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Abstract
Artemisia indica, belonging to the family Asteraceae, is renowned for its rich phytoconstituents and traditional medicinal 
uses. This study aimed to optimize the green synthesis of biocompatible Ag NPs using varying concentrations of A. indica 
leaf extract and AgNO3. The objectives were to characterize the synthesized NPs and evaluate their potential biomedical 
applications. The synthesized NPs were characterized using FTIR, XRD, TEM, and Zeta sizer. The results indicated an 
average particle size of approximately 20 nm and a zeta potential of −23.4 mV, confirming their stability. PXRD analysis 
demonstrated the crystalline nature of the NPs, while FTIR analysis confirmed the capping of phytoconstituents on the 
nanoparticle surface. Biocompatibility was assessed using the MTT assay on the L929 cell line, showing 83% cell viability, 
indicating non-toxicity. Additionally, the green-synthesized NPs exhibited significant antibacterial activity at a concentration 
of 500 μg/mL, as evidenced by a clear zone of inhibition. This study highlights a rapid, eco-friendly synthesis method for 
Ag NPs, paving the way for novel biomedical applications.

Abbreviations
A. indica  Artemisia indica
Ag  Silver
NPs  Nanoparticles
AgNO3  Silver nitrate
Ag-AI-NPs  Silver-Artemisia indica nanoparticles
UV  Ultraviolet
DMEM  Dulbecco’s modified eagle medium

DPPH  1, 1-Diphenyl-2-picrylhydrazyl
CH3OH  Methanol
FBS  Fetal bovine serum
FTIR  Fourier transform infrared
ZOI  Zone of inhibition
MLE  Methanolic leaf extract
MTT  (3-[4, 5-Dimethylthiazole-2-yl]-2, 5- 

diphenyl tetrazolium bromide)
PBS  Phosphate-buffered saline
SPR  Surface plasmon resonance
TEM  Transmission electron microscopy
PXRD  Powder X-ray diffraction
ZP  Zeta potential
PS  Particle size
DLS  Dynamic light scattering
TGA   Thermo-gravimetric analysis
DSC  Differential scanning calorimetry
SAED  Selected area electron diffraction
E. coli  Escherichia coli
P. aeruginosa  Pseudomonas aeruginosa
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Introduction

Green synthesis methods for NPs have gained significant 
attention due to their eco-friendliness and potential biomedi-
cal applications. Zinc oxide NPs synthesized using Nostoc 
sp. demonstrated antioxidant and antimicrobial properties 
[1], while iron oxide NPs from Leptolyngbya sp. L-2 showed 
promising pharmacogenetic properties for drug delivery 
and cancer therapy [2]. Silver oxide NPs from Nodularia 
haraviana revealed significant antimicrobial properties [3], 
and Anabaena sp. A-1-mediated molybdenum oxide NPs 
exhibited excellent antibacterial and antifungal activities [4]. 
ZnO NPs using Piper betle leaf extract induced apoptosis in 
breast cancer cells [5], and Ag/CuO nanocomposites showed 
antimycobacterial, antioxidant, and anticancer activities [6]. 
ZnO NPs from solution combustion synthesis using lemon 
juice exhibited notable antitubercular activity [7], and ZnO 
NPs from combustion-assisted green methods displayed 
effective antibacterial and cytotoxic properties [8].

Nanotechnology is extensively used in biomedical sci-
ences [9], focusing on alternative drug delivery systems 
with metal oxides like gold [10], zinc [11], copper [12], 
silver [13, 14], and titanium dioxide [15]. Ag-NPs offer 
advantages like bacterial cell penetration and high surface 
area-to-volume ratio, working through silver ion release, 
reactive oxygen species generation, cell membrane per-
meation, and DNA replication blockage [16], with no 
reported ingestion toxicity [17].

Various methods impact Ag-NPs yield and efficacy. 
Top-down approaches include laser ablation [18], mechan-
ical milling [19], electroblasting, and etching [20]. Bot-
tom-up approaches include the sol–gel process [21], super-
critical fluid [22], laser pyrolysis [23], chemical reduction 
[24], and green synthesis [25–27]. Green synthesis, using 
plant extracts, is favored for its biocompatibility, eco-
friendliness, cost-effectiveness, and scalability [28], with 
plant constituents acting as reducing agents [29].

Biofabricated NPs show significant promise for biomedi-
cal applications. Ag NPs synthesized using Lagerstroemia 
speciosa induce apoptosis in osteosarcoma cells (MG-63) 
[30], while Cardamine hirsuta leaf extract-mediated NPs 
exhibit anticancer potential against the Caco-2 cell line [31]. 
Zinc oxide NPs from Talaromyces islandicus show antibac-
terial, anti-inflammatory, bio-pesticidal, and seed growth-
promoting activities [32]. Ag NPs from Ixora brachypoda 
exhibit strong antimicrobial activity [33], and those from 
Plumeria alba show antimicrobial effects and anti-onco-
genic activity against glioblastoma cells (U118 MG) [34]. 
Catharanthus roseus-synthesized NPs modulate inflamma-
tory responses and have anti-oncogenic potential [35].

Artemisia L., an abundant genus in the Asteraceae 
family, is used in folk medicine for various ailments [36]. 

A. indica, known as “Titepati” in Darjeeling and Indian 
wormwood in India [37], is used to treat asthma, amoebic 
dysentery, and other conditions [36]. It contains antimalar-
ial compounds like maackiain and artemisinin [38, 39] and 
has anti-inflammatory properties reported in lung, breast, 
colon, and breast cancer [40]. Compounds from A. indica 
show antiepileptic and antidepressant activities [41], and it 
is used as an anti-diabetic, anti-inflammatory, and anthel-
minthic agent [37, 42–44]. Green synthesis using various 
bio-systems is favored for its ease of use and plant diver-
sity [17, 45–52].

In this study, given the widespread use of A. indica, we 
synthesized Ag NPs using the green leaf extract of A. indica. 
The NPs were characterized by FTIR, XRD, and TEM to 
confirm their size. The in vitro antibacterial and cytotoxic 
activities of Ag-AI-NPs were evaluated. This study reports 
the rapid and easy synthesis of stable Ag NPs with signifi-
cant antibacterial activity, focusing on green synthesis using 
A. indica leaf extract, characterization, and evaluation of 
antibacterial and cytotoxicity properties.

Materials and methods

Chemicals

Silver nitrate  (AgNO3), 2,2-diphenyl-1-picrylhydrazyl 
(DPPH), methanol  (CH3OH), ascorbic acid, 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 
dimethyl sulfoxide (DMSO), phosphate buffer saline (PBS), 
Dulbecco's modified eagle medium (DMEM), and fetal 
bovine serum (FBS) of analytical purity were purchased 
from Sigma-Aldrich. The plant collection was done from 
Nagaland local market and authenticated.

Collection of leaves and preparation of plant extract

Fresh leaves of the plant A. indica were collected between 
July and September from the village of Kohima District of 
Nagaland. The leaf of the plant was authenticated by Cura-
tor, Department of Botany, Guwahati University, Assam. 
The herbarium was prepared and voucher specimen sample 
(18,380) was deposited for future reference. The leaves were 
washed thrice with water and dried in shade at room tem-
perature for 15 days. In addition, the leaves were ground into 
a fine powder using an electric mixer (Bajaj GX 11). About 
100 g of powder from the plant was extracted using 250 mL 
of methanol. The solution weas kept at room temperature 
at constant pressure for one week, after which filtered with 
Whatman No. 1 filter paper. The filtrate was vacuumed and 
the extract was stored at 4 °C for further experiments.
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Antioxidant assay

Antioxidant activity of extract was measured by DPPH scav-
enging assay by using gallic acid as a standard followed by 
experimental analysis for the presence of various phytocon-
stituents like phenolic and flavonoids compounds was per-
formed as per the protocol Sánchez-Moreno et al. and chang 
et al., respectively [53, 54]. The solution of DPPH was pre-
pared and it was kept in dark room for 24 h. The stock solu-
tion of extract was prepared by dissolving 5 mg of extract 
in 5 mL of methanol (1 mg/mL). Various concentrations of 
solutions have been prepared ranging from 5 to 100 μg/mL 
from stock solution and they were combined with 0.1 mM 
methanolic solution of DPPH. This solution was incubated 
for 30 min at room temperature and was recorded at 517 nm.

The percentage radical scavenging activity of extract was 
calculated using formula.

Green synthesis and optimization of Ag‑AI‑NPs

Green synthesis of colloidal Ag-AI-NPs was achieved using 
(0.1 M) aqueous solution of  AgNO3. MLE in the concentra-
tions range of 1–10% (v/v) taken as a reducing agent were 
allowed to react with  AgNO3 solution at room temperature. 
5% (v/v) of the MLE of the plant was optimized concen-
tration selected for further studies. About 1.25  mg/mL 
methanolic extract of the plant was mixed with 0.1 M aque-
ous  AgNO3 solution in different volume ratios (0.5:9.5 to 
9.5:0.5) according to standard protocols [55, 56]. The mix-
tures were exposed to sunlight for about 15 min to observe 
the color change. This was followed by incubating the mix-
tures for 24 h and exposed to sunlight for the conversion of 
 Ag+ ions to  Ag0 and promote maximum formation of Ag-
AI-NPs. It was mixed thoroughly and placed in the micro-
wave oven (Samsung, Model MC32A7035) for the process 
of reduction into Ag-AI-NPs and observed for color change 
[57]. The optimized reaction time was 120 s at a temperature 
of 100–120 °C. All reactions were done in triplicate.

Characterization

The biosynthesized Ag-AI-NPs were characterized using 
various physical methods, consistent with the techniques 
employed in previous studies [58–61].

UV–vis analysis

Green synthesized Ag-AI-NPs were characterized by using 
Tecan Multimode Microplate Reader (Infinite M200). 
The green synthesized Ag-AI-NPs were dispersed in an 

% Anti − oxidant activity = Absorbance of control − Absorbance of sample ∕ Absorbance of sample × 100

appropriate solvent, typically water or an ethanol–water 
mixture, to form a colloidal solution. The dispersion should 
be clear and free of aggregates to ensure accurate measure-
ments. The prepared colloidal solution was placed in a well 
of the Infinite M200. The instrument scans across a range 
of wavelengths, typically from 200 to 800 nm, to record 
the absorbance spectrum. The UV–Vis spectrum is used to 
determine the surface plasmon resonance (SPR) peak, which 
provides information about the size, shape, and distribution 
of the NPs.

The surface plasmonic resonance (SPR) of Ag-AI-
NPs was recorded by measuring the absorbance at 
300 nm–700 nm to indicate the typical peak of Ag which 
further indicates the reduction of Ag ions.

Particle size and zeta potential

Particle size and zeta potential of the Ag-AI-NPs were deter-
mined by Nano Zeta sizer (Malvern, UK). The Ag-AI-NPs 
are dispersed in an appropriate solvent, usually water, to 
form a homogenous colloidal solution. The concentration 
should be optimized to avoid multiple scattering effects but 
still be sufficient for accurate measurements.

Particle size of the NPs was determined by dilution 
method. The prepared colloidal solution was placed in 
a cuvette or specialized sample holder for the Nano Zeta 
sizer (Malvern, UK). DLS is used to measure the Brown-
ian motion of the NPs, and the instrument calculates the 
hydrodynamic diameter based on the scattering data. The 
same colloidal solution was used to measure the zeta poten-
tial, which involves applying an electric field to the sample 
and measuring the velocity of the particles. This velocity is 
used to calculate the zeta potential, which indicates the sur-
face charge and stability of the NPs in the suspension. The 
sample was diluted by double distilled water up to 10 times. 
A disposable cuvette was filled with 1 mL of the diluted 
sample and tested at 25 °C at 90° angle. A helium–neon 
laser was used as a source of light and the Particle Size was 
determined by the particle diffusion by Brownian motion. 
The ZP of NPs was determined by taking it in a disposable 
capillary [62].

TEM

The shape and size of the prepared Ag-AI-NPs were deter-
mined by JEM-2100, 200 kV, Joel, TEM system. The sample 
was subjected to centrifugation for 30 min at 15,000 rpm. 
Further, the sample was re-suspended in 10 mL distilled 
water and it was stored for 24 h at 20 °C. The process of 
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lyophilization was done for the resultant sample. The lyophi-
lized sample was dissolved in double distilled water and few 
drops were placed on copper grid. The remaining water was 
evaporated using hot air oven (60 °C for 3 h) [63].

PXRD

As a primary characterization tool used for measuring criti-
cal features like crystal structure and crystallite size XRD 
patterns have been widely used in nanoparticle research. 
The randomly oriented crystals in nanocrystalline materi-
als cause broadening of diffraction peaks. This has been 
attributed to the absence of total constructive and destruc-
tive interferences of x-rays in a finite sized lattice. Moreover, 
inhomogeneous lattice strain and structural faults lead to 
broadening of peaks in the diffraction patterns. The size cal-
culated from x-ray diffraction peak broadening is a measure 
of the smallest unfaulted regions or coherently scattering 
domains of the material. In fact, this is the size of regions 
bounded by defects and grain boundaries and separated from 
surrounding by a small mis-orientation, typically one or two 
degrees.

PXRD instrument with Bruker make (Advance D8 model) 
was used to record the crystallinity of formed Ag-AI-NPs. 
NPs were ground into a fine powder to ensure homogeneity. 
The powdered sample is then evenly spread onto a sample 
holder, often made of glass or silicon, ensuring a flat and 
smooth surface for accurate measurement. In thin film mode, 
the same was analyzed by the PXRD instrument with a Cu 
source at 1.5406 Å wavelength [63]. The prepared sample 
holder was placed in the Bruker Advance D8 model PXRD 
instrument. The instrument generated X-rays that were 
directed at the sample, where they diffracted according to the 
crystalline structure of the NPs. The diffracted X-rays were 
detected, and the resulting diffraction pattern was recorded. 
The PXRD pattern, which consisted of peaks corresponding 
to different crystal planes, was analyzed to determine the 
phase composition, crystallite size, and structural proper-
ties of the NPs. The positions and intensities of the peaks 
provided detailed information about the crystal structure and 
any impurities or secondary phases present in the sample.

FTIR

The Ag-AI-NPs were mixed with potassium bromide (KBr) 
powder and pressed into a pellet, or a drop of their disper-
sion was placed on an ATR crystal and dried. SHIMADZU, 
IR Affinity-1 was used to record the FTIR spectrum in the 
wave number ranging from 600 to 400  cm−1 with a resolu-
tion of 2 cm. 1 mg of NPs was dissolved in Milli Q water 
and sample was placed in liquid cell followed by record-
ing of spectra [64]. The instrument passed an infrared beam 
through the sample, and the resulting spectrum displayed 

absorption bands corresponding to the functional groups on 
the NPs’ surface, revealing their chemical composition.

TGA 

TGA spectrum of synthesized Ag-AI-NPs was recorded on 
simultaneous thermal system (Shimadzu, DTG-60) in tem-
perature range from room temperature to 900 °C. the sample 
was kept in platinum crucible and measurements were car-
ried out in inert atmosphere at the heating rate of 10 °C/min. 
The sample pan was loaded into the instrument. The instru-
ment heated the sample from room temperature to 900 °C 
at a controlled rate. The TGA spectrum recorded the weight 
change of the sample as a function of temperature, provid-
ing information on the thermal stability, composition, and 
any decomposition or oxidation processes occurring in the 
Ag-AI-NPs NPs.

Antibacterial activity

The Ag-AI-NPs formulated with green synthesis method 
were investigated for the antibacterial activity against E. 
coli (ATCC 423 strain) gram negative bacteria by using 
microtiter plate assay. The study was conducted at various 
concentrations of Ag-AI-NPs of A. indica. Muller Hinton 
agar plates were taken and they have been inoculated with 
fresh cultures of P. aeruginosa and E. coli (100 μL) by using 
sterile swabs. About 5 mm diameter wells were made on the 
surface of agar medium by the use of sterile gel borer. The 
formulated Ag-AI-NPs (about 100 μL) in 50, 150, 250 and 
500 μg/mL concentrations have been poured into the formed 
wells and the plates were incubated for 24 h at 37 °C. ZOI 
was determined for all the concentrations which was finally 
used to determine the antibacterial activity. Ciprofloxacin 
and sterile water served as the positive and negative controls 
respectively. The average of three replications was recorded 
[65].

Cytotoxicity

Cytotoxicity cell assay was mainly used to detect the meta-
bolic activity of the cells based on reduction of yellowish 
MTT dye to dark blue formazan by viable and metabolically 
active cell. The normal fibroblast cells (L929) were cultured 
in DMEM medium supplemented with 5%  CO2 at 37 °C 
with humidity of 75%. DMEM media was used to seed the 
confluent cells at a density of 1 ×  104 in a 96-well plate made 
by Cell Bind, Corning Inc., Corning, NY, USA.

After 24 h of incubation, the medium was removed, and 
cells were then exposed to various concentrations of green 
synthesized silver NPs (10 to 500 µg/mL). Following a 24 h 
treatment period, the media was removed, 100 µL of MTT 
(0.5 mg/mL) was added to each well, and the wells were then 
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incubated at 37 °C for 4 h. After the incubation period, the 
media was removed, 100 µL of dimethyl sulfoxide (DMSO) 
was added to each well to dissolve the formazan crystals, 
and the absorbance was measured at 570 nm using a mul-
tiwell plate reader (Tecan micro plate reader, model 680, 
Tecan Inc., San Clemente, CA, USA). The percentage of cell 
viability was then calculated using the formula:

Results and discussion

DPPH radical scavenging assay

Figure 1 depicts the Antioxidant activity of A. indica extract 
presented as percentage of DPPH radical inhibition. The 
extract demonstrated dose-dependent radical scavenging 
activity in the DPPH experiment at doses ranging from 5 
to 100 μg/mL, with a maximal activity of 88.36% at that 
dosage (Table 1). The  IC50 was discovered to be 83.26 μg/
mL. This clearly depicts the presence of reducing phyto-
chemicals in the extract which reduced the silver ions into 
the corresponding NPs.

Synthesis of Ag‑AI‑NPs

Figure 2 shows images of change in color of reaction mix-
ture (Plant extract and  AgNO3) at different time interval 
from very pale yellow (0 s) to yellow–brown (120 s) indi-
cating clearly the reduction of cationic silver to its metallic 
counterpart and synthesis of Ag-NPs. Reaction mixture has 
shown formation of stable colloidal NPs as aggregates or 
precipitates were not observed.

(2)
(Absorbance of test solution/Absorbance of control) × 100.

Characterization

UV‑ visible spectra analysis

UV–visible spectra revealed that the excitation of Surface 
Plasma Resonance (SPR) of synthesized Ag-AI-NPs was in 
the range of 400–430 nm. The SPR peaks at low concen-
trations of MLE of 1–3% (v/v) and very higher concentra-
tions of 9–10% (v/v) were broad, indicating that at very high 
and low concentrations the NPs formation is anisotropic 
(Fig. 3a). The formation of Ag-AI-NPs from the plant extract 
was observed in a logarithmic progression. It was observed 
that intensity of peaks increased with increase in concentra-
tion of MLE, peaks were less sharp at lower concentration 
indicating MLE concentration is insufficient to reduce Ag 
to Ag-AI-NPs and with excess of MLE Ag becomes insuffi-
cient indicating optimum concentration is required to obtain 
Ag-AI-NPs. Very less change in λmax (around 420 nm) was 
observed when the concentration of MLE increases from 1 
to 10% which might be due to similarity of size and shapes 
of the Ag-AI-NPs present in different samples of MLE con-
centrations. All samples remained colloidally stable without 
formation of any precipitate over a period of 30 days.

Figure 3b shows SPR of Ag-AI-NPs synthesized at dif-
ferent time intervals (0–150 s) with 5% concentrations of 

Fig. 1  Antioxidant activity of 
A. indica extract presented as 
percentage of DPPH radical 
inhibition
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Table 1  DPPH assay of A. indica extract

Concentration of plant extract (μg/mL) DPPH scaveng-
ing activity (%)

5 26.39
10 42.19
20 73.66
40 81.72
50 83.26
100 88.36
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leaf extract against 1 mM  AgNO3 in microwave oven. It 
was found that on heating the solution with time (90–120 s) 
the SPR showed sharper peak as compared to less heating 
time and synthesis reaction time for Ag-AI-NPs was found 
to be 90 s.

Particle size and zeta potential

The particle size and zeta potential of Ag-AI-NPs were 
determined by Nano Zeta sizer (Malvern, UK). Laser dop-
pler electrophoresis and DLS techniques were used to deter-
mine the same. The average particle size of the sample was 
found to be 20 nm (Fig. 3C and D) which was narrow size 
distribution range. The zeta potential of the sample was 
found to be −23 mV which indicated the stability of formed 
Ag-AI-NPs without agglomeration. High positive or nega-
tive zeta potentials greater than 30 mV depicts monodis-
persity while lower values can lead to agglomeration. Zeta 
potential is affected not only by the properties of NPs, but 
also the nature of the solution, such as pH and ionic strength 
[66].

TEM

The TEM studies of Ag-AI-NPs exhibited morphology of 
the particles being spherical and oval in morphology with 
a mean particle size of ± 20 nm. (Fig. 4a and b). UHRTEM 
was used to observe the Ag-AI-NPs at the atomic level and 
its image revealed clear lattice fringes on the particle surface 
(Fig. 4c) which is in accordance with the silver metal. The 
SAED pattern confirmed the crystalline nature of Ag-AI-
NPs (Fig. 4d). 4 € depicts the histogram of the particle size 
distribution.

PXRD

PXRD spectrum for purified samples of Ag-AI-NPs showed 
four Bragg reflections depicting the face-centered cubic 
(FCC) structure of the synthesized NPs. The PXRD pat-
tern presented in Fig. 5 shows the characteristic 2θ peaks 
at 38.1°, 44.4°, 64.8°, and 78° for Ag-AI-NPs, correspond-
ing to the (111), (200), (220), and (311) planes of the FCC 
structure of metallic Ag.

Fig. 2  Color change with time during the formation of Ag-AI-NPs
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FTIR study

Figure  6 shows the FTIR bands for the extract and 
NPs showed strong bands at ~ 3394.72, ~ 1654.92; 
and ~ 3390.86, ~ 1656.35. The strong IR bands at ~ 3394.72 
is characteristic of O–H stretching indicating phenolic type 
of compounds present in the extract responsible for capping. 
The reduction of  Ag+ ions to Ag-AI-NPs was brought about 
by the phytoconstituents present in MLE, and this was fur-
ther confirmed by the capping of the phytochemicals onto 
the surface of the Ag-AI-NPs as evident from the FTIR [67].

TGA 

TG-differential thermal analysis (DTA) curve of Ag-AI-
NPs is presented in Fig. 7. From that it was observed that 
dominant loss of the sample occurred in temperature region 
between 250 and 500 °C. There was almost no weight loss 
below 500 °C that may be due to either evaporation of water 
and organic components. Overall, TGA results showed a 
loss of 60% up to 500 °C. Differential thermal analysis plot 
displayed an intense exothermic peak between 300 and 

500 °C which mainly attributed to crystallization of silver 
NPs which depicts that complete thermal decomposition and 
crystallization of the sample occurred simultaneously.

Antibacterial activity

Figure 8a and b shows antibacterial activity of Ag-AI-NPs 
against P. aeruginosa (MTCC-2448) and E. coli (MTCC-
443). Agar well diffusion assay was performed and Ag-AI-
NPs with concentration of 500 μg/mL was found to exhibit 
a significant inhibitory effect. The clear zones of inhibition 
of the samples are presented in Table 2, suggesting antimi-
crobial activity of synthesized Ag-AI-NPs. This antibacterial 
effect was attributed to the diffusion of green-synthesized 
Ag-AI-NPs through bacterial cell wall causing physical 
damage to the bacterial cell and may be due to formation of 
reactive oxygen species. Species along with damage to the 
respiratory system due to leakage of cellular proteins [68].

Figure 8a–b depicts the antibacterial activity of Ag-AI-
NPs against P. aeruginosa (MTCC-2448) E. coli (MTCC-
443) was performed using agar well diffusion assay. At a 

Fig. 3  a UV–visible absorption spectra of Ag-AI-NPs synthesized 
with different concentrations of MLE (1–10%) against 1 mM  AgNO3, 
b UV–visible absorption spectra of Ag-AI-NPs synthesized at differ-
ent time intervals (0–150  s) with 5% concentrations of leaf extract 

against 1 mM  AgNO3 at room temperature, c Dynamic laser scatter-
ing detection of particle size distribution, d Particle size distribution 
of NPs
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Fig. 4  a SAED pattern b 
HRTEM c and d TEM of Ag-
AI-NPs synthesized at optimum 
concentration (5% MLE) e 
Histogram of particle size distri-
bution (Particle size distribution 
histogram determined from the 
TEM images. The histogram 
illustrated number of particles 
that were in the field of view 
of the transmission electron 
microscope. Total number of 
NPs was 293 with particle size 
of 20 nm)

Fig. 5  XRD analysis of Ag-AI-
NPs
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concentration of 1 μg/mL, the sample exhibited a significant 
inhibitory effect as presented in Table 2 and Fig. 8.

Statistical analysis of the data was carried out by two-way 
ANOVA using Graphpad prism 5.0 (Graph Pad Software 
Inc., San Diego, USA) as presented in Fig. 9. P-values 0.05 
were assumed to be significant. Ag-AI-NPs showed signifi-
cant (p < 0.05) cytotoxicity. The activity was found to be 
significant at a concentration of 1 mg/mL of NPs.

Cytotoxicity and cell viability

Cytotoxicity studies were carried out using normal fibro-
blast cell (L929) to confirm safety and biocompatibility 
of green-synthesized Ag-AI-NPs. Normal fibroblast cell 

(L929) treated with different concentrations of Ag-AI-NPs 
for 24 h showed 83% cell viability at highest concentration 
of (500 μg/mL) (Fig. 10) indicating biocompatibility of syn-
thesized Ag-AI-NPs and can be used for various biomedi-
cal applications. Treatment of L929 cell line with different 
concentration of ampicillin-treated  AgNO3 showed con-
centration-dependent cell viability and showed 78% of cell 
viability at highest concentration of (500 μg/mL) as shown 
in Fig. 11 which is close to the % cell viability shown by 
green-synthesized Ag-AI-NPs.

The mechanism by which Ag NPs exhibit cytotoxicity 
involves the generation of reactive oxygen species (ROS) 
and the formation of superoxide anions (*O2

−), as evidenced 
by recent studies [69, 70]. The release of silver ions from the 
NPs leads to the induction of cancer cell death. Therefore, 
the solution combustion-synthesized Ag-AI-NP’s cytotoxic-
ity on L929 cells can be attributed to these silver ions [13]. 
This effect is dose-dependent, varying with concentration 
and differing in impact between normal and cancerous cells 
[64, 65].

Figure 12 illustrates optical microscopic images depict-
ing the effects of Ag-AI-NPs and  AgNO3 treatment on L929 
cells.

Conclusion

Biocompatible and eco-friendly plant-mediated Ag NPs 
of vary small diameter of 20 nm were synthesized using 
A. Indica. UV studies affirmed the formation of Ag NPs 
and TEM confirmed the formation spherical NPs. PXRD 
revealed the crystalline nature of NPs, whereas FTIR sup-
ported the presence of phytoconstituents on the surface 

Fig. 6  FTIR analysis of Ag-AI-NPs

Fig. 7  DG-DTA curve of Ag-
AI-NPs
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of NPs responsible for capping and reduction of Ag ions 
to Ag NPs. The synthesized Ag-AI-NPs were found to be 
biocompatible and non-toxic retaining the cell viability of 
83%. Green-synthesized NPs showed antibacterial activity 
but further research at molecular level has to be carried out 
to explore its potential for various biomedical applications.

Potential limitations of the study

The current study predominantly focuses on in vitro analysis 
of the antibacterial activity of Ag NPs. While in vitro stud-
ies provide initial insights, they may not fully replicate the 
complexities of living organisms. Additionally, the study 
does not include in vivo experiments to evaluate the cyto-
toxicity and overall biocompatibility of Ag NPs in living 

organisms. In vivo studies are crucial for understanding the 
actual biological interactions and potential side effects in a 
physiological context. The study may have tested a limited 
number of bacterial strains. Expanding the range of bacte-
rial species, including resistant strains, could provide a more 
comprehensive understanding of the antibacterial efficacy of 
Ag NPs. Furthermore, the precise mechanism of the antibac-
terial action of Ag NPs is not fully elucidated in the study. 
Understanding the molecular pathways and targets involved 
would enhance the knowledge of how these NPs exert their 
effects. Lastly, the long-term toxicity and environmental 
impact of Ag NPs are not addressed. Assessing the ecologi-
cal consequences and potential bioaccumulation is vital for 
the safe application of these NPs.

Directions for future research

Future research should investigate the anticancer proper-
ties of Ag NPs. Given their biocompatibility, it is essential 
to evaluate their effectiveness against various cancer cell 
lines. This could involve studying the induction of apopto-
sis, inhibition of proliferation, and disruption of cancer cell 
signaling pathways. Conducting in vivo studies to assess the 
cytotoxicity and biocompatibility of Ag NPs is imperative. 
Animal models can be used to monitor biodistribution, clear-
ance rates, organ-specific toxicity, and overall physiologi-
cal impact. This will provide a clearer picture of the safety 
and potential therapeutic applications of Ag NPs. Detailed 
mechanistic studies are needed to elucidate the antibacte-
rial and anticancer actions of Ag NPs. Techniques such as 

Fig. 8  a Antibacterial activity 
of Ag-AI-NPs against P. aerugi-
nosa, and b E. coli 

Table 2  Antibacterial efficacy 
of Ag-AI-NPs (ZOI in mm)

Ag-AI-NPs concentration

Pathogen 1 mg/mL 500 µg/mL 250 µg/mL 125 µg/mL 62.5 µg/mLPositive 
control (Ciproflaxa-
cin-100 µg/mL)

P. aeruginosa 11.00 ± 0.000 9.00 ± 0.000 7.500 + 0.125 6.00 + 0.000 4.00 + 0.000 30.00 + 0.125
E. coli 15.50 + 0.250 13.00 + 0.125 10.00 + 0.825 8.500 + 0.000 6.00 + 0.000 35.25 + 0.125

Fig. 9  Statistical significance of Ag-AI-NPs on test pathogens
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Fig. 10  MTT assay using L929 
cell lines treated different con-
centration of Ag-NPs
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Fig. 11  MTT assay of ampicil-
lin with  AgNO3
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Fig. 12  L929 cells treated with 
a Ag–AI–NPs (500 µg/mL), and 
b  AgNO3 (500 µg/mL)
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proteomics, genomics, and metabolomics could be employed 
to uncover the molecular targets and pathways involved. 
Investigating the synergistic effects of Ag NPs in combi-
nation with existing antibiotics or chemotherapeutic agents 
could offer new therapeutic strategies. Such combinatorial 
approaches might enhance efficacy and reduce the likelihood 
of resistance development. Assessing the long-term toxic-
ity and environmental impact of Ag NPs is crucial. Studies 
should focus on their persistence in the environment, poten-
tial for bioaccumulation, and effects on non-target organ-
isms. Developing guidelines for safe disposal and usage 
can mitigate environmental risks. Once preclinical studies 
demonstrate safety and efficacy, clinical trials should be con-
ducted to evaluate the therapeutic potential of Ag NPs in 
human subjects. This includes determining optimal dosages, 
delivery methods, and monitoring for adverse effects.
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