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Abstract
The development of highly active and durable nonprecious metal catalysts that can replace expensive Pt-based catalysts 
for the oxygen reduction reaction (ORR) is of pivotal importance in polymer electrolyte membrane fuel cells. In this line 
of research, metal and nitrogen codoped carbon (M–N/C) catalysts have emerged as the most promising alternatives to Pt-
based catalysts. This review provides an overview of recently developed synthetic strategies for the preparation of M–N/C 
catalysts to enhance the catalytic activity of the ORR. We present five major strategies, namely the use of metal–organic 
frameworks as hosts or precursors, the use of sacrificial templates, the addition of heteroelements, the preferential genera-
tion of active sites, and a biomimetic approach. For each strategy, the advantages capable of boosting catalytic activity in 
the ORR are summarized, and notable examples and their catalytic performances are presented. The ORR activities and 
measurement conditions of high-performing M–N/C catalysts are also tabulated. Finally, we summarize this review with 
some suggestions for future studies.

Keywords  M‒N/C · Electrocatalyst · Oxygen reduction reaction · Synthetic strategy

1  Introduction

The ever-increasing worldwide demand for clean energy 
carriers has resulted in increased attention to a “hydrogen 
economy” as a possible long-term solution for securing 
clean and renewable energy [1, 2]. Although a hydrogen 
economy offers a compelling picture of sustainable energy, 
significant scientific and technical challenges must first be 
circumvented to allow this vision to be fully implemented. 
In this context, one of the key factors dictating the overall 
efficiency of hydrogen-based energy cycles is the perfor-
mance of the electrochemical energy conversion devices, for 
example, a fuel cell or a water electrolyzer [3–7].

As a low-temperature type of fuel cell, polymer elec-
trolyte membrane fuel cells (PEMFCs) are zero-emission 
energy conversion devices that convert hydrogen fuel 
directly into electricity with high efficiency. The multi-
ple advantages imparted by PEMFCs render them widely 

applicable for transportation, mobile, and stationary appli-
cations [8, 9]. In general, the performance of PEMFCs 
depends mainly on the efficiency of electrocatalysts for the 
oxygen reduction reaction (ORR) at the cathode. As the 
ORR proceeds via a proton-coupled, four-electron transfer, 
this reaction is sluggish; the intrinsic kinetics for the ORR 
are approximately million times slower than the hydrogen 
oxidation reaction taking place at the anode on a Pt catalyst 
[10]. To overcome the demanding kinetics of the ORR, high-
loading Pt-based catalysts have been commonly employed 
for the PEMFC cathode [11]. However, Pt-based catalysts 
pose multiple drawbacks including high costs, the scarcity of 
Pt, declining activity with long-term operation, and suscep-
tibility to poisoning. Indeed, Pt metal is solely responsible 
for 40–50% of the total cost of the PEMFC stack, which has 
limited the widespread application of PEMFC systems [12]. 
To address this issue, the development of nonprecious metal 
ORR catalysts has recently received increasing attention, and 
a diverse class of ORR catalysts, based on metal oxide/car-
bon composites [13–15], metal chalcogenides or metal car-
bides [16–18], transition metal and nitrogen codoped carbon 
(M–N/C) [19–23], and heteroatom-doped carbon [24, 25], 
has been pursued. Among these nonprecious metal catalysts, 
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the M–N/C catalysts are particularly noteworthy, primarily 
due to their high ORR activities.

The field of heterogeneous M–N/C catalysts has a his-
tory dating back more than 50 years. In 1964, Jasinski first 
demonstrated that cobalt phthalocyanine could catalyze the 
ORR in alkaline media, opening up the possibility of M–N/C 
catalysts as potential alternatives to Pt-based catalysts [26]. 
Since then, several types of metallomacrocyclic compounds, 
such as metalloporphyrins and metallotetraazaannulenes, 
have been widely explored as new M–N/C catalysts [27, 
28]. However, the ORR activity and durability of these 
molecular catalysts were significantly lower than those of 
Pt-based catalysts. In the course of overcoming these issues, 
the preparative chemistry of M–N/C catalysts underwent 
several stages of breakthroughs. For example, Jahnke et al. 
suggested that the high-temperature heat treatment of metal-
lomacrocyclic compounds could significantly improve the 
activity and durability of M–N/C catalysts [29]. The Yeager 
group demonstrated that a M–N/C catalyst prepared from a 
mixture of metal, nitrogen, and carbon precursors exhibited 
a comparable ORR activity to catalysts derived from expen-
sive metallomacrocyclic compounds, thereby representing 
a more economical route towards M–N/C catalysts [30]. 
This method suggested a possibility of combining various 
precursors for each component, allowing for the more flex-
ible design of M–N/C catalysts. However, despite continued 
research into the development of high-performance M–N/C 
catalysts prior to 2008, the ORR activities of M–N/C cata-
lysts remained more than two orders of magnitude lower 
than those of Pt-based catalysts.

In 2009, a major breakthrough in the field of M–N/C 
catalysts was made by the Dodelet group [20]. They 
prepared Fe–N/C catalysts by filling microporous car-
bon black with ferrous acetate and 1,10-phenanthroline, 
followed by heat treatment under NH3. The optimized 
Fe–N/C catalyst achieved a PEMFC volumetric current 
density of 99 A cm−3 at 0.8 V, which was ~ 35 times higher 
than that of the previously reported best-performing cata-
lyst. Notably, this performance was close to the target of 
130 A cm−3 set by the US Department of Energy (DOE) in 
2010. Subsequently, in 2011, the Zelenay group developed 
a M–N/C catalyst based on Fe, Co, and polyaniline, which 
achieved a highly promising PEMFC durability up to 700 h 
at 0.4 V along with a high initial current density [21]. 
The results obtained by the Dodelet and Zelenay groups 
suggested the practical viability of M–N/C catalysts for 
PEMFC applications, and triggered a tremendous surge 
of research interest in this field. Consequently, significant 
progress has been made in the design and synthesis of 
M–N/C catalysts, as well as in the elucidation of the cata-
lyst active sites [31–45]. The previous studies on the active 
sites of M–N/C catalysts provided a plausible evidence 
that the active sites contain atomically dispersed metal 

coordinated to N atoms (M–Nx sites). We note that the 
metal nanoparticles (NPs) encapsulated in carbon shells 
were suggested recently to exhibit a considerable ORR 
activity. However, the catalytic role of such NPs is still a 
matter of debate and is not discussed in this review.

The advances achieved in this field have been previously 
presented in a number of review papers. The developments 
in M–N/C catalysts prior to 2011 have been summarized in 
reviews by Zhang et al. [46], Dodelet and Zelenay et al. [47], 
Palacin et al. [48], and Zhang et al. [49]. In addition, recent 
reviews have focused on more specific aspects of M–N/C 
catalysts, such as molecular M–N/C catalysts [50], the active 
sites of M–N/C catalysts [51, 52], the role of transition met-
als in M–N/C catalysts [53], the catalytic mechanisms over 
M–N/C catalysts [54], and characterization of the M–N/C 
catalysts [55].

In this review, we focus on the synthetic strategies and 
preparative chemistry toward highly active and durable 
M–N/C catalysts developed since 2011. Although numer-
ous methods are available that can boost the performance 
of M–N/C catalysts, we selected five major synthetic routes 
in this review: (i) the exploitation of metal–organic frame-
works (MOFs) as hosts or precursors, (ii) the use of sacrifi-
cial templates, (iii) the addition of heteroelements, (iv) the 
preferential generation of active sites, and (v) biomimetic 
approaches. We explain the advantages of each strategy and 
present notable examples with their ORR activities and/or 
PEMFC performances. We also summarize the catalytic 
activities and measurement conditions of high-performing 
M–N/C catalysts for the ORR. For a summary regarding 
the PEMFC performances of M–N/C catalysts, readers are 
encouraged to refer the recent review by Shao and Dodelet 
[56]. Finally, we conclude this review with a summary and 
some suggestions for future studies.

2 � Thermal Conversion of Metal–Organic 
Frameworks

MOFs are crystalline porous materials composed of inor-
ganic species (metal ions or clusters) that are bridged by 
organic ligands [57, 58]. MOFs generally exhibit large sur-
face areas up to few thousand m2 g−1, and they can be con-
structed from a myriad of compositions. Although the use of 
MOFs themselves as electrocatalysts is limited due to their 
intrinsically low electrical conductivities, the high-tempera-
ture pyrolysis of MOFs can convert the organic ligands into 
porous carbon to endow conductivity to the resulting mate-
rials, thereby enabling their utilization as M–N/C catalysts 
[59]. In the conversion of MOFs to M–N/C catalysts, MOFs 
can be utilized as microporous hosts for metal and nitrogen 
precursors, or as metal and nitrogen precursors.
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2.1 � MOFs as Hosts

When MOFs are employed as hosts, the metal and nitro-
gen precursors are initially impregnated into the micropo-
res of the MOFs, and are later transformed into active sites 
through their reaction within the micropores during subse-
quent pyrolysis. The most widely used MOF for this purpose 
is zeolitic imidazolate framework-8 (ZIF-8), in which ZnII 
centers are connected to the N atoms of imidazolate ligands. 
During pyrolysis of ZIF-8, Zn is eliminated in situ due to the 
low boiling point of metallic Zn (i.e., 907 °C), thus yield-
ing a highly porous carbon structure after pyrolysis. Fur-
thermore, the imidazolate ligands can serve as an additional 
source of nitrogen.

The utilization of ZIF-8 as a microporous host was 
first demonstrated by Dodelet et al. in the preparation of 
high-performance Fe–N/C catalysts [60]. In their work, 
ZIF-8 was initially impregnated with ferrous acetate (Fe 
precursor) and 1,10-phenanthroline (N and C precur-
sor), dried, ball-milled, and finally pyrolyzed under Ar 
and then under ammonia gas. The resulting catalyst was 
composed of nitrogen-containing microporous carbon 
hosting Fe–Nx active sites (Fig. 1a). The membrane elec-
trode assembly (MEA) employing the optimized Fe–N/C 
catalyst at the cathode exhibited a current density of 
1.2–1.3 A cm−2 at 0.6 V with a peak power density of 
0.91 W cm−2 in PEMFC. The MEA exhibited the highest 
volumetric activity (230 A cm−3 at 0.8 V) at that time, 

Fig. 1   a TEM image of the optimized Fe–N/C catalyst by using 
ZIF-8 as the host (scale bar: 50  nm). b Comparison of the iR-free 
polarization curve of the optimized Fe–N/C catalyst (hollow blue 
stars) with that of the previously reported best-performing catalyst 
(hollow red circles) in a H2–O2 PEMFC operated at 80 °C. The solid 
blue stars and red circles indicate the extrapolated volumetric current 
densities at 0.8  V for each catalyst. The gray star and circle repre-
sent the 2020 target (2015 target at that time) and 2010 target set by 

the US DOE, respectively. c Scanning electron microscopy image of 
the nanofibrous Fe–N/C catalyst. d iR-free polarization curve of the 
catalyst in a H2–O2 PEMFC operated at 80  °C. The red diamonds 
represent the extrapolated volumetric current density at 0.8 V. Repro-
duced with permission from [60]. Copyright (2011) Nature Publish-
ing Group (a, b); Reproduced with permission from [64]. Copyright 
(2015) National Academy of Sciences (c, d)
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which exceeded the US Department of Energy (DOE) 
2010 activity target of 130 A cm−3 (Fig. 1b). This volu-
metric current density was ~ 2.3 times higher than the 
MEA made by their previously reported catalyst [20], 
which was prepared according to a similar procedure, 
but without the use of a microporous ZIF-8 host, thereby 
highlighting the beneficial role of MOFs in preparing 
advanced M–N/C catalysts.

In the synthesis of Fe–N/C catalysts using ZIFs as the 
microporous support, the structural properties of ZIFs 
have significant influences on the PEMFC performance 
[61–63]. To examine this effect, Jaouen et al. prepared 
Fe–N/C catalysts using nine Zn-based ZIFs with different 
topologies, Zn/N/C contents, and textural properties [63]. 
They found that the PEMFC performances of the catalysts 
correlated linearly with the cavity size and the specific 
surface area of the parental ZIF supports. In addition, 
higher activities originated from larger numbers of Fe–Nx 
active sites, as evidenced by Mössbauer spectroscopy. It 
was suggested that the reaction of Fe and N precursors is 
promoted inside larger cavities, leading to the formation 
of more abundant Fe–Nx sites [63].

Liu et al. developed a nanofibrous Fe–N/C catalyst 
from pyrolysis of electrospun polymer mixture contain-
ing polyacrylonitrile (PAN), an Fe(II)-based organome-
tallic precursor, and the ZIF (Fig. 1c) [64]. This catalyst 
design utilizes both the high active site density achieved 
by the ZIF host and the excellent electronic conductiv-
ity of the PAN-derived graphitic carbon fiber. In addi-
tion, the macroporous voids generated between the car-
bon fiber networks could facilitate mass transport. This 
catalyst exhibited very high PEMFC performance with 
the highest reported volumetric activity of 450 A cm−3 
at 0.8 V, which far exceeded the 2020 DOE target, i.e., 
300  A  cm−3 (Fig.  1d). These results suggest that the 
microporous–macroporous hierarchical structural design 
is critical to enhancing in the MEA performances of 
Fe–N/C catalysts [64].

In addition to the Zn-based ZIF family, the Zn/amino-
terephthalate-based MOF (IRMOF-3) [65], a magnesium/
naphthalenedicarboxylate-based anionic MOF [66], and 
a copper/benzenetricarboxylate-based MOF (HKUST-1) 
[67] were also employed as porous hosts for metal and 
nitrogen precursors. However, the organic ligands of these 
MOFs contain oxygen instead of nitrogen, and therefore 
may be inappropriate for preparing highly active M–N/C 
catalysts. For this reason, N-rich imidazolate-based 
ZIFs are most commonly employed for the preparation 
of M–N/C catalysts. For oxygen-ligand-based MOFs, 
ligands are often aminated to impart N-containing func-
tionality, with the MIL-NH2 series being one such exam-
ple [68–70].

2.2 � MOFs as All‑in‑One Precursors

MOFs composed of ORR-active metals (i.e., Fe and Co) 
and N-containing ligands can serve as all-in-one precur-
sors for the three components of M–N/C catalysts. In this 
case, a simple pyrolysis of MOFs without the impregna-
tion and drying steps simplifies the preparation process. 
Importantly, inherent M–N bonding in the parental MOF 
can be directly translated into active M–Nx species in the 
final M–N/C catalysts. Due to these advantages, this strat-
egy has emerged as a simple yet efficient methodology for 
preparing high-performance M–N/C catalysts. In addition, 
owing to the wide tunability of the metal and the ligands, a 
variety of MOF precursors have been investigated, including 
Fe-imidazolate frameworks [71–79], Co-imidazolate frame-
works [80–96], Prussian blue [97–101], and other families 
of MOFs [102–105].

The use of MOFs as all-in-one precursors was first real-
ized by Liu et al., who synthesized Co–N/C catalysts by the 
simple pyrolysis of a Co-imidazolate framework (Co-ZIF) 
[80, 81]. This Co-ZIF (ZIF-67) is composed of CoII sites 
tetrahedrally coordinated to four N atoms of the imidazolate 
ligands (Fig. 2a). They suggested that the thermal activa-
tion of ZIF-67 at 750 °C transformed the original Co–N4 
structure into ORR-active Co–Nx sites (Fig. 2b). Thermal 
activation and successive acid-leaching resulted in a Co–N/C 
catalyst with a half-wave potential of 0.68 V (vs. reversible 
hydrogen electrode, RHE) in 0.5 M H2SO4 [81]. In a similar 
strategy, the Liu group prepared a porphyrin-based porous 
organic polymer (POP) with a three-dimensional (3D) net-
work structure and a high surface area of ~ 2300 m2 g−1 
[106]. Heat-treatment of the Fe porphyrin-based POP pro-
duced a highly active catalyst both in the half-cell configura-
tion and in the PEMFC. This POP-conversion method has 
therefore provided active M–N/C catalysts in an analogous 
way to MOF-based synthetic methods [106–109].

Recently, the Mai group produced a polyhedral Co–N/C 
catalyst exhibiting multimodal pores between CNT bundles 
[96]. During the preparation of this catalyst, the two-step 
pyrolysis of ZIF-67 was carried out. The first heat-treat-
ment at a relatively low temperature created metallic Co 
NPs, which catalyzed the formation of the CNT bundles 
during the second high-temperature pyrolysis step. The final 
optimized Co–N/C catalyst exhibited a high ORR activity 
comparable with that of Pt/C in an alkaline electrolyte [96].

In the majority of MOF-derived synthetic routes to 
M–N/C catalysts, not only catalytically active M–Nx spe-
cies, but high amounts of undesirable large metal-based 
NPs were also generated. This phenomenon can be attrib-
uted to the excess quantities of metals present in MOFs 
(e.g., ~ 20 wt% Co in ZIF-67), compared to the metallic 
contents required for preparation of the high-performing 
M–N/C catalysts (i.e., ~ 0.5–3 wt%). This high density 
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of metal atoms consequently increases the probability 
of aggregation at elevated temperatures. To address this 
issue, the Li group introduced Zn2+ ions as “fence” atoms 
in Co-based ZIFs to expand the adjacent distances of Co 
atoms, thereby reducing the possibility of Co aggregation 
[90]. During pyrolysis, the Zn atoms were evaporated, to 
leave predominantly Co–Nx sites in the pyrolyzed material 
(Fig. 2c). The resulting active site-rich catalyst exhibited a 
superior ORR activity to both the Co NP-abundant catalyst 
and a commercial Pt/C catalyst (Fig. 2d) [90].

Furthermore, Chen et al. prepared Fe–N/C catalysts 
derived from the thermal conversion of Fe-doped ZIF-8 
with various Fe/(Fe + Zn) ratios ranging from 5 to 25 wt% 
[78]. They found that higher quantities of Fe atoms in the 
precursor led to the formation of larger quantities of Fe 
and Fe3C NPs, while the 5 wt%-loaded ZIF-8 produced a 
catalyst containing only Fe–Nx sites. This method greatly 
improved the ORR activity, with a 130 mV increase in 
the half-wave potential [78]. The Li group also recently 
demonstrated that precursor pyrolysis in the presence of 
a small quantity of Fe (i.e., 0.8 wt% in the precursor) pro-
duced exclusively Fe–Nx active sites [79]. Upon increas-
ing the Fe loading to 4 wt%, large quantities of Fe and 
Fe3C NPs were formed, and the ORR activity diminished 
considerably with a 60 mV negative shift in the half-wave 
potential [79].

3 � Use of Sacrificial Templates

Enlarging the surface area of a catalyst is a direct method 
to increase the number of active sites on the catalyst sur-
face, and enhance the ORR activity. M–N/C catalysts are 
typically synthesized via the high-temperature pyrolysis 
of precursor mixtures, which is critical to creating active 
M–Nx sites as well as to endowing a high electrical con-
ductivity. However, this pyrolysis step commonly results 
in structurally ill-defined, low surface area catalysts. 
The use of sacrificial templates can therefore provide 
a straightforward method for the production of M–N/C 
catalysts with large surface areas and controlled porosity 
[110–139]. In addition, well-defined nanostructures can 
be generated according to the type of template employed. 
In the template-based method, a precursor in the gas, liq-
uid, or solid phase is initially introduced into the pores or 
adsorbed onto the surface of a template, and this is fol-
lowed by carbonization at high temperatures. Finally, the 
template is removed by an etchant to generate the porous 
structure. For this purpose, a variety of templates have 
been examined including silica [110–125], metal oxides 
[126–130], nanowires [131–135], and sodium chloride 
(NaCl) [136–139].

Fig. 2   a The tetrahedral Co–N4 unit structure of ZIF-67. b Schematic 
illustration of the suggested structural evolution of Co–Nx active sites 
during thermal activation of a Co-based ZIF. c Schematic illustration 
of the preparation of the Co–N/C catalyst (Co SAs/N–C) in the pres-
ence of Co–Nx sites derived from ZIF-67. d ORR polarization curves 

of Co SAs/N–C, Co NPs/N–C, and Pt/C in 0.1 M KOH. Reproduced 
with permission from [81]. Copyright (2011) Wiley-VCH Verlag 
GmbH & Co. KGaA (a, b); Reproduced with permission from [90]. 
Copyright (2016) Wiley-VCH Verlag GmbH & Co. KGaA (c, d)
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3.1 � Silica Templates

Silica is stable at high temperatures and is easily etched 
by NaOH or HF. In addition, preparation methods towards 
various types of silicas, including colloidal silica NPs and 
mesoporous silica, have been well established. As such, the 
silica-templating method has been widely investigated for 
the fabrication of porous M–N/C catalysts. For example, 
the Atanassov group utilized fumed silica (porous branched 
silica) as the sacrificial support with a variety of precursors, 
including macrocyclic compounds [110] and organic mol-
ecules [111–113] to produce M–N/C catalysts with spheri-
cal mesopores of few ten nanometers in diameter. The use 
of larger templates, such as silica microparticle templates, 
yielded porous open structured capsule-type M–N/C cata-
lysts with few hundred nanometer pores [114, 115].

Ordered mesoporous silica (OMS) has attracted par-
ticular attention because of its periodic, uniform, and tun-
able pore structure. For example, Joo et al. developed a 
solid-state hard-templating synthetic method using metal-
loporphyrins as the all-in-one precursor and OMSs as the 
templates (Fig. 3a) [117]. In this process, the solid-state 
mixing of a metalloporphyrin and SBA-15, followed by 
pyrolysis and silica etching produced in metal-doped ordered 
mesoporous porphyrinic carbon (M-OMPC, M = Fe, Co, 

FeCo, etc.). This solid-state infiltration method is simple 
and rapid compared to the typical wet-impregnation method, 
as the latter employs an additional drying step that often 
requires further optimization. Interestingly, the obtained 
M-OMPC catalysts had hierarchical micropores (~ 1 nm) and 
mesopores (4–20 nm), and exhibited large surface areas of 
1000–1500 m2 g−1, which can expose a high density of cata-
lytically active M–Nx sites. Among the family of M-OMPC 
catalysts, FeCo-OMPC exhibited a particularly high ORR 
activity in acidic media (0.1 M HClO4) with a half-wave 
potential at 0.85 V (vs. RHE), which compared favorably to 
commercial Pt/C catalysts (Fig. 3b). In addition, this solid-
state templating method also successfully produced repli-
cated M–N/C structures from KIT-6 (a further type of OMS) 
and mesocellular-foam silica [117].

Similarly, other precursors, such as metal phthalocya-
nines [120, 123, 124], metal-polyaniline complexes [116, 
122], and metal-phenanthroline complexes [121] were suc-
cessfully employed as precursors for mesoporous M–N/C 
catalysts. Müllen et al. used vitamin B12 as the Co, N, and 
C precursor and montmorillonite (a layered clay), SBA-
15, and silica colloids as sacrificial templates [118]. The 
three obtained catalysts exhibited well-developed pore 
structures, with the silica colloid-based catalyst exhibit-
ing the largest surface area, followed by the SBA-15- and 

Fig. 3   a Schematic illustration of the synthesis of M-OMPC cata-
lysts by the solid-state hard-templating method using OMS, and a 
suggested model of FeCo-OMPC. The yellow, cyan, red, blue, grey, 
and white spheres represent Co, Fe, O, N, C, and H atoms, respec-
tively. b Polarization curves of FeCo-OMPC and a commercial Pt/C 
catalyst measured in 0.1 M HClO4. TEM images of Co–N/C catalysts 

templated from c montmorillonite, d SBA-15, and e silica colloids 
using vitamin B12 as a precursor. f Linear correlation between the 
BET surface areas of the templated Co–N/C catalysts and their ORR 
activities. Reproduced with permission from [117]. Copyright (2013) 
Nature Publishing Group (a, b); Reproduced with permission from 
[118]. Copyright (2013) American Chemical Society (c–f)
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montmorillonite-templated catalysts (Fig. 3c–e). The ORR 
activities of the catalysts correlated linearly with their 
Brunauer–Emmett–Teller (BET) surface areas, thereby high-
lighting the importance of surface area in the electrocatalytic 
process (Fig. 3f) [118].

3.2 � Metal Oxides as the Reactive Templates

Metal oxide nanostructures based on ORR-active metals 
such as Fe and Co can serve both as sacrificial templates 
and as a source of the metal species during the preparation 
of M–N/C catalysts [126–130]. For example, Chen et al. 
took advantage of Fe(OH)3 as a volatile template contain-
ing an Fe source [126]. They combined 2-fluoroaniline and 
FeCl3 to form a poly(fluoroaniline)-Fe(OH)3 hybrid, and the 
subsequent pyrolysis of this composite produced a porous 
Fe–N/C catalyst free from Fe-based particles. They sug-
gested that Fe(OH)3 is dehydrated to form FeO(OH) which 
subsequently undergoes reductive transformation to Fe2O3 
→ Fe3O4 → Fe in situ by adjacent carbon atoms at high tem-
peratures. The reduced Fe then reacts with the HCl produced 
from the Cl− ions bonded to poly(fluoroaniline) to gener-
ate FeCl3 that was subsequently sublimated. The resulting 
catalyst exhibited a half-wave potential of 0.80 V (vs. RHE) 
in 0.1 M KOH [126]. In addition, Zhang et al. employed a 
similar approach using porous Fe3O4 microspheres as the 
template [127]. In this case, the Fe3O4 microspheres were 
coated with polypyrrole with the aid of cetyltrimethylam-
monium bromide. Subsequent pyrolysis of the composite at 
950 °C produced the desired impurity-free porous Fe–N/C 
microspheres, which exhibited a high BET surface area 
(674 m2 g−1) and a half-wave potential of 0.86 V (vs. RHE) 
in 0.1 M KOH [127].

Recently, Dong et al. prepared a porous cubic graphitic 
carbon framework using Fe3O4 nanocube superlattice [130]. 
In this system, pre-synthesized Fe3O4 nanocubes capped 
with an oleic acid surfactant were self-assembled to form 
a superlattice structure. During the thermal annealing step, 
oleic acid was converted into a graphitic carbon framework 
and the Fe atoms from the Fe3O4 nanocubes diffused into the 
carbon layer. Subsequent acid-leaching and heat-treatment 
under NH3 produced the desired Fe- and N-doped carbon 
framework structure (Fig. 4a). Thus, in this protocol, the 
Fe3O4 nanocubes served as both the sacrificial template and 
the Fe source. The resulting Fe–N/C catalyst exhibited a 
highly ordered porous network with a large BET surface 
area of 1180 m2 g−1 (Fig. 4b). In addition, the active sites 
of the catalyst were predominantly Fe–Nx (~ 3 wt% Fe), as 
evidenced by X-ray diffraction (XRD), transmission elec-
tron microscopy (TEM), and X-ray absorption spectroscopy 
(XAS). The high surface area and active site density of this 
material contributed to an excellent ORR activity with a 

half-wave potential of 0.883 V in 0.1 M KOH (Fig. 4c) 
[130].

3.3 � Other Sacrificial Templates

The exploration of new types of sacrificial templates has 
allowed the production of unique nanostructured M–N/C 
catalysts. For example, tellurium nanowires (Te NWs) have 
been demonstrated as useful supports for the construction of 
tubular fiber M–N/C catalysts. Due to the relatively low boil-
ing temperature of Te (~ 450 °C [140]), Te NW templates 
are removed in situ during the pyrolysis stage without any 
additional process. The Yu group demonstrated the Te NW-
templated synthesis of porous fiber Fe–N/C catalysts [131]. 
A mixture of glucosamine/ferrous gluconate was hydrother-
mally treated with Te NWs to polymerize the components 
onto the surface of the NWs. They emphasized the impor-
tance of employing an FeII precursor rather than an FeIII pre-
cursor, as the latter rapidly oxidizes Te, leading to the col-
lapse of the fibrous structure of the product [131]. Similarly, 
Lin et al. developed a Fe-glucosamine-derived nanotube 
(NT) catalyst with well-dispersed Fe–Nx sites [132]. The 
Manthiram group utilized Te NTs as the sacrificial template 
and ZIF-8 as the microporous host for the precursors [135]. 
In this case, ZIF-8 was grown on the porous Te NTs, prior to 
coating with Fe-polydopamine. Pyrolysis at 950 °C vapor-
ized the majority of Zn present in the ZIF-8 and the Te NTs, 
leading to a highly porous and tubular Fe–N/C catalyst with 
a BET surface area of 1380 m2 g−1 (Fig. 5a, b) [135]. This 
strategy was also demonstrated for Co-doped ZIF precursor 
to yield Co–N/C catalysts [134].

NaCl can also function as a structure directing agent, and 
is particularly useful in the preparation of M–N/C catalysts 
with two-dimensional (2D) sheet morphologies. This NaCl-
based templating method has a number of advantages: (i) the 
synthesis is scalable and economic, as NaCl is inexpensive 
and can be easily collected and recycled; (ii) this method 
allows the formation of Fe-based particles to be suppressed 
due to the in situ generation and volatilization of FeClx spe-
cies in the presence of NaCl; and (iii) template removal is 
simple and can be carried out in neutral conditions, thereby 
avoiding degradation of the active sites In this context, Hu 
et al. synthesized carbon nanosheet-nanotube composite cat-
alysts [138], in which the pyrolysis of an Fe(NO3)3-glucose-
melamine mixture in the presence of a NaCl template led to 
the formation of CNT–carbon nanosheet hybrids (Fig. 5c). 
The resulting carbon nanosheet-nanotube catalyst contained 
a larger number of Fe–Nx sites and a better-developed pore 
structure than the untemplated catalyst, thereby resulting in 
a high ORR activity with a half-wave potential of 0.87 V 
(vs. RHE) in 0.1 M KOH [138]. Furthermore, Sung et al. 
employed FeII phthalocyanine as a precursor and NaCl as 
a template to produce a nanosheet Fe–N/C catalyst with 
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well-dispersed and structurally defined Fe–N4 sites, ena-
bled by low temperature treatment [139]. This was achieved 
through polymerization in the presence of 10,10ʹ-dibromo-
9,9ʹ-bianthryl at 450 °C, and subsequent removal of NaCl 
by washing with H2O (Fig. 5d) [139]. However, mechanism 
of the formation of the sheet-like morphology with NaCl-
templated catalysts remains unclear, and further studies are 
required to investigate these points in greater detail.

Alternatively, Wei et al. used NaCl as a “shape fixing” 
template [136]. They created Fe-polyaniline complex nano-
structures and fully sealed the precursor in NaCl via repeated 
recrystallization. During the pyrolysis stage, NaCl acted as 
a nanoreactor to prevent the collapse of the initial polymer 
nanostructures. In addition, gaseous products evolving dur-
ing pyrolysis step generated the desired porosity, and N-con-
taining gases reacted with Fe to increase the active site den-
sity. The use of this trapped synthetic system also reduced 
weight loss during the heat-treatment, thereby indicating that 
NaCl also could facilitate carbonization [136].

4 � Addition of Heteroelements

Although the origin of synergistic effect is still unclear, 
heteroatom-doping has been effective to enhance the ORR 
activity of M–N/C catalysts. It is often the case that a bime-
tallic M1M2–N/C outperforms each monometallic catalyst 
[109, 111, 117, 141–145]. The other promotion effect could 
be found when sulfur (S) is doped into M–N/C catalysts 
[146–155]. This section introduces representative recent 
works that demonstrated the activity improvement by the 
addition of secondary metal or S.

4.1 � Addition of Secondary Transition Metal

In the context of bimetallic synergy, Atanassov et al. inves-
tigated the impact of secondary metal for FeCo–, FeCu–, 
FeNi–, and FeMn–N/C catalysts [111]. They found that all 
catalysts possessed similar surface areas and pore structures, 
and that synergistic increase in the ORR activity was only 

Fig. 4   a Schematic illustration 
of the preparation of Fe- and 
N-doped carbon frameworks 
using an Fe3O4 nanocube 
superlattice as both the template 
and the Fe precursor. b TEM 
image of the Fe- and N-doped 
carbon framework catalyst 
(Fe–N–SCCFs). c ORR polari-
zation curves for Fe–N–SCCFs, 
the same catalyst without N, 
a disordered Fe–N/C catalyst, 
and a Pt/C catalyst measured 
in 0.1 M KOH. Reproduced 
with permission from [130]. 
Copyright (2017) American 
Chemical Society
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shown for the FeMn–N/C catalyst (Fig. 6a). The other bime-
tallic catalysts exhibited similar or less active ORR activity 
than its monometallic counterpart, whereas the 4-electron 
selectivity was always enhanced in bimetallic systems [111]. 
In the case of M-OMPC catalysts (introduced in “Sect. 3.1”), 

FeCo-OMPC exhibited an improved ORR activity compared 
to both Fe- and Co-OMPC in acidic media [117]. Müllen 
et al. also observed a Fe–Co promotion effect when the cata-
lysts were prepared by the pyrolysis of polymeric porphyrin 
[141]. In their catalysts, although the active site densities in 

Fig. 5   a Schematic representation of the synthesis of porous and 
tubular Fe–N/C catalysts using Te NWs as templates and ZIF-8 as the 
microporous host, and b TEM image of the obtained catalyst. c Sche-
matic illustration of the NaCl-templated synthesis of Fe–N/C cata-
lyst constructed with CNT–carbon nanosheet hybrids. d Schematic 
illustration of the preparation of the 2-dimensional Fe–N/C catalyst 

using Fe phthalocyanine as the precursor and NaCl as the template. 
Reproduced with permission from [135]. Copyright (2017) Wiley-
VCH Verlag GmbH & Co. KGaA (a, b); Reproduced with permission 
from [138]. Copyright (2016) The Royal Society of Chemistry (c); 
Reproduced with permission from [139]. Copyright (2011) American 
Chemical Society (d)

Fig. 6   a ORR polarization curves of monometallic and bimetallic 
(Fe, Mn)–N/C catalysts derived from 2-aminoantipyrine, measured in 
0.5 M H2SO4. b ORR polarization curves of monometallic and bime-
tallic (Fe, Co)–N/C catalysts obtained by pyrolyzing porphyrin poly-

mers measured in 0.5  M H2SO4. Reproduced with permission from 
[111]. Copyright (2012) Elsevier (a); Reproduced with permission 
from [141]. Copyright (2015) The Royal Society of Chemistry (b)
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Fe–N/C and FeCo–N/C were comparable, the FeCo–N/C 
catalyst exhibited a 40 mV positive half-wave potential for 
the ORR in acidic media (Fig. 6b) [141]. In contrast to the 
observations made by the Atanassov group, this bimetallic 
catalyst was less selective to the 4-electron ORR than the 
Fe–N/C catalyst. We note that the co-existence of Fe and 
Co in M–N/C catalyst does not always enhance the ORR 
activity [156].

To date, the bimetallic synergy effect has not yet been 
clearly understood. This can be attributed to the heterogene-
ity of the active sites in M–N/C catalysts, which are formed 
mainly through high-temperature pyrolysis. Nevertheless, 
a number of explanations have been tentatively suggested, 
including a change in the catalyst structures during pyrolysis 
caused by the presence of a secondary metal, and the tuned 
electronic and local geometric structures of the active sites. 
In this regard, Strasser et al. prepared a polyaniline-based 
FeMn–N/C catalyst [143], which exhibited an enhanced 
ORR activity compared to its respective monometallic 
catalysts in an alkaline electrolyte, but a poorer activity 
compared to the Fe–N/C catalyst in an acidic electrolyte. 
They also conducted CO chemisorption experiments at low 
temperatures as well as temperature-programmed desorption 
(TPD) experiments, to quantify the active site density and 
to investigate the interactions between the M–Nx sites and 
CO molecules. The observed peak shift in the TPD profile 
suggested a stronger binding between CO molecules and the 
Fe–Nx sites in FeMn–N/C than those in the Fe–N/C. Given 
Mössbauer spectroscopy evidenced no alloy-like interactions 
between Fe and Mn, the TPD result suggested structural 
modification of the Fe–Nx active sites by addition of Mn. 
This modification led to 20 and 150% higher turnover fre-
quencies (TOFs) of the bimetallic catalyst compared to the 
Fe–N/C catalyst in alkaline and acidic media, respectively 
[143].

4.2 � Addition of Sulfur

The addition of sulfur has also been proven effective in 
enhancing the ORR activity of M–N/C catalysts, with the 
majority of S-promoting effects being demonstrated for 
Fe–N/C catalysts. The most prominent studies were per-
formed by Herrmann and Kramm et al., who systematically 
investigated the role of elemental S as an additive during 
the pyrolysis of CoTMPP and FeTMPPCl with Fe oxalate (a 
pore-forming agent) [146–148]. They revealed that the addi-
tion of S exerts a number of positive effects: (i) the favorable 
formation of acid-leachable FeSx species instead of insoluble 
FeCx@C species; (ii) the generation of an amorphous car-
bon matrix (i.e., higher catalyst surface area) with extended 
graphene layers; and (iii) a change in the electronic structure 
of the active Fe–Nx sites.

The sulfur promotion effect was also demonstrated with 
the Zelenay group’s polyaniline-based Fe–N/C catalyst, for 
which ammonium peroxydisulfate, (NH4)2S2O8, was added 
to oxidatively polymerize the aniline monomers [149]. The 
ORR activity was improved upon the addition of an optimal 
amount of (NH4)2S2O8. For S-containing catalysts, lower 
quantities of FeCx and higher quantities of porphyrin type 
Fe–N4 active sites were detected by XAS than S-free cata-
lysts [149]. In addition, Cho et al. explained the enhanced 
ORR activity of S-doped Fe–N/C catalysts by the lowered 
work function, which facilitates electron transfer from the 
catalyst to O2 [155, 157].

The selection of suitable precursors containing both S and 
N atoms could result in high-performance S-doped Fe–N/C 
catalysts. This enables more intimate contact between the 
Fe, N, and S atoms, and therefore maximizes the S-pro-
motion effect compared to when the S source is separately 
mixed. For example, He and Liu et al. designed a thiolated 
polyacrylonitrile telomer; that is fluidic at room tempera-
ture, thereby enabling good contact with the Fe ions [150]. 
S-containing catalyst exhibited an improved ORR activity 
than S-free catalyst. They revealed the presence of FeNxCx 
species without any Fe–S species using time-of-flight sec-
ondary ion mass spectrometry, indicating the S-promotion 
effect did not originated from Fe–S bond [150]. In addition, 
the Strasser group used a S- and N-containing ionic liquid as 
a precursor for S-doped Fe–N/C catalysts [151]. They sys-
tematically investigated the role of other heteroatoms (i.e., 
phosphorus and boron) in the ORR activity of doped Fe–N/C 
catalysts, but found that only S had a positive influence on 
the activity (Fig. 7a), resulting a high ORR activity with 
a half-wave potential of 0.88 V (vs. RHE) in 0.1 M KOH, 
which is greater than a commercial Pt/C catalyst [151].

Finally, Sun et al. investigated the promotion effect of 
S-doping when the chloride ions in the FeCl3 precursor were 
replaced by the thiocyanate (SCN−) anion [152]. In this case, 
an excellent ORR activity was achieved in acidic media with 
a half-wave potential at 0.84 V (vs. RHE) (Fig. 7b) in addi-
tion to the highest reported PEMFC performance in terms of 
the maximum power density (1.03 W cm−2) [152].

5 � Preferential Formation of M–Nx Active 
Sites

Since the beneficial effects of high-temperature heat treat-
ments on the ORR activities and the stabilities of M–N/C 
catalysts were demonstrated [29, 30], the pyrolysis step has 
been considered crucial and the majority of M–N/C cata-
lysts are now prepared by the pyrolysis of macrocycles or 
precursor mixtures. During the pyrolysis step, catalytically 
active M–Nx sites dispersed on a carbon support are gener-
ated, thereby endowing catalytic activity towards the ORR. 
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However, high-temperature heat treatment also induces the 
aggregation of metal atoms into less active large metal and/
or metal carbide NPs, leading to the loss of M–Nx active 
sites in the resulting catalysts and an accompanying loss in 
ORR activity. As such phenomena are generally uncontrol-
lable, the majority of heat-treated products possess a sig-
nificant portion of inactive NPs. Furthermore, these NPs 
catalyze the Fischer–Tropsch reaction in situ at high tem-
peratures, and so become coated with graphitic carbon shell 
that prevents the NPs from being acid-leached [17, 18].

In order to remove NP-based impurities, several proto-
cols based on multiple heat treatments (sometimes under 
an NH3 atmosphere) or repeated acid-/heat-treatments have 

been developed [20, 21]. In this regard, Kramm et al. devel-
oped a novel purification method based on secondary heat-
treatment under 10% H2/N2 gas (forming gas) followed by 
acid-leaching (Fig. 8a) [158]. As confirmed by Mössbauer 
spectroscopy, these purified Fe–N/C catalysts contained no 
particulate species and consisted exclusively of active Fe–Nx 
sites (Fig. 8b, c). This method was therefore suitable for 
the preparation of Fe–N/C catalysts with a high density of 
active sites (i.e., over 3 wt%). In addition, the ORR activity 
of the purified catalyst was enhanced 3–10 times in terms 
of the mass activity in acidic media, when compared to the 
catalyst that had not undergone secondary heat treatment 
(Fig. 8d). This strategy was found to be widely applicable to 

Fig. 7   a ORR polarization curves of the ionic liquid-derived het-
eroatom-doped Fe–N/C catalysts measured in 0.1  M KOH. b ORR 
polarization curves of the Fe–N/C catalysts prepared using FeIII 
thiocyanate (denoted as Fe/N/C–SCN) and FeIII chloride (denoted 

as Fe/N/C–Cl) measured in 0.1 M H2SO4. Reproduced with permis-
sion from [151]. Copyright (2014) American Chemical Society (a); 
Reproduced with permission from [152]. Copyright (2015) Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim (b)

Fig. 8   a Schematic illustration of the catalyst purification process 
through heat-treatment under 10% H2/N2 (forming gas). Mössbauer 
spectra of the Fe–N/C catalysts, b before and c after purification. 
Signals D1–D3 represent structurally distinctive Fe–N4 sites, while 
the Sing signal is attributed to the presence of superparamagnetic 

alpha-Fe. ORR polarization curves of the d Fe–N/C, e FeSn–N/C, f 
FeCo–N/C, and g CoSn–N/C catalysts before and after purification 
measured in 0.5 M H2SO4. Reproduced with permission from [158]. 
Copyright (2016) American Chemical Society
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other metal-based M–N/C and bimetallic FeM–N/C catalysts 
(M = Co, Sn) (Fig. 8e–g) [158].

As an alternative strategy to preferentially generate 
M–Nx active sites, Joo et al. developed the “silica-protec-
tivel-layer-assisited” method to preserve Fe–Nx sites dur-
ing high-temperature pyrolysis [159]. For this process, 
5,10,15,20-tetrakis(4-methoxyphenyl)porphine iron(III) 
chloride (FeIITMPPCl) was mixed with CNTs and annealed 
at 400 °C to allow the adsorption of FeTMPPCl on the 
CNT surfaces. A silica layer was then overcoated onto the 
CNT/FeTMPPCl composite using tetraethyl orthosilicate as 
the silica source. Pyrolysis and subsequent silica removal 

resulted in a catalyst composed of a CNT coated with a thin 
porphyrinic carbon layer (CNT/PC) (Fig. 9a). The silica-
coated CNT/PC was composed primarily of active Fe–Nx 
sites, whereas the catalyst prepared without a silica over-
coating (i.e., CNT/PC_w/o SiO2) exhibited large Fe and 
Fe3C NPs (Fig. 9b, c). Mössbauer spectroscopy and XAS 
revealed that the ratios of Fe–Nx sites to Fe/Fe3C species 
were approximately 3:1 and 1:1 for the CNT/PC and CNT/
PC_w/o SiO2 catalysts, respectively. In addition, tempera-
ture-controlled in situ XAS suggested the presence of inter-
actions between the silica layer and the Fe–N4 sites of FeT-
MPPCl, which could stabilize the Fe–N4 sites and suppress 

Fig. 9   a Schematic illustra-
tion of the “silica-protective-
layer-assisted” strategy to 
preferentially generate Fe–Nx 
active sites while suppress-
ing the formation of Fe-based 
less-active particles. CNT/
PC and CNT/PC_w/o SiO2 
denote the silica-protected and 
unprotected catalysts, respec-
tively. TEM images of b CNT/
PC and c CNT/PC_w/o SiO2. 
ORR polarization curves of 
CNT/PC and CNT/PC_w/o 
SiO2 measured in d 0.1 M KOH 
and e 0.1 M HClO4. The insets 
show the kinetic current densi-
ties of the catalysts at 0.9 V (vs. 
RHE) in 0.1 M KOH and 0.8 V 
(vs. RHE) in 0.1 M HClO4. 
Reproduced with permission 
from [159]. Copyright (2016) 
American Chemical Society
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the formation of inactive Fe-based particles. The resulting 
CNT/PC catalyst exhibited high ORR activities with half-
wave potentials of 0.88 and 0.79 V in 0.1 M KOH and 
0.1 M HClO4, respectively. CNT/PC catalyst prepared with 
the silica coating strategy exhibited 3–4 times higher ORR 
activities than the catalyst prepared with silica coating step 
both in acidic and alkaline electrolytes (Fig. 9d, e). When 
CNT/PC was employed as the cathode catalyst in MEA for 
an alkaline anion exchange membrane fuel cell (AEMFC), 
very high current density at 0.6 V and peak power density 
(i.e., 498 mA cm−2 and 380 mW cm−2) were achieved, which 
were greater than those of previously reported AEMFC 
MEAs based on non-precious metal catalysts. The CNT/
PC-based MEA also exhibited an excellent PEMFC perfor-
mance with a volumetric activity of 320 A cm−3, which com-
pared favorably to the 2020 US DOE target of 300 A cm−3 
[159]. Similarly, Zhang et al. prepared mesoporous silica-
coated Co-doped ZIF-8 to prevent particle aggregation dur-
ing pyrolysis [160]. In this case, the mesoporous silica shell 
performed dual roles during pyrolysis of the MOF precursor, 
i.e., prevention of Co-based particle formation and MOF 
particle fusion, leading to an increase in the BET surface 
area by a factor of two. These effects resulted in an enhance-
ment in the ORR activity by approximately 6 times [160].

6 � Non‑pyrolyzed M–N/C Catalysts 
with Well‑Defined Active Site Structures

The naturally occurring enzyme cytochrome c oxidase 
(CcO) is a key component in the respiratory cycle of organ-
isms, selectively reducing oxygen molecules to H2O with-
out producing reactive oxygen species such as H2O2. The 
structure of CcO consists of a bimetallic center comprising 
an iron porphyrin with an axially coordinated histidine and 
a trihistidine-coordinated Cu in the distal pocket (Fig. 10a) 
[161]. Inspired by the elaborate structural features of CcO, 
significant of effort has been made to synthesize CcO-mim-
icking molecules, with the most successful example being 

reported by the Collman group (Fig. 10b) [161]. Although 
such biomimetic molecules are useful in understanding the 
functions of CcO under physiologically relevant conditions 
(e.g., at pH ~ 7), they are unsuitable for PEMFC applications 
due to their instability under the harsh operating conditions 
required for PEMFCs, such as very low pH and working 
temperatures around 80 °C.

One would therefore expect that incorporation of the 
CcO-like structural moiety into heterogeneous electro-
catalysts could in principle significantly boost their ORR 
activities. However, the high-temperature pyrolysis step 
commonly required for preparing heterogeneous ORR elec-
trocatalysts would unavoidably cause the destruction and 
distortion of the M–Nx sites [162–164]. Thus, as a com-
promise between molecular and heterogeneous catalysts, 
namely heterogenized molecular catalysts, have been devel-
oped by immobilizing CcO-mimicking molecules onto a 
conductive carbon support under ambient conditions, which 
can improve the stability of this moiety while preserving its 
catalytic functions.

A straightforward approach to the preparation of such 
catalysts involves the use of square planar M–N4 structures, 
such as molecular phthalocyanines or porphyrins, which can 
be easily stabilized on carbon supports through π–π interac-
tions [165–170]. For example, the Campidelli group reported 
the preparation of CNT–Co porphyrin layer core–sheath 
nanostructures [169]. They initially physisorbed designed 
Co porphyrin molecules onto CNT surfaces, then carried 
out polymerization to produce a porphyrin network layer 
on the CNTs (Fig. 11a). The resulting core–sheath catalyst 
exhibited an enhanced ORR activity compared to the catalyst 
bearing the physisorbed Co porphyrin. In this catalyst, the 
bifacial structure between the stacked layers of the Co por-
phyrin was suggested to be responsible for the near 4-elec-
tron selectivity, which is similar to the bimetallic interplay 
observed in CcO [161], in binuclear Cu-triazole–dipyridine 
complexes [170], and in bifacial Co-based porphyrins [171]. 
In addition, interaction of the Co-porphyrin units with the 
CNTs produced the catalysts with high stabilities in acidic 

Fig. 10   a The active site of 
cytochrome c oxidase (CcO). 
The red, green, black, blue, and 
white spheres represent the Fe, 
Cu, N, O, and C atoms, respec-
tively. b Synthetic analogue 
that has a similar structure and 
function to CcO. Reproduced 
with permission from [161]. 
Copyright (2007) American 
Association for the Advance-
ment of Science
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media, as confirmed by a minimal decrease in their ORR 
activities under such conditions [169].

Cho et al. developed a Fe–N/C catalyst with a biomi-
metic active center [172]. They covalently attached 4-ami-
nopyridine onto a CNT surface, and anchored FeII phth-
alocyanine (FePc). The resulting heterogenized molecular 
catalyst exhibited a high activity, with a half-wave poten-
tial of 0.92 V (vs. RHE) and near 4-electron selectivity, 
which was superior to that of Pt/C in 0.1 M KOH. In this 
case, the strong coordination bond between the FePc mol-
ecule and pyridine formed a stable Fe–N4–Naxial active site 
structure, which is highly analogous to the structure of 
CcO. They suggested that Fe 3d rehybridization with the 
axial ligand orbital significantly modified the electronic 
structure of the Fe–N5 sites compared to the square planar 
Fe–N4 sites, thereby leading to increased ORR activity 

through the facile cleavage of the O–O bond, as supported 
by DFT calculations [172].

Liu et al. also designed a bio-mimetic Fe–N5 active site 
on a CNT surface [173], where they used an Fe porphyrin 
and an imidazolate axial ligand to enhance O2 activation 
(Fig. 11c) [174, 175]. This catalyst exhibited the highest 
ORR activity among the previously reported non-pyrolytic 
M–N/C catalysts, with a half-wave potential of 0.88 V (vs. 
RHE) in an acidic solution (Fig. 11d). In addition, it was 
highly selective towards the 4-electron ORR (> 99.5% 
over the full potential range investigated, Fig. 11e) [173]. 
Although the Cho and the Liu groups demonstrated the 
high-performance of M–N/C catalysts through the use of 
heterogenized molecular catalysts, there is much room for 
improvement in the ORR activity/selectivity by tuning of 

Fig. 11   a Schematic illustration of the polymeric Co porphyrin lay-
ers stacked on CNTs (MWNT–CoP). b ORR polarization curves of 
MWNT–CoP (red curve) and MWNT/CoP (black curve, physical 
mixture) measured in 0.5  M H2SO4. c Schematic representation of 
the heme-like active sites grafted onto a CNT through a coordination 
bond to the imidazolic N atom [(DFTPP)Fe-Im-CNTs]. d ORR polar-
ization curves measured in 0.1 M HClO4 and e electron transfer num-

bers during the ORR for (DFTPP)Fe-Im-CNTs and a simple physical 
mixture [(DFTPP)Fe-CNTs], measured using rotating ring disk elec-
trode (RRDE). Reproduced with permission from [169]. Copyright 
(2014) American Chemical Society (a, b); Reproduced with permis-
sion from [173]. Copyright (2014) Wiley-VCH Verlag GmbH & Co. 
KGaA (c–e)



1091Topics in Catalysis (2018) 61:1077–1100	

1 3

the macrocyclic molecules, ligand structures, and ligand-
carbon support interactions.

The concept of “heterogenized molecular catalysts” based 
on low-temperature syntheses enables the identification of 
new active site structures for the ORR. Joo and Park et al. 
exploited the assembly of an archetypical organometallic 
compound, CoII acetylacetonate [Co(acac)2], with N-doped 
graphene to prepare a Co–N/C catalyst [176]. Simple stirring 
of a mixture of ammonia-reduced graphene oxide (A–rG–O) 
with Co(acac)2 resulted in the formation of a hybrid cata-
lyst (CoII–A–rG–O). Solid-state nuclear magnetic resonance 
(SSNMR) measurements revealed that CoII–A–rG–O con-
tained alkyl groups, which were not detected for A–rG–O 
support, implying that the signal corresponding to the alkyl 
groups originated from the methyl groups of the Co(acac)2 
sites. This SSNMR result was supported by XAS observa-
tions, where the Co atoms in CoII–A–rG–O exhibited similar 
spectral features to Co(acac)2, with the exception of slightly 
elongated interatomic distances. In addition, density func-
tional theory calculations suggested that the square planar 
Co(acac)2 molecule has the highest affinity for bonding with 
the pyridinic N atoms in N-doped graphene. Based on these 
analyses, a novel type of active site was identified, namely 
the Co–O4–N site, where Co ions are coordinated to four 
equatorial oxygen atoms from two acac ligands and to an 
axial N atom from A–rG–O (Fig. 12a). The creation of this 

active site in CoII–A–rG–O increased the onset potential by 
90 mV compared to A–rG–O (Fig. 12b). In contrast, the 
increase in the ORR activity was negligible when Co(acac)2 
was added to N-free reflux-reduced graphene oxide 
(Re–G–O), highlighting the significance of Co–N coordi-
nation in the ORR. It was deduced that the Co–O4–N site 
was responsible for promoting the 4-electron ORR, while the 
Co–O4–O and Co–O4–Ph (Ph = phenyl ring) species played 
an auxiliary role in peroxide reduction (Fig. 12d) [176]. It is 
noteworthy that the pentacoordinated Co–O4–N sites resem-
ble the geometric local structure of CcO.

7 � Summary of the ORR Activities 
of Reported M–N/C Catalysts

The ORR activities of selected M–N/C catalysts measured in 
acidic and alkaline electrolytes are summarized in Tables 1 
and 2, respectively. These tables provide the ORR activity 
parameters [i.e., half-wave potential, kinetic current density 
(jk), and mass activity (jm)], in addition to some selected 
experimental conditions, such as the electrolyte, catalyst 
loading, and type of counter electrode employed, all of 
which have a significant influence on the ORR activity.

It should be noted that the ORR activities of reported 
M–N/C catalysts are generally high in alkaline media, 

Fig. 12   a Schematic description 
of ORR electrocatalysis on a 
Co–O4–N active site. Polari-
zation curves of b A–rG–O, 
CoII–A–rG–O, and Pt/C and c 
Re–G–O, CoII–Re–G–O, and 
Pt/C measured in 0.1 M KOH. d 
Electron transfer number for A–
rG–O, CoII–A–rG–O, Re–G–O, 
and CoII–Re–G–O measured 
using the RRDE technique. 
Reproduced with permission 
from [176]. Copyright (2015) 
Wiley-VCH Verlag GmbH & 
Co. KGaA, Weinheim
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Table 1   Summary of the experimental conditions and the ORR activity parameters of reported M–N/C catalysts in acidic media

a The half-wave potential was determined to be the potential where the measured current (j) was equal to 0.5 × jd (jd: diffusion limited current 
density). In some cases, jd is not well developed in plateau-shape, and thus was assumed to be j at 0.2–0.4 V (vs. RHE)
b Kinetic current density at 0.8 V (vs. RHE), calculated using the following equation: jk = j × jd/(jd − j), where jd was assumed to be j at 0.2–
0.4 V (vs. RHE)
c Mass activity at 0.8 V (vs. RHE). jm = jk/(catalyst loading, mg cm−2)
d jk values were estimated from extrapolation of the Tafel line, as the measured current density was too close to the jd value

Catalysts Electrolyte Catalyst load-
ing (µg cm−2)

Counter electrode Half-wave potential 
(V vs. RHE)a

jk @ 0.8 VRHE 
(mA cm−2)b

jm @ 0.8 VRHE 
(mA cm−2)c

References

PANI–FeCo–C 0.5 M H2SO4 600 Graphite rod 0.81 5.8 10 [21]
NT–G 0.1 M HClO4 485 Graphite rod 0.76 2.1 4.3 [34]
Fe0.5-950 0.1 M H2SO4 818 Graphite rod 0.89 > 100d > 120d [38]
FePhen@MOF-ArNH3 0.1 M H2SO4 600 – 0.78 2.6 4.3 [39]
Fe/N/CF 0.5 M H2SO4 400 Au wire 0.80 6.3 16 [64]
FeIM/ZIF-8 0.1 M HClO4 400 Au wire 0.76 2.6 6.5 [71]
C-FeZIF-900-0.84 0.1 M HClO4 500 Pt wire 0.76 1.8 3.6 [75]
ZIFʹ-FA-CNT-p 0.1 M HClO4 500 Pt wire 0.81 7.8 16 [76]
5% Fe–N/C 0.5 M H2SO4 260 Pt sheet 0.74 0.5 1.9 [78]
Fe-ISAs/CN 0.1 M HClO4 408 Pt wire 0.77 1.9 4.7 [79]
Co–N–C 0.1 M HClO4 600 Pt wire 0.76 1.1 1.8 [82]
ZIF-TAA-p 0.1 M HClO4 500 Pt wire 0.77 1.6 3.2 [85]
LDH@ZIF-67-800 0.1 M HClO4 200 Pt wire 0.68 0.3 1.5 [88]
Fe/N-gCB 0.05 M H2SO4 200 Pt wire 0.64 0.3 1.5 [99]
C-PANI/PBA 0.5 M H2SO4 360 Pt foil 0.69 0.4 1.1 [100]
CPM-99(Fe)/C 0.1 M HClO4 600 Pt wire 0.73 0.7 1.2 [103]
PFeTMPP-1000 0.1 M HClO4 400 Au wire 0.75 1.0 2.5 [106]
CoP-CMP800 0.5 M H2SO4 600 Pt wire 0.64 0.2 0.3 [108]
FeCo/C-800 0.1 M HClO4 600 Pt wire 0.75 2.4 4.0 [109]
Fe3Mn–AAPyr 0.5 M H2SO4 600 Pt wire 0.75 0.8 1.3 [111]
Fe-8CBDZ 0.5 M H2SO4 600 Pt wire 0.78 2.0 3.3 [112]
FeCo-OMPC 0.1 M HClO4 600 Pt wire 0.85 27 45 [117]
VB12/silica colloid 0.5 M H2SO4 600 Pt wire 0.79 3.5 5.8 [118]
Mesoporous Fe–N–C 0.1 M HClO4 600 Pt 0.73 0.5 0.8 [121]
Fe-NMCSs 0.1 M HClO4 255 Pt sheet 0.73 0.8 3.1 [127]
pCNT@Fe1.5@GL-NH3 0.1 M HClO4 600 Pt mesh 0.88 ~ 100d ~ 170d [135]
CPANI–Fe–NaCl 0.1 M HClO4 600 Pt foil 0.73 0.7 1.2 [136]
Fe/Co-CMP-800 0.5 M H2SO4 600 Pt wire 0.78 2.5 4.2 [141]
Fe–N–C–3HT–2AL 0.1 M HClO4 800 – 0.84 16.8 21 [143]
FeMo-C/N-3 0.5 M H2SO4 100 Pt wire 0.67 1.0 10 [144]
S/N_Fe27 0.1 M HClO4 800 Pt gauze 0.83 13.4 17 [151]
Fe/N/C-SCN 0.1 M H2SO4 600 GC plate 0.84 13.8 23 [152]
AT-Fe/N/C 0.1 M H2SO4 600 Graphite plate 0.81 5.4 9 [153]
(Fe, Fe)2 + N2/H2 0.5 M H2SO4 130 Pt wire 0.73 0.4 3.1 [158]
CNT/PC 0.1 M HClO4 800 Graphite 0.79 4.5 5.6 [159]
Co, N-CNF 0.5 M H2SO4 360 Pt wire 0.67 – – [160]
Co corrole/BP2000 0.5 M H2SO4 400 GC rod 0.73 1.3 3.2 [167]
MWNT-CoP 1 0.5 M H2SO4 155 Graphite plate 0.66 0.2 1.3 [169]
FePc-Py-CNT 0.5 M H2SO4 318 Pt wire 0.66 0.4 1.3 [172]
(DFTPP)Fe-Im-CNTs 0.1 M HClO4 1000 Graphite rod 0.88 ~ 50d ~ 50d [173]
Fe–N/C-800 0.1 M HClO4 100 Pt 0.66 0.1 1.0 [179]
PpPD–Fe–C 0.5 M H2SO4 900 Graphite rod 0.72 0.5 0.6 [180]
Fe3C/NG-800 0.1 M HClO4 400 Pt foil 0.77 0.8 2.0 [181]
Fe-PANI + DCDA 0.5 M H2SO4 1000 Graphite rod 0.83 8.6 8.6 [185]
Fe–N–C–Phen–PANI 0.5 M H2SO4 600 Graphitic electrode 0.80 3.4 5.7 [186]
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Table 2   Summary of the experimental conditions and the ORR activity parameters of reported M–N/C catalysts in alkaline media

a The half-wave potential was determined to be the potential where the measured current (j) was equal to 0.5 × jd (jd: diffusion limited current 
density). In some cases, jd is not well developed in plateau-shape, and thus was assumed to be j at 0.2–0.4 V (vs. RHE)
b Kinetic current density at 0.9 V (vs. RHE), calculated using the following equation: jk = j × jd/(jd − j), where jd was assumed to be j at 0.2–
0.4 V (vs. RHE)
c Mass activity at 0.9 V (vs. RHE). jm = jk/(catalyst loading, mg cm− 2)

Catalysts Electrolyte Catalyst loading 
(µg cm−2)

Counter electrode Half-wave potential 
(V vs. RHE)a

jk @ 0.9 VRHE 
(mA cm−2)b

jm @ 0.9 VRHE 
(mA cm−2)c

References

NT–G 0.1 M KOH 485 Graphite rod 0.88 2.9 6.0 [34]
FePhen@MOF-ArNH3 0.1 M KOH 600 – 0.86 1.9 3.2 [39]
Co9S8@CNS900 0.1 M KOH 400 Pt foil 0.80 0.1 0.2 [70]
NCNTs-20 0.1 M KOH 570 Pt foil 0.83 1.2 2.1 [72]
C-FeZIF-900-0.84 0.1 M KOH 500 Pt wire 0.84 1.2 2.4 [75]
Fe-ISAs/CN 0.1 M KOH 408 Pt wire 0.90 6.06 15 [79]
Co–N–C 0.1 M KOH 283 Pt wire 0.87 1.2 4.2 [82]
ZIF-TAA-p 0.1 M KOH 500 Pt wire 0.88 1.8 3.6 [85]
LDH@ZIF-67-800 0.1 M KOH 200 Pt wire 0.83 0.2 1.0 [88]
Co4N/CNW/CC-A 1 M KOH – Graphite plate 0.85 4.3 – [89]
Co SAs/N-C(900) 0.1 M KOH 408 Pt wire 0.88 2.0 4.9 [90]
Co/NC 0.1 M KOH 210 Pt wire 0.83 0.3 1.4 [91]
Cal-CoZIF-VXC72-H 0.1 M KOH 408 Pt foil 0.86 0.7 1.7 [92]
N-CNTs-650 0.1 M KOH – Pt wire 0.85 0.3 – [96]
Fe/N-gCB 0.1 M KOH 200 Pt wire 0.83 0.9 4.5 [99]
C-PANI/PBA 0.1 M KOH 360 Pt foil 0.85 1.3 3.6 [100]
CPM-99(Fe)/C 0.1 M KOH 200 Pt wire 0.80 0.3 1.5 [103]
Cu-NC-Air 0.1 M KOH 300 Pt wire 0.83 0.6 2.0 [105]
FeCo/C-800 0.1 M KOH 200 Pt wire 0.85 1.1 5.5 [109]
FeCo-OMPC 0.1 M KOH 300 Pt wire 0.86 1.8 6.0 [117]
Mesoporous Fe–N–C 0.1 M KOH 200 Pt 0.84 0.8 4.0 [121]
Fe-N/C-800 0.1 M KOH 79.6 Pt wire 0.81 0.6 7.5 [126]
Fe-NMCSs 0.1 M KOH 255 Pt sheet 0.86 1.7 6.7 [127]
Fe-N-SCCFs 0.1 M KOH 600 Graphite rod 0.88 3.7 6.2 [130]
MF-Fe-800 0.1 M KOH 200 Pt coil 0.83 0.63 3.2 [133]
Co0.05,N_pCNT 0.1 M KOH 200 Pt mesh 0.87 3.2 16 [134]
pCNT@Fe1.5@GL 0.1 M KOH 200 Pt mesh 0.87 2.3 12 [135]
Fe/Fe3C@N-C-NaCl 0.1 M KOH 600 Pt wire 0.87 1.7 2.8 [138]
CS-FePc_450 0.1 M KOH 274 Pt wire 0.88 2.5 9.1 [139]
(Fe,Mn)–N–C–3HT–2AL 0.1 M KOH 800 – 0.90 5.6 7.0 [143]
N-GCNT/FeCo-3 0.1 M KOH 200 Pt foil 0.92 7.8 39 [145]
Fe/ANT/C 0.1 M KOH 600 Pt foil 0.86 1.7 2.8 [150]
S/N_Fe27 0.1 M KOH 800 Pt gauze 0.87 3.1 3.9 [151]
AT-Fe/N/C 0.1 M NaOH 600 Graphite plate 0.93 ~ 20 ~ 33 [153]
CNT/PC 0.1 M KOH 800 Graphite rod 0.88 2.4 3.0 [159]
Co,N-CNF 0.1 M KOH 120 Pt wire 0.81 0.1 0.8 [160]
FePc-Py-CNT 0.1 M KOH 318 Pt wire 0.92 8.7 27 [172]
(DFTPP)Fe-Im-CNTs 0.1 M KOH 1000 Graphite rod 0.92 12 12 [173]
CoII–A–rG–O 0.1 M KOH 600 Graphite rod 0.81 < 0.1 0.1 [176]
N-Fe-CNT/CNP 0.1 M NaOH 1000 Graphite rod 0.93 7.2 7.2 [177]
Fe-PyNG 0.1 M KOH 140 Pt sheet 0.81 0.7 5.0 [178]
Fe–N/C-800 0.1 M KOH 100 Pt 0.81 0.9 9.0 [179]
Fe3C/NG-800 0.1 M KOH 400 Pt foil 0.86 1.6 4.0 [181]
Cu-N@C-60 0.1 M KOH 298.6 Graphite rod 0.79 0.1 0.3 [182]
Fe@C-FeNC-2 0.1 M KOH 700 – 0.90 5.1 7.3 [183]
Fe3C@N-CNT 0.1 M KOH 250 Pt plate 0.85 1.2 4.8 [184]
Fe-PANI + DCDA 0.1 M NaOH 1000 Graphite rod 0.91 6.3 6.3 [185]
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with the majority of catalysts exhibiting half-wave poten-
tials > 0.8 V, and on average ~ 0.85 V (vs. RHE). In acidic 
electrolytes, however, the catalysts show ~ 100 mV lower 
half-wave potentials (Fig. 13). Recently, it was found that 
this decline in the ORR activities of these catalysts in acidic 
media coincides with the protonation of pyridinic N sites, 
which may provide a clue to such a discrepancy [187]. 
However, the mechanism responsible for the differences in 
ORR activities between acidic and alkaline media remains 
unclear, and requires further systematic studies.

Finally, we note that the majority of research groups 
(> 60% of the literature examined) employ Pt-based counter 
electrodes in their studies. However, the platinum is prone 
to be anodically dissolved, and can be redeposited on the 
nonprecious catalyst layer, leading to an enhancement in the 
ORR activity. Such an effect would become more apparent 
in long-term durability/stability tests. Indeed, the activation 
behavior caused by the Pt dissolution–redeposition process 
has recently been investigated in the context of electrocata-
lytic hydrogen evolution [188, 189]. The accidental incor-
poration of Pt prevents a fair comparison of the ORR activ-
ity, and therefore the use of carbon-based materials as the 
counter electrode is highly recommended.

8 � Conclusions and Outlook

This review presented the recently emerged synthetic strate-
gies toward high-performance M–N/C catalysts for the ORR, 
and summarized the ORR activities of highly active M–N/C 
catalysts. While many methods have been developed, we 
identified five major strategies for enhancing the catalytic 
activity for the ORR: the exploitation of MOFs as hosts or 
precursors, the use of sacrificial templates, the addition of 
heteroelements, the preferential generation of active sites, 

and a biomimetic approach. We summarized the advantages 
of each preparation method for M–N/C catalysts and pre-
sented representative examples for each strategy.

The advances in the preparation of M–N/C catalysts, 
along with the progress in the identification of their active 
sites for the ORR, indeed led to highly active catalysts, with 
some catalysts showing very high ORR activities that can 
rival that of a Pt/C catalyst. However, such performances 
are in most cases attained with the rotating disk electrode 
(RDE) measurements in a half-cell configuration [190]. 
Compared to the RDE measurements, only limited examples 
of MEA-based single cell performances have been reported. 
Furthermore, it is often the case that excellent RDE perfor-
mances of M–N/C catalysts are not fully translated in MEA 
measurements. Hence, to realize M–N/C catalysts as a true 
alternative to the state-of-the-art Pt/C catalyst, the perfor-
mance improvement of MEAs based on M–N/C catalysts 
is essential. In this sense, very recent result of the Zelenay 
group [45], who demonstrated highly promising MEA per-
formances for H2-air PEMFC employing a newly developed 
Fe–N/C catalyst, sheds light on the practicality of this class 
of catalysts into the fuel cell market.
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