 
of methanol synthesis from syngas, DFT has provided much 
insight into the mechanism and structure-sensitivity on tran-
sition metal catalysts [26, 29, 39–50]. Extensive calcula-
tions for the adsorption energies of reaction intermediates 
and the transition state energies for the various elementary 
steps paint a fairly complete picture of the energetics of the 
involved reaction networks on a given surface. By repeating 
this exercise on a number of structurally similar surfaces, 
one can elucidate trends among those surfaces for CO hydro-
genation to methanol. One approach to understanding these 
trends and equipping them with a predictive capability is to 
reduce the dimensionality of the reaction network to a few 
descriptors through linear scaling relations between those 
few chosen descriptors and the remainder of the calculated 
energies [51]. For CO/CO2 hydrogenation to methanol, the 
descriptors have consistently been the adsorption energies 
of CO* (or atomic carbon) and OH* (or atomic oxygen). 
Note that these two descriptors correlate poorly with each 
other on the terraces and steps of transition metals [43, 52], 
and therefore both are needed as independent descriptors to 
fully characterize the reaction network. Through microki-
netic modeling, the full energetics of the reaction network 
can be cast as a function of these two descriptors into two-
dimensional volcano plots, showing regions in the descriptor 
space of improved activity and selectivity towards methanol, 
thus enabling rational catalyst design and high-throughput 
screening of catalytic materials.

In this work, we focus on the hydrogenation of CO, as 
opposed to the less plentiful component of syngas,  CO2. 
It is a common industrial practice to inject  CO2 into syn-
gas [53], but the concentration of  CO2 is limited by its ten-
dency to deactivate the industrial Cu/ZnO/Al2O3 catalyst 
through a combined poisoning (e.g. by water, the product 
of  CO2 hydrogenation) and sintering effect [54–58]. The 
general consensus is that  CO2 provides the active pathway 
to methanol formation on the industrial Cu/ZnO/Al2O3 
catalyst, and that it is replenished in the syngas mixture 
through the continuous conversion of CO to  CO2 via the 
water–gas-shift-reaction [29, 42, 59–62]. Crucially, this 
chemical equilibrium removes the  H2O produced by  CO2 
hydrogenation, which otherwise would have poisoned the 

surface (e.g. through high coverage of OH* or other oxygen-
ated species). The elimination of this poisoning/deactivation 
problem, and funneling the methanol synthesis rate through 
CO (i.e. the majority carbon source in syngas) as opposed 
to  CO2 necessitate finding catalysts that are active towards 
methanol synthesis primarily through CO hydrogenation, 
hence the focus of this work.

On the terraces and steps of Cu, the hydrogenation path-
way of CO predominantly proceeds through the full hydro-
genation of the carbon end of CO* to methoxy  (CH3O*), 
followed by the hydrogenation of the oxygen end to finally 
produce methanol  (CH3OH) [39]. Possible rate-determin-
ing steps include the initial hydrogenation of adsorbed CO* 
to HCO*, as well as the final hydrogenation of methoxy 
 (CH3O*) to methanol [39]. The initial hydrogenation step 
in particular has also been suggested as rate-determining for 
syngas conversion to higher alcohols [52]. Here, we seek a 
more in-depth perspective into the reaction mechanism by 
first focusing on this initial hydrogenation rate-determining 
step. We conduct our analysis on Ag, Cu, Pt, Pd, and Rh, a 
suitable set of transition metals that covers a wide range of 
adsorption properties. Given the strong structure sensitivity 
of methanol synthesis on Cu and the importance of steps in 
the industrial catalyst [16, 26, 30–32, 63], we investigate the 
(111) and (211) facets of the aforementioned transition met-
als, to represent terraces and steps, respectively. We show 
that there exists a strong linear scaling relation between 
the energy of the initial state and that of the transition state 
for this elementary step. We then recast the microkinetic 
model to superimpose this linear scaling relation onto the 
two-dimensional volcano plots. We further explore other 
transition states along the CO hydrogenation to methanol 
pathway as descriptors for methanol synthesis on the (211) 
surfaces. This shows how this family of linear scaling fun-
damentally limits the activity of transition metals towards 
methanol synthesis from CO. We then proceed with a brief 
discussion of materials or strategies to escape these linear 
scaling relations.

2  Methods

DFT data on the (111) surfaces are taken from our pre-
vious work [52], while DFT data on the (211) surfaces 
were computed anew (see Table S1) on (211) slab mod-
els identical to our previous work [43]. Briefly, all plane 
wave DFT calculations presented here were performed as 
implemented in the Quantum Espresso code [64], with 
the BEEF-vdW functional [65] which accounts for van 
der Waals dispersions in the framework of the generalized 
gradient approximation. The (111) surfaces were modeled 
with a four-layer slab in a (3 × 3) unit cell, with the bottom 
two layers fixed while the top two layers and adsorbates 
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were allowed to fully relax. The (211) surfaces were mod-
eled using a (3 × 1) supercell structure with three metal 
layers, with the bottom two fixed and the upper layer and 
adsorbates fully relaxed. For both facets, the Brillouin 
zone was sampled with a 4 × 4 × 1 Monkhorst–Pack mesh 
[66], and the energy cutoff was taken at 500 eV. Transition 
states were calculated with the climbing image nudged 
elastic band (CI-NEB) method [67], with the convergence 
criterion on the forces on each of the five intermediate 
images of 0.05 eV/Å. The harmonic approximation was 
used to calculate vibrational frequencies and estimate 
zero-point energies and entropies. All transition states 
have a single imaginary frequency. Steady state solutions 
for the rate equations were obtained using the mean-field 
approximation as implemented in the CatMap code [68]; 
we employ our previous microkinetic models for the (111) 
[52] and (211) [43] surfaces. Methanol, methane, etha-
nol, and acetaldehyde are included as possible products 
on the (111) surfaces, while  C2 species were not included 
on the less  C2-oxygenates-selective (211) surfaces. C-O 
bond scission to form methane was considered through 
a COH*-like intermediate on the (211) surfaces, and 
through CHOH* on the (111) surfaces. All microkinetic 
models are solved at 523 K and 20 bar, with the reac-
tion feed containing CO:H2 ratio of 1:2, and negligible 
amounts of products (methane, methanol, and  C2 species if 
applicable). Formation energies of all species are relative 
to gas phase energies of CO,  H2, and  H2O.

3  Results

A common rate-determining step for CO hydrogenation 
to methanol is:

where * denotes an adsorbed species or a surface site, and 
H–CO* is the transition state for this association step, which 
determines the overall rate of the hydrogenation reaction. 
A general rate expression for this elementary step could be 
given as:

where � is the pre-exponential factor, � is a generic term for 
the coverage of adsorbed intermediates of the initial state 
(CO* and H*),GTS is the free energy of the transition state 
H–CO*, ΔG is the free energy of the initial state consisting 
of CO* and H*, k is the Boltzmann constant, and T  is the 
absolute temperature.

The generic coverage term could in turn be related to 
reactant gaseous mixture pressure p by:

CO
∗ + H

∗
→ H − CO

∗
→ HCO

∗+∗

r = ��e−(GTS−ΔG)∕kT

where K is the equilibrium constant for the adsorption ele-
mentary steps, and is given by:

Combining the above equations, and setting p to unity 
gives the following form of the rate expression:

We then simplify this expression further by consider-
ing two limiting scenarios for ΔG : a scenario for strongly 
adsorbing, highly covered surfaces ( ΔG ≪ 0 ), and another 
for weakly adsorbing, clean surfaces ( ΔG ≫ 0).

For ΔG ≪ 0 , the above rate expression could be simpli-
fied to:

Notice that in the expression above we refer to the zero-
point energy (ZPE)-corrected total energies instead of free 
energies. This follows by assuming a negligible change in 
entropy from the initial state to the transition state, a valid 
assumption given that both are adsorbed states.

As for ΔG ≫ 0 , the above rate expression could be sim-
plified to:

Given that r ∝ e−Ea∕kT , we find that the expressions for 
the activation energies for the two limiting cases become:

That is to say that the activation energy equals the tran-
sition state energy if adsorption (i.e. the initial state) is 
uphill, but equals the difference between the transition 
state and initial state if the latter is downhill compared to 
the gas-phase reference.

For hydrogenation/dehydrogenation elementary steps, 
the transition state energy has been found to scale linearly 
with the energy of the dehydrogenated state [39, 69]. Fig-
ure 1 shows a strong linear scaling relation  (R2 > 0.99) 
between the transition state ( ETS ) and the initial state ( ΔE ) 
of CO* hydrogenation to HCO* for the close-packed (111) 
and the stepped (211) facets of Ag, Cu, Pt, Pd, and Rh. 
The transition state is significantly stabilized on the (211) 
facets as compared to their (111) counterparts. Notice that 
the slopes for the two lines are quite similar; the two lines 
are solely distinguished through their intercepts, with the 
line for the (211) facets showing on average ~ 0.30 eV sta-
bilization for H–CO* compared to the line for (111) facets.

� =
pK

1 + pK

K = e−ΔG∕kT

r = �
1

1 + eΔG∕kT
e−(GTS−ΔG)∕kT

r ∝ e−(GTS−ΔG)∕kT ≈ e−(ETS−ΔE)∕kT

r ∝ e−GTS∕kT = eΔSTS∕ke−ETS∕kT

ΔG ≪ 0,Ea = ETS − ΔE|ΔG ≫ 0,Ea = ETS
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Plugging in the linear scaling relation into the activa-
tion energy expressions, we get:

Notice that the limiting conditions are equally valid 
when expressed in terms of ZPE-corrected energies instead 
of free energies. Therefore, when ΔE approaches either 
limit, the activation energy is linearly related to the initial 
state, with opposite slopes for these lines at the opposite 
limits. These lines, if extrapolated to finite ΔE , intersect 
precisely at ΔE = 0 and at Ea = � , as shown in Fig. 2.

To express this figure in terms of free energy, we need 
to add the entropy term −TS to Ea (see Tables S2-S4 for 
details). At T = 0K  , E ≡ G . We further express the free 
energy in terms of −Ga , which represents a logarithmic 
expression of the rate ( −Ga ∼ kTln(r) ). This gives a vol-
cano-like plot between the activation free energy and the 
ZPE-corrected energy of the initial state, with the tip of 
the volcano precisely at ΔE = 0 , as is shown in Fig. 3. This 
familiar volcano-type relation is a direct manifestation of 
the Sabatier principle, in which optimal catalysts (i.e. with 
the least negative −Ga ) should not bind reaction intermedi-
ates too strongly ( ΔE ≪ 0 ) or too weakly ( ΔE ≫ 0).

The entropy term at non-zero absolute temperatures 
needs only be added to the ΔE ≫ 0 leg of the volcano, 
since it will largely be canceled out for ( ΔE ≪ 0 ). There-
fore, the ΔE ≫ 0 leg of the volcano is shifted downward 
by TS , as is shown for different temperatures in Fig. S1. To 
fully represent the exponent of the Arrhenius expression, 

ΔE ≪ 0,Ea = −(1 − 𝛼)ΔE + 𝛽|ΔE ≫ 0,= 𝛼ΔE + 𝛽

we cast these volcano plots in terms of −Ga∕kT  , as is 
shown in Fig. 4.

Notwithstanding the confinement of our analysis to a 
single elementary step in the pathway to methanol, ignor-
ing possible side products (e.g. notably methane, which we 
include in the microkinetic model below), we still can make 
the following three predictions which follow from Fig. 4:

Fig. 1  Linear scaling relations between the initial and transition states 
of CO* hydrogenation to HCO* for the (111) and (211) facets of tran-
sition metals, represented by triangles and squares, respectively. The 
colors of the symbols indicate the identity of the metal according to 
the legend in the bottom right corner. The scaling lines for the (111) 
and (211) facets are in violet and pink, respectively

Fig. 2  The activation energy versus the initial state energy for CO* 
hydrogenation to HCO* on the (111) and (211) facets of transition 
metals, represented by triangles and squares, respectively. The colors 
of the symbols indicate the identity of the metal according to the leg-
end in the bottom right corner. The scaling lines for the (111) and 
(211) facets are in violet and pink, respectively

Fig. 3  The inverse of activation free energy versus the initial state 
energy for CO* hydrogenation to HCO* on the (111) and (211) fac-
ets of transition metals, represented by triangles and squares, respec-
tively. The colors of the symbols indicate the identity of the metal 
according to the legend in the bottom left corner. The scaling lines for 
the (111) and (211) facets are in violet and pink, respectively
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1. At relevant temperatures for CO hydrogenation to meth-
anol (e.g. 500 K), Pd, Pt, and Rh appear to be more 
active than Cu (this will not be the case when methana-
tion is considered through microkinetic modeling, see 
below).

2. The optimal catalyst should bind the initial state stronger 
than Cu, but weaker than Pt or Pd.

3. The optimality is temperature-dependent, given that the 
tip of the volcano shifts to stronger binding as the tem-
perature increases.

We now take a more general approach and analyze the 
full kinetic model of CO hydrogenation to methanol on 
the (111) surfaces. The microkinetic model [52] does not 
make any prior assumptions regarding the nature of the 
rate-determining elementary step(s). Furthermore, it con-
siders pathways for forming methane and  C2-oxygenates, 
thus providing a comprehensive scrutiny of competing side 
products. As descriptors, we choose the formation energies 
of CO* (ΔECO*) and the transition state (ΔEH-CO*), with the 
latter replacing ΔEOH* as the corresponding descriptor in our 
previous work [52]. This choice enables us to superimpose 
the linear scaling relation between these two quantities (see 
Fig. 1) atop the two-dimensional volcano plots produced by 
the microkinetic model. This, however, comes at the expense 
of accuracy given that the reaction intermediates which 
bind through their oxygen atoms do not scale as well with 
ΔEH-CO* as they do with ΔEOH*, e.g. OH* and  CH3O* (see 
all (111) scaling relations in Fig. S2). This is fundamentally 
attributed to the fact that the hybridization between the metal 
d states and the adsorbate states are significantly different 
between those adsorbates binding to the surface through 

carbon and those binding through oxygen, thus voiding the 
bond conservation arguments that make the realization of 
scaling relations possible [70].

To overcome this issue, we eliminate the linear depend-
ence of OH* and  CH3O* on the descriptors, by first setting 
ΔEOH* to an arbitrary constant value, and then determin-
ing the value of ΔECH3O* according to the scaling relation 
between ΔEOH* and ΔECH3O* (see Fig. S3). This is akin 
to taking a cross-section of a constant value of ΔEOH* in 
a three-dimensional volcano in which ΔEOH* is the third 
descriptor (or the third dimension). We take three such 
cross-sections at ΔEOH* values of 0.50, 0.00, and − 0.25 eV, 
representing weak, moderate, and strong binding of OH*, 
respectively. Fig. S4–S6 show the volcano plots of the pro-
duction rates of all products at these three cross sections. 
The main products according to the microkinetic model are 
methane, water, and methanol;  C2 species are produced only 
in trace amounts, consistent with our previous work [52]. 
The selectivity towards methanol versus methane is sensitive 
to OH* binding: at weak binding, the catalysis is more selec-
tive to methanol, while the opposite is true at moderate and 
strong binding. This is intelligible, given that weak binding 
of OH* (or interchangeably, weak binding of  CH3O*) eases 
methanol desorption, thus steering the catalysis towards 
higher selectivity to methanol. On the other hand, stronger 
binding of OH* (or  CH3O*) favors C-O bond splitting, and 
inhibits methanol desorption, shifting the selectivity towards 
methane. The solutions in all three cases are qualitatively 
similar nevertheless, and additionally, Fig. S7 shows that 
the solution when both ΔEOH* and ΔECH3O* are allowed to 
scale with the two descriptors is qualitatively invariant to the 
three cases of Figs. S4–S6.

Fig. 4  -Ga/kT versus the initial state energy for CO* hydrogenation 
to HCO* on the (111) and (211) facets of transition metals, repre-
sented by triangles and squares on the left and right panels, respec-
tively. The colors of the symbols indicate the identity of the metal 

according to the shared legend in the middle. The symbols shift with 
the respective temperature lines, which are in blue, orange, and green 
for 300, 500, and 600 K, respectively
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We now seek to analyze the volcano plot for methanol 
production on (111) surfaces at moderate binding of OH* 
(ΔEOH = 0.00 eV) in greater detail (see Fig. 5). A clear peak 
for this activity volcano exists at moderate binding of CO*, 
and significantly stabilized H–CO*. The strong dependence 
of this peak on the transition state energy justifies the above 
analysis (Fig. 1, 2, 3, 4; Fig. S1; Table S2–S4) by showing 
the sensitivity of the overall rate to this particular parameter. 
The scaling line for the (111) facets delineates an active 
region that lies below the line (within moderate ΔECO) and 
a less active region above it, which shows the central role the 
initial hydrogenation of CO* to HCO* plays in the methanol 
synthesis chemistry.

We use the (211) data (Table S1) to construct a similar 
volcano plot for a reaction network that includes pathways 
for methane and methanol formation (we exclude  C2 species 
given that the (211) surfaces are known to be less selec-
tive towards higher alcohols and oxygenates [71], and given 
that  C2 species were hardly produced on the (111) facets 
anyhow). Figure 6 shows this volcano plot at a value of 
ΔEOH =  − 0.25 eV, chosen to be close to ΔEOH on Cu(211). 
Similar to the (111) volcano plots, oxygenated species do not 
scale well with either descriptor (see Fig. S8), and therefore, 
ΔECH3O is fixed via the scaling relation between the energies 
of OH and  CH3O. In addition, we also fix ΔEO, thus making 
use of the correlation between the energies of O and OH on 

the (211) surfaces (on the (111) surfaces, this correlation is 
poor; see all O–OH–CH3O scaling relations in Fig. S3). Like 
the (111) surfaces, the volcano plots are qualitatively invari-
ant at different values of ΔEOH (Figs. S9–S11) and also for 
the case where all oxygenated species are allowed to scale 
with the descriptors (Fig. S12). We see a clear dependence 
of the rate of methanol synthesis on ΔEH-CO* at the weak 
spectrum of this descriptor. However, below the scaling line 
at more stabilized ΔEH-CO*, there seems to be little depend-
ence of the methanol synthesis rate on ΔEH-CO*. Unlike the 
(111) volcano plot, the (211) volcano plot does not offer 
a strong incentive to stabilize ΔEH-CO* independently of 
ΔECO*. There is, however, a clear benefit if new catalysts 
that offer similar stability of the transition state to those on 
the strongly-adsorbing metals (Pt, Pd, and Rh), but signifi-
cantly weaker binding of CO*, are found. Such new cata-
lysts would offer significantly improved selectivity towards 
methanol at the expense of methane, as compared to the 
(211) facets of Pt, Pd, and Rh. Nonetheless, per the volcano 
plot of Fig. 6, those new catalysts will not be significantly 
more active than Cu(211) towards methanol synthesis.

We, therefore, investigate other transition states to 
serve as descriptors for the (211) surfaces. The goal is 
to discover whether there is a transition state that more 
significantly affects the rate towards methanol synthesis 
on the (211) surfaces than H–CO*. We recall that the final 

Fig. 5  Volcano plot for the rate (turnover frequency, or TOF, in  s−1) 
of methanol production via CO hydrogenation on the (111) facets of 
transition metals. Ir(111) was used as an extra data point for the pro-
duction of this volcano plot to aid the convergence of the adsorbate–
adsorbate interaction model included in the microkinetic modeling of 
the (111) surfaces. The TOF is plotted against the formation energies 
of CO* and the transition state H–CO*, allowing the superposition of 
the (111) linear scaling relation of Fig. 1. The error bars indicate the 
standard deviation of the BEEF ensemble calculations. The formation 
energies are relative to CO(g),  H2(g), and  H2O(g). Improved catalysis 
entails the stabilization of the transition state H–CO*, without further 
stabilizing CO*

Fig. 6  Volcano plot for the rate (turnover frequency, or TOF, in  s−1) 
of methanol production via CO hydrogenation on the (211) facets of 
transition metals. The TOF is plotted against the formation energies 
of CO* and the transition state H–CO*, allowing the superposition of 
the (211) linear scaling relation of Fig. 1. The error bars indicate the 
standard deviation of the BEEF ensemble calculations. The formation 
energies are relative to CO(g),  H2(g), and  H2O(g). Improved catalysis 
entails the destabilization of CO*, without further destabilizing the 
transition state H–CO*
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hydrogenation step to release methanol through hydrogen-
ation of methoxy  (CH3O) could also be rate-determining 
on Cu(211), along with the initial hydrogenation step of 
CO* to HCO* [39]. We therefore produce the (211) vol-
cano plots with ΔECH3O-H* as an activity descriptor replac-
ing ΔEH-CO*, again at ΔEOH =  − 0.25 eV (and ΔEO and 
ΔECH3O fixed accordingly). Figure 7 shows this volcano 
plot, while Fig. S13-S14 show the corresponding (211) 
volcano plots employing ΔEH-HCO* and ΔEH-CH2O* as 
descriptors, respectively. Notice that, like the formation 
energy of H–CO*, the formation energies of the other tran-
sition states scale linearly with CO*, though significant 
scatter exists for the cases of H-HCO* and H–CH2O* (see 
correlation parameters in Figs. S13, S14 captions). These 
volcano plots are qualitatively similar, but because of scal-
ing with different descriptors, the values of the calculated 
rates at any given descriptor value-pair would be different 
among the different descriptors (e.g. notice the difference 
in rates of Cu(211) predicted in Fig. 6 and Fig. 7). Fig-
ure 7 and Figs. S13, S14 show that there are broad regions 
of higher activity below the scaling lines, suggesting that 
the transition states H–HCO*, H–CH2O*, and  CH3O–H* 
could be potential targets for CO*-independent stabiliza-
tion in high-throughput screening of improved methanol 
synthesis catalysts. Finally, we note that all these transition 
states scale with one another, given their strong correlation 

with the formation energy of CO*. While the goal is to 
escape these scaling relations as defined on transition met-
als, it is safe to assume that new materials would also 
follow their own scaling relations that are distinct from 
those on transition metals we identify here. This means 
that stabilizing any of these transition states likely entails 
the stabilization of the remaining ones, allowing them to 
be used interchangeably as screening criteria for new cata-
lysts. Therefore, even if normally tools like degree of rate 
and selectivity control [72–74] could be used to determine 
which transition state is more rate-determining, the deci-
sion regarding which descriptor to use would likely be 
more dependent on the suitability of a given transition 
state to easy calculation and screening.

We would like to finish our discussion of the volcano 
plots with a few remarks regarding the positions of our sur-
faces on these energy maps. Ag appears to be the least active 
metal in CO hydrogenation due to its weak-binding charac-
teristics, consistent with literature [75, 76]. Figures 6, 7 and 
Figs. S13, S14 show Cu(211) to fare significantly better than 
Cu(111) does on Fig. 5, which is consistent with the well-
established structure sensitivity of methanol synthesis on 
Cu surfaces [16, 26, 30–32, 63]. Pd is well known to form a 
hydride phase under hydrogenation conditions [77, 78], and 
Pd-based nanoparticles have been suggested as hydrogen 
storage materials due to their affinity to retaining subsurface 
hydrogen [79–81]. A (partial) hydride phase of Pd would lie 
at more active regions of CO hydrogenation than metallic Pd 
does on Fig. 5. We calculated the values of the descriptors 
on a (2 × 2) unit cell of a PdH(111) slab model (larger unit 
cells affected the binding energies of CO* and H* by less 
than 0.10 eV). The bulk phase was taken from The Mate-
rials Project database [82], as material ID mp-24289. The 
formation energy of CO* on PdH(111) was calculated to 
be − 1.33 eV; that is, 0.32 eV higher (i.e. less stable) than 
that on Pd(111), as detailed in Table S1. At a CO* formation 
energy of − 1.33 eV, the scaling relation would give a for-
mation energy value of H–CO* at − 0.55 eV on PdH(111), 
which is close to the DFT-calculated value of − 0.40 eV. Pt, 
Pd, and Rh were shown to have high methanol synthesis 
activity per the analysis of Fig. 4. Absent from Fig. 4 was 
any treatment of methanation, however. When a competing 
pathway towards methane is introduced through the micro-
kinetic models we discussed, we predict that either facet 
of the strongly-adsorbing metals of Pt, Pd, and Rh will be 
more selective towards methane than methanol (see Figs. 
S15-17). Indeed, numerous reports in literature discuss the 
activity and selectivity of Pd, and to less extent, Pt and Rh 
towards methanol synthesis versus methanation [83–95], 
although selectivity towards methanol (vis-à-vis the com-
petitive methane) vary widely depending on the support, 
presence of additives, as well as the catalyst synthesis condi-
tions. In general, a high selectivity to methanol is attributed 

Fig. 7  Volcano plot for the rate (turnover frequency, or TOF, in  s−1) 
of methanol production via CO hydrogenation on the (211) facets of 
transition metals. The TOF is plotted against the formation energies 
of CO* and the transition state  CH3O–H*, allowing the superposition 
of the (211) linear scaling relation (ΔECH3O-H* = 0.66ΔECO* + 0.07 e
V,  R2 = 0.9949). The error bars indicate the standard deviation of the 
BEEF ensemble calculations. The formation energies are relative to 
CO(g),  H2(g), and  H2O(g). Improved catalysis entails the stabilization 
of the transition state  CH3O-H*, without further stabilizing CO*
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to the inability of these metals to dissociate the C–O bond, 
a prerequisite for methane formation.

4  Discussion

Figures 5, 6 and 7, S13 and S14 show that there is room for 
development for CO hydrogenation catalysts, but this devel-
opment is limited by the presence of linear scaling relations. 
Put another way, the challenge in methanol synthesis from 
syngas lies in stabilizing H–CO* and/or other transition 
states along the methanol synthesis pathway independent 
of CO*, as well as destabilizing CO* independently of the 
transition state energies on strongly adsorbing surfaces, thus 
breaking the strong linear scaling relations between the ener-
gies of these states. Interestingly, this is also a challenge for 
the electrochemical reduction of CO, for which a very simi-
lar volcano plot was recently derived [96]. This materials 
challenge necessitates finding new catalytic materials that 
do not follow the scaling relations of transition metals. This 
is a necessary, but insufficient, condition [43] to improve the 
activity and selectivity towards methanol, since the selectiv-
ity would depend on the overall production rate of the sev-
eral possible products based on coupled atomic-scale factors 
(e.g. support effects, surface reconstruction under realistic 
reaction conditions).

We briefly survey the literature for inspiration on how to 
surmount this challenge in CO hydrogenation to methanol 
catalysis. Typically, breaking linear scaling relations requires 
the realization of active sites that are geometrically and/or 
electronically different from those for which the linear scal-
ing relations under question are derived [97]. Transition 
metal phosphides [98] and oxides [99] have demonstrated 
their abilities to break linear scaling relations derived on 
transition metals by offering significantly different active 
sites for adsorption of reaction intermediates. An imme-
diate logical step to achieve this variation in geometrical/
electronic properties within the class of transition metals is 
offered by bimetallic catalysts. The improved activity could 
be attributed either to the Interpolation Principle [100], in 
which the adsorption properties of an alloy lie in between 
those of its constituent metal components, or attributed to 
synergistic effects between the alloy constituents, pushing 
the performance of the alloy beyond the simple linear inter-
polation of those of its individual components. Bimetallic 
alloys have been shown to help escape the linear scaling 
relations governing CO* and HCO*, given that the latter 
interacts with the surface through either the carbon or oxy-
gen atom, unlike CO* which only adsorbs through carbon. 
This might also be true of the H–CO*, if the transition state 
does not completely resemble the dehydrogenated state; e.g. 
if CO* gets tilted enough at the transition state to allow the 
oxygen end to interact with the surface. If one of the two 

components of the bimetallic alloy binds oxygen signifi-
cantly differently than the other component binds carbon, 
then we may arrive at a bifunctional catalyst that potentially 
escapes the linear scaling relations on monometallic cata-
lysts. This bifunctionality was suggested to preferentially 
stabilize HCO* compared to CO* over the stepped surfaces 
of several bimetallic alloys for the electrochemical reduc-
tion of CO/CO2 [101]. A drawback was the low stability 
for most of the suggested alloys, especially in the aqueous 
environment typical of electrochemistry. In this regard, it is 
worth mentioning that high entropy (quinary) alloys have 
been recently proposed as potentially stable and active for 
the electrochemical  CO2/CO reduction [102].

A special case of bimetallic alloys that have proven to 
be quite useful in escaping scaling relations is single atom 
alloys (SAAs). In SAAs, a solute metal exists in very dilute 
concentrations in the top layer or the immediate sublayer 
of the host metal. A Pt or a Pd atom embedded in other 
transition metals were suggested to stabilize the transition 
state of hydrogen dissociation without affecting the adsorp-
tion energy of atomic hydrogen [103], among several other 
examples for industrially-relevant chemistries [104–107]. 
While the massively combinatorial search space for bime-
tallic alloys (including bulk alloys, core@shell alloys, and 
SAAs) offers a great potential to arriving at surfaces that 
stabilize H–CO* independently of CO*, and despite exciting 
advances in the inorganic synthesis community aiming at 
depositing metal layers atop nanoparticles or shape-selected 
nanocrystals of other metals [108–115], realizing certain 
alloy compositions/morphologies experimentally or preserv-
ing the structures of their unique active sites under reaction 
conditions (e.g. against segregation/aggregation) remains an 
open challenge [116–121].

5  Conclusions and Outlook

We presented a trends analysis study of CO hydrogenation 
to methanol on the terraces and steps of transition metals, by 
first investigating the rate-determining step: CO* hydrogena-
tion to HCO*, then by studying a full microkinetic model. 
By plotting the rate of methanol synthesis versus the forma-
tion energies of CO* and H–CO* (or other methanol synthe-
sis transition states) as descriptors, we show a fundamental 
limitation for transition metal catalysis for methanol syn-
thesis, as imposed by linear scaling relations between the 
formation energy of CO* and those of the transition states 
along the hydrogenation pathway to methanol. The challenge 
in this catalysis is to find catalytic materials that are able to 
escape these linear scaling relations, significantly stabilizing 
the transition states independently of CO*, and/or destabiliz-
ing CO* independently of the transition states.
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The expansive search space of materials to be explored 
invites clever techniques to more efficiently achieve a thor-
ough exploration and discovery of catalytic materials that 
escape the unfavorable linear scaling relation of CO* and 
H–CO*, while performing as few DFT calculations as pos-
sible. In recent years, machine learning has emerged as a 
powerful tool in exploring materials search space, with spe-
cial focus on the design and discovery of catalytic materials 
[122–126]. Recent studies employing machine learning rely 
on Bayesian statistics to train algorithms on data sets (either 
computed or derived from materials data repositories [127]) 
to rapidly predict relevant properties (e.g. descriptors) from 
the structures of proposed materials. Indeed, several recent 
reports have focused on relating the catalytic behavior to 
electronic or structural properties like generalized or orbit-
alwise coordination numbers [128–130], site-specific stabili-
ties [131–134], or d-band moments [135], all of which are 
properties that machine learning models could be trained to 
predict on the fly. Machine learning models including non-
linear regression techniques, neural networks, and Gaussian 
process regression have been recently employed to describe 
adsorption energies of important intermediates in methane 
to methanol conversion [136], CO/CO2 electro-reduction 
and the hydrogen evolution reaction [102, 137], methanol 
electrooxidation [138], and oxygen evolution reaction [139]. 
Finally, we also note that machine learning surrogate models 
have been suggested to calculate transition states at a frac-
tion of the computational cost required by explicit DFT (e.g. 
via the nudged elastic band method) [140–142], thus making 
another case for using machine learning to screen materials 
based on transition state energies as descriptors.

In the end, we would like to discuss a few kinetic path-
ways that we did not investigate in this study. Specifically, 
the water–gas shift reaction is quite active on Cu(211) [34], 
Cu(111) [42] and other surfaces studied here. On either Cu 
surface, the reaction mechanism was calculated to proceed 
through a COOH* mechanism (while HCOO* acted as a 
spectator), and water dissociation to H* and OH* was rate-
limiting. The water–gas shift reaction is significantly faster 
than CO (or  CO2) hydrogenation to methanol, allowing 
the water–gas shift reaction to equilibrate under methanol 
synthesis conditions. A more complete description of the 
kinetics of methanol synthesis should include reaction path-
ways for the water–gas shift reaction, as well as  CO2 hydro-
genation. Additionally, higher methanol composition in the 
reaction mixture—a possibility on surfaces that succeed 
in improving the methanol yield—could affect the overall 
methanol yield and selectivity. To simulate this scenario, 
methanol was added to the synthesis gas composition in a 
microkinetic model for the (211) facet of transition metals 
[43]. As a result, selectivity towards ethanol increased at the 
expense of methanol, which was attributed to higher  CH3O 
coverage (C–O bond scission is easier in  CH3O than in CO) 

and an increased rate for subsequent C–C coupling elemen-
tary steps. This observation could set an additional design 
constraint on the new materials we proposed. In addition 
to lowering the barrier for C–H bond formation, C–C bond 
formation and C–O bond dissociation should be simultane-
ously suppressed. These additional constraints—however 
challenging given the myriad possible pathways through 
which C–C coupling could take place—would ensure a 
robust screening and computational design approach to 
achieve materials that would take us a step closer to the 
methanol economy.
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