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Abstract
Titanium dioxide (TiO2) can only be stimulated by UV light, making its real application for photocatalytic water treatments 
ineffective, particularly under sunlight and visible light irradiation. As a result, significant efforts have been conducted over 
the last decades to fabricate visible light-active TiO2 photocatalysts through band-gap engineering. Herein, nitrogen-doped 
titanium dioxide (N-TiO2) photocatalysts were effectively prepared by utilizing a simple sol–gel process with ethanol as a 
single solvent and urea as the nitrogen source under ambient temperature and pressure. The effects of urea concentration (0, 
2, 4, 6 urea/TTIP mol ratio) on the optical, structural, morphological, and photocatalytic properties of the photocatalysts were 
investigated. SEM morphology revealed an aggregated nano-spherical shape in all samples. HR-TEM and SAED patterns 
showed an anatase phase of 2-N-TiO2. The X-ray diffraction analysis also showed a pure anatase phase for pure TiO2, 2-N-
TiO2, and 4-N-TiO2. However, the crystalline phase transformed to amorphous for 6-N-TiO2. The crystallite size reduced 
from 14.16 to 9.76 nm upon increasing urea concentration. The band-gap energy of N-TiO2 also decreased from 3.25 to 
2.95 eV. Furthermore, the photocatalytic experiment was examined for the degradation of colorless and colored pollutants, 
such as salicylic acid (SA), methyl blue (MB), and rhodamine B (RhB). The results showed the photocatalytic activity of 
2-N-TiO2 exhibited an optimum efficiency compared to the 4-N-TiO2 and 6-N-TiO2, for photocatalytic degradation of SA 
(k = 0.0265 min−1), MB (k = 0.0180 min−1) and RhB (k = 0.1071 min−1), under visible light irradiation. Therefore, the results 
suggest that crystallite size, urea (as an N dopant) concentration, and organic model pollutants were critical parameters for 
the photocatalytic activity of N-TiO2 under visible irradiation.

Introduction

The growing number of ecologically hazardous substances 
requires the development of innovative processes that can be 
successfully applied to an extensive range of pollutants. This 
condition can be satisfied by heterogeneous photocatalysis 
because it can produce reactive oxygen species (ROS) to 
decompose and mineralize organic pollutants, such as phar-
maceuticals, dyes, surfactants, pesticides, etc. [1, 2].

Among the heterogeneous photocatalysts, TiO2 is a pho-
toactive catalyst that is commonly employed in this applica-
tion, due to its distinctive qualities, including high chemical 
stability, low cost, non-toxicity, and strong optical activity 
[3–5]. However, several problems with TiO2 continue to 
restrict its real application. For instance, TiO2 could only 
be activated under ultraviolet (UV) irradiation and could not 

be efficiently employed under sunlight or visible light due to 
its wide band-gap energy (3.2 eV) [6, 7].

To solve the problem, nitrogen doping has shown an 
effective strategy to shift the TiO2 absorption into the vis-
ible spectrum. Nitrogen can introduce a new energy level 
between the conduction and valence band of the TiO2, lead-
ing to band-gap narrowing [8–10].

The synthesis approach plays an important role to pro-
ducing better material properties and photocatalytic activity 
[11]. Several techniques have been used to prepare N-TiO2, 
including electrophoretic depositional (EPD) [12], vapor 
deposition, hydrothermal [13], co-precipitation [14], and 
sol–gel [15].

Based on our previous study, several parameters such as 
synthesis method, nitrogen source, and calcination tempera-
ture could be crucial features to improve the N-TiO2 char-
acteristics and photocatalytic activity [16]. Porous and non-
porous were obtained by different synthesis methods which 
were affecting the specific surface area and photocatalytic 
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activity. In addition, the crystallite size could be improved by 
increasing the calcination temperature. However, the nitro-
gen content evaporated at high calcination temperatures and 
reduced the photocatalytic activity [16, 17]. Therefore, we 
were greatly interested in continuing the study by investigat-
ing the effect of nitrogen intake during the N-TiO2 prepara-
tion on the material characteristic and on the photoactivities, 
which was not reported in our previous research [16].

In 2023, Khan and his fellow workers synthesized N-TiO2 
photocatalyst using triethylamine as a nitrogen source. 
Other organic solvents such as Tween 80, acetic acid, and 
iso-propanol were used during the preparation. No trieth-
ylamine optimization (concentration) was observed in the 
report. The photocatalytic activity of the prepared N-TiO2 
showed significant degradation of 2,4-dichlorophenol under 
visible irradiation for 240 min. The degradation percentage 
of 2,4-dichlorophenol over N-TiO2 was 77.6% which was 
higher than control TiO2 with the value of 21.5% [18]. In 
addition, Mahendrasingh, et al., also reported an effect of 
nitric acid concentration (2–6 mol%) as a nitrogen source to 
prepare N-TiO2 photocatalyst. Various solvents were added 
during the synthesis process, including ethanol, 1, 3-diami-
nopropane, and ethylene glycol. The photocatalytic activity 
showed that optimum photo-decomposition of methylene 
blue over N-TiO2 was found at 2 mol% of nitrogen dopant 
with removal of 94.5% within 100 min under visible irradia-
tion [19].

In the present work, another nitrogen source, urea (as an 
N dopant) has been used to prepare a N-TiO2 photocatalyst 
via modified sol–gel under ambient temperature and pres-
sure. A single and eco-friendly solvent like ethanol was 
used in the present study to minimize the environmental 
effect during the preparation. Ethanol is a universal solvent 
in chemical synthesis and can be easily evaporated after the 
synthesis process. Therefore, the modified sol–gel method 
used in this study is promising for practical application 
because of its inexpensive, simple, and easy to operate under 
ambient temperature and pressure. In addition, the effect of 
urea intake on the material’s properties including morphol-
ogy, vibration, crystalline structure, band-gap energy, and 
surface area was examined and discussed in detail. Further-
more, different characteristics of organic pollutants from 
colorless and colored groups such as SA (drug), MB (dye), 
and RhB (dye) were utilized to examine the photocatalytic 
degradation efficiency of N-TiO2 under visible light irradia-
tion. SA is colorless and a simple phenolic compound com-
monly used as an anti-inflammatory drug in the medical and 
pharmaceutical industries [20]. However, MB and RhB are 
artificial colors widely used in several industries, such as 
dyeing in textiles, printing, paint, leathers, papers, etc. [21]. 
Therefore, the removal of these organic pollutants is still a 
great challenge and critical to control and minimize their 
environmental risks in the future.

Materials and methods

Materials

All the chemicals used in this experiment were analyti-
cal grade including titanium (IV) iso-propoxide, TTIP 
(Ti[OCH(CH3)2]4) 98% was obtained from Sigma-Aldrich. 
Urea (CH4N2O), Ethanol 70%, salicylic acid (SA, C7H6O3), 
methyl blue (MB, C37H27N3Na2O9S3), and rhodamine B 
(RhB, C28H31ClN2O3) were obtained from Merck. The dis-
tilled water used in all experiments was obtained from a 
Milli-Q water purification.

Preparation of nano‑spherical N‑TiO2

The nano-spherical N-TiO2 was prepared by using the previ-
ous method with some modifications [22]. Typically, 5 mL 
of TTIP was dissolved in 40 mL of ethanol. Then, various 
amounts (0, 2, 4, and 6 urea/TTIP mol ratio) of urea in 
10 mL of distilled water were slowly added into the TTIP 
solution and homogeneously stirred at room temperature for 
60 min. Subsequently, a white suspension was evaporated 
and dried in the oven at 80 °C for 15 h. The white precipi-
tate obtained was calcined at 450 °C for 30 min in an air 
atmosphere with a heating rate of 5 °C min−1. The prepared 
catalysts are coded as x-N-TiO2, where x (x = 0, 2, 4, 6) rep-
resents the urea/TTIP mol ratio. For comparison, pure TiO2 
was also prepared in a similar manner without urea addition. 
The obtained catalysts (Figure S1) then were subjected to 
characterization and photocatalytic experiments.

Material characterization

The as-prepared photocatalysts were characterized in a phys-
icochemical manner using various equipment. The vibration 
characteristics of the photocatalysts were measured by using 
FTIR-ATR Thermo Scientific Nicolet iS, (Fourier transform 
infrared spectroscopy-attenuated total reflection). The mor-
phology and elemental analysis were measured by Scanning 
Electron Microscope (SEM, Hitachi SU3500) and energy-
dispersive X-ray (EDX, Hitachi SU3500). The High-resolu-
tion Transmission Electron Microscope (HR-TEM) and the 
Selected Area Diffraction pattern (SAED) were measured 
using the Tecnai G2 20 S-TWIN Transmission Electron 
Microscope. The crystal structure and phase purity were 
examined by X-ray diffraction (XRD, Rigaku SmartLab). 
The optical properties were measured by UV–Vis diffuse 
reflectance spectrophotometer (DRS, Ocean Optic Inc.). The 
specific surface area was determined by nitrogen adsorp-
tion–desorption isotherms measured with a Quantachrome 
Nova 4200e instrument. The photocatalytic experiment was 
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examined under visible light irradiation using 3 Phillips 
lamps (3 × 18 W) as light sources. Then, the absorbance of 
organic pollutants was measured using an UV–Vis spectro-
photometer (Thermo Scientific Genesys 10S).

Photocatalytic experiment

The photocatalytic activity of nano-spherical N-TiO2 sam-
ples was examined through the photocatalytic degradation 
of various model organic pollutants, such as SA, MB, and 
RhB. A rectangular black box consisting of 3 visible lamps 
(3 × 18 W) was used as a lab-scale photocatalytic reactor as 
illustrated in Fig. 1.

Initially, 20  mg of N-TiO2 samples were added into 
20 mL of 10 µM model pollutant aqueous solution and 

homogeneously stirred for 30 min. The suspension was 
placed in a black box and continuously left in the dark for 
30 min for adsorption–desorption to achieve an equilibrium. 
Then the fluorescent lamps inside the black box were turned 
on to start the photocatalytic reaction. After given time inter-
vals, 2 mL of suspension was taken and separated through 
centrifugation at 400 rpm for 3 min. Then, an UV–Vis spec-
trophotometer was used to measure the absorbance of the 
actual pollutant concentration. The intermediates or end 
products could not be detected by using this measurement. 
Equation 1 was used to determine the photocatalytic degra-
dation efficiency (D(t), %).

where A0 is the initial and At is the actual absorbance of the 
pollutants [23–25].

Result and discussion

Material properties

The FTIR spectrum of the prepared photocatalysts is shown 
in Fig. 2a. Generally, the FTIR spectra of both pure TiO2 and 
N-TiO2 are similar. A broad peak from 500 to 1000 cm−1 
could be assigned to the stretching of Ti–O and Ti–O–Ti 
bonds [26]. Another broad peak around 3000 to 3500 cm−1 
was attributed to the O–H stretching [27], and O–H bending 
was indicated by a peak at 1621 cm−1 [28]. However, in the 
case of nitrogen doping, two characteristic peaks located 

(1)D(t)(%) =
A0 − A

t

A0

× 100

Model Pollutant Photocatalyst

Visible lamps 18 Watt

Stirrer Magnetic stirring bar

Fig. 1   Illustration of the black box for photocatalytic reactor. (Color 
figure online)

Fig. 2   a FTIR spectra and b 
XRD patterns of the prepared 
photocatalysts
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at 3201 and 3348 cm−1 appeared which were more intense 
as the nitrogen concentration increased. Those peaks, even 
though overlapped with the O–H band, can be assigned to 
the N–H stretching [14, 17]. Another characteristic peak for 
N-TiO2 was revealed at 1402 cm−1, designated to the N–H 
bending [29] which indicates the incorporation of N into the 
TiO2 lattice [14].

Figure 2b represents the XRD patterns of pure TiO2 and 
N-TiO2. All the photocatalysts are well-crystalline materials 
except 6-N-TiO2. All peaks of N-TiO2 are slightly broader 
than the peaks of pure TiO2 due to the substitution of the 
N atom into the TiO2 structure. The crystalline structure 
was dominated by the anatase phase for pure TiO2 and it 
remained unchanged after nitrogen doping (2-N-TiO2 and 
4-N-TiO2). However, at higher urea concentration (6-N-
TiO2), the sample seems to be transformed into an amor-
phous phase. It might be due to all N dopants were not able 
to enter the TiO2 lattice during the synthesis and some of 
the dopants remained on the surface of TiO2 or their grain 
boundaries. As a consequence, the surface defect of TiO2 
increased and then prevented the formation of TiO2 crystals 
[19].

The Scherrer equation was used to determine the crystal-
lite sizes of the photocatalysts. Pure TiO2, revealed the high-
est crystallite size of 14.16 nm. Its value gradually decreased 
with the increase of N doping as shown in Table 1. This 
suggests that N doping into the TiO2 lattice could inter-
fere with the crystal growth process of TiO2 and lower the 
crystallite size [19]. Crystal growth in amorphous material 
may be explained as a type of boundary migration from the 
nucleus surface to the outside. When N atoms come into 
touch with the boundaries, they can be separated. Then, the 
separated N atoms can inhibit the crystal grain formation. 
Therefore, the crystallite size of N-TiO2 is smaller than that 
of pure TiO2 [30].

Furthermore, optical characteristics were examined by 
using UV–vis diffuse reflectance spectroscopy. Figure 3a 
represents the diffuse reflectance spectra of the prepared 
photocatalysts. Compared to pure TiO2, the absorption 
edge moved to a larger wavelength after N doping. It can 
be assigned to the charge-transfer transition between the 
d–electrons of the dopant and the conduction band of TiO2 
[31].

Furthermore, the band-gap energies of the photocata-
lysts were calculated using the Kubelka–Munk function as 
shown in Fig. 3b. Generally, following N doping, the band-
gap energy of pure TiO2 decreased partially. This might be 
because N has substituted O in the TiO2 structure, which had 
different binding characteristics [32, 33], resulting in a nar-
rowing of the band-gap. As a consequence, the TiO2 absorp-
tion moved toward the higher wavelengths, i.e. a red shift has 
been observed [14, 34]. The current finding is completely 
consistent with earlier publications that reported band-gap 
energies of N-TiO2 samples ranging from 2.94 to 3.18 eV. 
[11, 13–16]. Table 1 shows the bandgap energies of the pre-
pared photocatalysts.

Table 1   Crystallinity properties and band-gap energy of the prepared 
photocatalysts

Catalyst Crystalline phase Crystallite size 
(nm)

Band-gap 
energy (eV)

Pure TiO2 Anatase 14.16 3.25
2-N-TiO2 Anatase 13.83 3.14
4-N-TiO2 Anatase 9.76 3.07
6-N-TiO2 Amorphous N/A 2.95

Fig. 3   a Diffuse reflectance and 
b Tauc plots constructed from 
Kubelka–Munk transformed 
diffuse reflectance spectra for 
prepared photocatalysts
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SEM morphology revealed that all prepared catalysts 
have spherical shape nanoparticles with an agglomera-
tion (Fig. 4). The average spherical diameter of pure TiO2, 
2-N-TiO2, and 4-N-TiO2 were similar with approximately 
280–400 nm. However, the diameter of 6-N-TiO2 became 
bigger with an average of 350–650 nm (Fig. 5). This obser-
vation suggests that more defects and aggregates were pos-
sibly formed when doped with a higher concentration of 
nitrogen [11]. The excessive effect of the nitrogen dopant 
of the 6-N-TiO2 can also be observed from the EDX meas-
urement. Nitrogen content was detected only in the case of 
the 6-N-TiO2 sample with an atomic percentage of 1.78% 
(Fig. 6). The N content for pure TiO2, 2-N-TiO2, and 4-N-
TiO2 could not be detected (Figure S2–S4), probably due to 
the sensitivity limit of the EDX device, indicating the non-
existent of N atom for pure TiO2, and a very small amount of 
N atom infiltrating the crystal structure of TiO2 for 2-N-TiO2 
and 4-N-TiO2.

Moreover, the spherical shape materials with an agglom-
eration of 2-N-TiO2 photocatalyst were also obtained from 
TEM measurement (Fig. 7a and b), which is in accordance 
with SEM results. In addition, the HR-TEM image reveals 
the d-spacing between the two is around 3.45 Å, which is 

corresponds to the (101) crystal plane of TiO2 (Fig. 7c) [35]. 
The result is also supported by typical concentric rings in the 
selected area diffraction pattern (SAED), which are consist-
ing crystal planes of (101), (004), (200), (211), (204), indi-
cating the presence of anatase phase in the sample (Fig. 7d). 
The SAED result was also in agreement with XRD patterns 
previously discussed in Fig. 2b [36].

Furthermore, the specific surface area of a particle is 
known to be a function of porosity and pore size distribu-
tion which is crucial in material characterization [11]. The 
nitrogen adsorption–desorption isotherms for the pure TiO2 
and N-TiO2 samples are shown in Fig. 8. The result shows 
a mesoporous structure [37, 38] and a typical type IV iso-
therm according to the Brunauer-Deming-Deming-Teller 
(BDDT) classification. According to IUPAC, the relative 
pressure (P/P0) between 0.8 and 1.0 of the hysteresis loops 
indicates the presence of mesoporous structure (2–50 nm) 
[39, 40]. This result is also confirmed by the XRD results in 
which the calculated crystallite size of the samples was less 
than 50 nm as shown in Table 1.

The hysteresis type of pure TiO2 and 2-N-TiO2 were clas-
sified into H4 hysteresis according to IUPAC, which dem-
onstrates a complex material having both micropores and 

Fig. 4   SEM images of a pure TiO2, b 2-N-TiO2, c 4-N-TiO2, and d 6-N-TiO2
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mesopores [41]. Interestingly, at a higher urea concentra-
tion (6-N-TiO2), the hysteresis loop changed into H3 type 
which indicates that the existence of a non-rigid particle 
aggregate prevents adsorption at a high relative pressure 
(P/P0) [41]. In addition, the hysteresis loop shifted to the 
left direction (lower relative pressure) resulting in a smaller 
area of hysteresis for pure TiO2, 2-N-TiO2, and 6-N-TiO2. 
This phenomenon indicates that the average pore size and 
pore volume decreased in the presence of N dopant [13]. 
Then, the BJH model of desorption nitrogen isotherm was 
used to determine the average pore size and volume as illus-
trated in Table 2. The results show that average pore size 
and volume became smaller when pure TiO2 was doped by 
nitrogen, which is in accordance with the hysteresis loop 
model of the present work.

Furthermore, the multi-point BET approach was used 
to determine the specific surface area as shown in Table 2. 
The results indicate that pure TiO2 possesses the highest 
surface area of 95.907 m2/g, followed by 2-N-TiO2 and 
6-N-TiO2 with a value of 67.841 and 63.743 m2/g, respec-
tively. A smaller surface area typically indicates that the 
particle size is larger. However, the average particle size 
between pure TiO2 and 2-N-TiO2 observed from SEM 
measurement was about the same. Furthermore, the aver-
age pore volume and diameter were smaller as the surface 
area was smaller. These indicate the presence of aggrega-
tion after nitrogen doping [19]. Suwannaruang and co-
workers prepared nano-rice N-TiO2 via the hydrothermal 
method and used various urea concentrations (1–12.5% 
N) as nitrogen sources [13]. The obtained specific surface 
area varied from 34.25 to 42.70 m2/g, which was smaller 
compared to that in the present work.

Fig. 5   Particle size distribution 
of a pure TiO2, b 2-N-TiO2, c 
4-N-TiO2, and d 6-N-TiO2
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Photocatalytic activity

To evaluate the photocatalytic activity of N-TiO2, color-
less and colored model pollutants such as SA (drug), MB, 
and RhB (model dyes) were utilized in this experiment. 
Generally, when TiO2 is irradiated by visible light, elec-
tron–hole pairs are generated on the valence and con-
duction band. These charge carriers can recombine each 
other producing heat [42, 43]. However, this electron–hole 
recombination could be suppressed by N doping to local-
ize new level energy in N 2p orbitals and then narrow the 
band-gap energy. In addition, N doping also enabled the 
photogeneration of additional electron–hole pairs, thereby 
enhancing the photocatalytic activity [8]. Furthermore, 
the excited electrons in the conduction band react with 
adsorbed oxygen to form superoxide radicals (O2

•−), and 
holes in the valence band interact with H2O or OH− to pro-
duce hydroxyl radicals (OH•). Subsequently, these ROS 
(O2

•− + OH•) attack the model pollutants for degradation 
and mineralization process [44–47]. The details of photo-
catalytic reactions are illustrated in Equation R1-R6 and 
Fig. 9.

Figure 10a exhibits the degradation percentage of color-
less SA under visible irradiation for 50 min. In general, no 
degradation was found during the irradiation of SA without 
a catalyst (photolysis). In the presence of catalyst and light, 
pure TiO2 showed photocatalytic activity during the reac-
tion, but it was lower compared to all N-TiO2 samples. Then, 
the photocatalytic activity was evaluated depending on N 

(R1)N − TiO
2
+ h� → N − TiO

2

(

h
+ + e

−
)

(R2)N − TiO
2

(
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+ + e

−
)
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2
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2

(R4)h
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Fig. 6   a–d Elemental mapping 
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concentration to select the most efficient one. The results 
showed that 2-N-TiO2 (74.1%) exhibited the optimum deg-
radation of SA compared to 4-N-TiO2 (65.5%) and 6-N-TiO2 
(49.1%).

Additionally, the pseudo-first-order kinetic reaction also 
exhibited a similar tendency in which 2-N-TiO2 performed 
a faster degradation than 4-N-TiO2 and 6-N-TiO2 (Fig. 10b). 
The reaction rate constants of 2-N-TiO2, 4-N-TiO2, and 6-N-
TiO2 were 0.0265, 0.0185, and 0.0124 min−1, respectively 
(Table 3). The decrease of photocatalytic activity at higher 
nitrogen concentrations could be explained by the fact that 
the excessive nitrogen dopants could produce larger aggre-
gated particles, cover the mesoporous structure then obstruct 
the pore and active sites, which promoted a decrease in the 
photocatalytic performance [48]. This is in accordance with 

Fig. 7   a, b TEM images c HR-
TEM, and d SAED pattern of 
2-N-TiO2 photocatalyst

Fig. 8   Nitrogen adsorption–desorption isotherms of pure TiO2 and 
N-TiO2

Table 2   Surface area and porosity parameters of pure TiO2 and 
N-TiO2 samples

Sample Multi-point BET BJH desorption

Surface area (m2/g) Average pore 
volume (cm3/g)

Average pore 
diameter (nm)

Pure TiO2 95.907 0.161 1.927
2-N-TiO2 67.841 0.106 1.703
6-N-TiO2 63.743 0.083 1.692
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the BET results where the specific surface area of 6-N-TiO2 
(63.743 m2/g) was lower than 2-N-TiO2 (67.841 m2/g). In 
addition, decreasing the crystalline structure of TiO2 after 
N doping at higher concentrations as discussed in the XRD 

analysis could be another factor to reduce the photocatalytic 
activity. Higher crystalline structure could enhance the light-
harvesting which is critical in the photocatalytic activity of 
N-TiO2 [13, 19].

Fig. 9   Schematic photocatalytic reaction for the degradation of model pollutants over N-TiO2 under visible light irradiation

Fig. 10   a Photocatalytic degra-
dation and b pseudo first-order 
kinetic reaction of SA over pure 
TiO2 and N-TiO2
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Table 3   Photocatalytic 
degradation rate constant 
(k) and R2 regression of 
different model pollutants over 
photocatalysts

Photocatalyst Degradation rate constant, k (min−1) R2

SA MB RhB SA MB RhB

Pure TiO2 0.00862 0.00678 0.03682 0.96631 0.96531 0.99790
2-N-TiO2 0.02651 0.01806 0.10711 0.99548 0.93526 0.99496
4-N-TiO2 0.01852 0.01636 0.08408 0.97575 0.97243 0.99469
6-N-TiO2 0.01243 0.01299 0.01858 0.97826 0.92398 0.9941
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Furthermore, the colored pollutants such as MB and RhB 
were used to evaluate the photocatalytic activity of prepared 
catalysts. Figure 11a shows the photocatalytic degradation 
of MB over pure TiO2 and N-TiO2 under visible irradiation. 
An identical tendency with that of the SA was shown, where 
2-N-TiO2 had an optimum photocatalytic activity compared 
with other samples. According to the results, 2-N-TiO2 could 
decompose the MB sample with approximately 54.7%, fol-
lowed by 4-N-TiO2 (52.8%), 6-N-TiO2 (43.5%), and pure 
TiO2 (26.4%) for 50 min irradiation time. The reaction rate 
constant of 2-N-TiO2, 4-N-TiO2, and 6-N-TiO2 for MB deg-
radation were 0.0180, 0.0163, and 0.0129 min−1, respec-
tively (Fig. 11b and Table 3).

Figure 12a represents the photocatalytic activity of pre-
pared samples toward RhB degradation under visible irra-
diation. Similar to the cases of MB, 2-N-TiO2 showed an 
optimum RhB degradation compared to other samples. The 
degradation percentage of 2-N-TiO2, 4-N-TiO2, 6-N-TiO2, 
and pure TiO2 after 22 min irradiation were 90.4, 84.8, 33.0, 

and 54.7%, respectively. The degradation rate constants of 
RhB were 0.1071, 0.0840, 0.0185, and 0.0368 min−1 over 
2-N-TiO2, 4-N-TiO2, 6-N-TiO2, and pure TiO2, respectively 
(Fig. 12b and Table 3). A different tendency was found for 
6-N-TiO2 which was lower than pure TiO2. It might be due 
to a low crystallite size of 6-N-TiO2 and affecting to adsorp-
tion process of RhB and then photocatalytic activity [19].

General photo-degradation pathways of RhB were 
reported by Zhang and fellow workers [49]. The reactive 
oxygen species, ROS (O2

•− + OH•) generated in the photo-
catalytic reaction played a major role in the degradation of 
RhB. The initial process was the formation of the N-deethyl-
ated of RhB. After N-deethylation, the pathways were more 
complex by ring-opening resulting in the formation of small 
molecules [49].

Subsequently, among the three different organic model 
pollutants, RhB performed the highest degradation effi-
ciency over 2-N-TiO2, compared to SA and MB as shown in 
Fig. 13. The reaction rate constant of 2-N-TiO2 over RhB, 

Fig. 11   a Photocatalytic degra-
dation and b pseudo first-order 
kinetic reaction of MB over 
pure TiO2 and N-TiO2

Fig. 12   a Photocatalytic degra-
dation and b pseudo first-order 
kinetic reaction of RhB over 
pure TiO2 and N-TiO2
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SA, and MB were 0.1071, 0.0265, and 0.0180 min−1, respec-
tively. It could be assigned to different adsorption capacities 
of the catalysts which then affecting the photocatalytic activ-
ity [50]. Pal and co-workers compared the photocatalytic 
degradation of RhB, methylene blue, and 4-nitrophenol over 
standard Degussa P25 TiO2 [50]. The degradation efficiency 
of RhB showed the highest one compared to other pollut-
ants. The apparent reaction rate constant of RhB, methylene 
blue, and 4-nitrophenol were 0.045, 0.023, and 0.008 min−1, 
respectively. Therefore, it is noteworthy that selecting an 
appropriate organic model pollutant is also a crucial param-
eter of the photocatalytic activity of the catalyst.

Conclusion

Herein, we report the successful synthesis of N-TiO2 pho-
tocatalysts using urea as the nitrogen source and ethanol 
as a single solvent through the sol–gel method at ambient 
temperature and pressure. The concentration of urea affected 
the crystalline phase and size. The pure TiO2, 2-N-TiO2, 
and 4-N-TiO2 samples showed high purity of anatase. How-
ever, the crystalline phase transformed into amorphous at 
higher urea concentration (6-N-TiO2). In addition, the crys-
tallite size decreased when increasing urea concentration. 
The prepared N-TiO2 displayed a nano-spherical shape 
with an aggregation. The band-gap energy of N–TiO2 was 
slightly lower than pure TiO2, indicating that nitrogen dop-
ing could enhance the visible-light absorption of TiO2. The 
photocatalytic experiments under visible irradiation showed 
that 2-N-TiO2 had an optimum photocatalytic degradation 
performance compared to other samples. The photocata-
lytic degradation rate constant of RhB, SA, and MB were 

0.1071, 0.0265, and 0.0180 min−1, respectively. From this 
point of view, apart from developing an efficient, facile, and 
cost-effective synthesis route, it is also critical to select a 
proper model pollutant to obtain an optimum photocatalytic 
performance of 2-N-TiO2.
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