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Abstract
For the rapid detection of ascorbic acid (AA) and Cr(VI), three novel 2D coordination polymers (CP) with different metal 
centers [Co(L)(5-NIPA)(H2O)]·H2O (1), [Ni(L)(5-NIPA)(H2O)]·H2O (2) and [Cu(L)(5-NIPA)]·H2O (3) were synthe-
sized by the traditionally hydrothermal method (L = N,N′-bis(pyridine-3-ylmethyl)-4-(4-carboxybenzyl)oxybenzamide, 
5-NIPA = 5-nitroisophthalic acid). CPs 1 and 2 are isomorphic 2D regular (4,4)-connected networks, and CP 3 has a twisted 
2D lamellar structure. All of the above complexes present highly sensitive and selective electrocatalytic sensing performances 
for AA and Cr(VI). The detection limits of the three complexes were 0.320, 3.360 and 3.600 μM for AA, and 0.2349, 0.9928 
and 3.6054 μM for Cr(VI), respectively.

Introduction

With the rapid development of society and technology, 
while enjoying convenient life, people’s health is also under 
various threats from diet or the environment. For instance, 
ascorbic acid (AA) commonly known as vitamin C is an 
essential nutrient to increase the immunity and prevent the 
harm of free radicals to human body [1]. However, excessive 
intake of AA may also cause lithiasis and gastrointestinal 
diseases [2, 3]. Apart from dietary issues, environmental 
pollution also has a great impact on human health. For 
example, Cr2O7

2− and CrO4
2− as powerful oxidants have 

been widely used in chemical industry, resulting in a large 
amount of wastewater containing Cr. Among various valence 
states of Cr, Cr(VI) are the most toxic, which may lead to 
many serious diseases such as dermatitis, chronic ulcers and 
cancers [4, 5]. Therefore, it is crucial to find a convenient, 
rapid and efficient method for the detection of AA in body 
fluids and Cr(VI) in industrial wastewater. Different meth-
ods have been applied to detect AA and Cr(VI), such as 
spectrophotometric [6], fluorescence [7], liquid chromatog-
raphy [8] and electrochemical method [9, 10]. It has been 
reported that a fluorescent probe with rhodamine B embed-
ded in zinc metal–organic framework (Zn-MOF) has been 
invented for the detection of AA [11]. A mixed valence state 
Ce-MOF sensor was used for fluorescence detection of AA 
[12]. MOFs based on Cu2+ and Eu3+ ions were used for 
photoluminescence detection of AA [10]. A new U-shaped 
bending fiber optic sensor (U-FOS) probe was applied to 
detect Cr(VI) [13]. Novel thorium-based MOFs constructed 
with thorium cations and tetraphenylvinyl ligands for fluo-
rescence detection of Cr(VI) [14]. A Zr-MOF-based elec-
trochemical sensor for the detection of Cr(VI) was reported 
[15]. Among them, electrochemical method with the advan-
tages of fast response rate and high sensitivity exhibits great 
practical application potential.

Coordination polymers (CPs) are a class of crystalline 
materials consisting of metal ions (or metal clusters) and 
organic ligands, which have been widely used for gas adsorp-
tion and separation [16], luminescence [17], magnetism 
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[18], electrochemical sensing [19] and catalysis [20], etc. 
Especially, CPs are promising electrocatalytic sensors 
because of their unique features such as adjustable structure, 
stable framework, abundant active sites, and easy function-
alization [21]. Several Co-CPs have been reported for the 
electrochemical sensing of L-cysteine with low detection 
limits [22]. And highly selective electrochemical sensing of 
Ni-CP for dopamine has been discovered [23]. Cu-CPs have 
been used to detect H2O2, glucose and 2,4-dichlorophenol by 
the electrochemical method [24–26]. Therefore, it is highly 
expectant to achieve the rapidly electrochemical sensing of 
AA and Cr(VI) by regulating the composition and structure 
of CPs.

In this work, different metals (Co, Ni and Cu) were 
selected to construct electrochemically active CPs by 
coordinating with N,N′-bis(pyridine-3-ylmethyl)-4-(4-
carboxybenzyl)oxybenzamide (L) and 5-nitroisophthalic 
acid (5-NIPA). Three 2D complexes [Co(L)(5-NIPA)
(H2O)]·H2O (1), [Ni(L)(5-NIPA)(H2O)]·H2O (2) and [Cu(L)
(5-NIPA)]·H2O (3) were obtained by the hydrothermal 
method. Subsequently, CPs 1–3 were prepared as carbon 
paste electrodes to detect AA and Cr(VI), and highly sensi-
tive and selective sensing performances were observed.

Experimental section

Synthesis of coordination polymers (CPs 1–3)

Preparation of [Co(L)(5‑NIPA)(H2O)]·H2O (1)

A mixture of CoCl2·6H2O (0.0475 g, 0.2 mmol), L (0.045 g, 
0.1 mmol), 5-NIPA (0.021 g, 0.1 mmol), NaOH (1.5 mL, 
0.1 M), and H2O (5.5 mL) was added into a 25-mL Teflon-
lined reaction kettle and heated at 100 °C for 4 days. After 
cooling to room temperature, massive purple crystals of 1 
(22% yield based on Co) were achieved. Calculated value 
of C35H31CoN5O11: C, 55.56; H, 4.13; N, 9.26%. Found: C, 
55.38; H, 3.97; N, 9.09%. IR (KBr, cm−1): 3368 m, 2917w, 
1644 s, 1525 s, 1500 s, 1436 m, 1335 s, 1295 m, 1172 m, 
1108 w, 1036 w, 917 w, 844w, 726 w.

Preparation of [Ni(L)(5‑NIPA)(H2O)]·H2O (2)

NiCl2·6H2O (0.048 g, 0.2 mmol), L (0.045 g, 0.1 mmol), 
5-NIPA (0.021 g,0.1 mmol), NaOH (3.2 mL, 0.1 M), and 
H2O (6.8 mL) were added into a 25-mL Teflon-lined reac-
tion kettle and reacted for 3 days at 150 °C. When cooled 
to room temperature, green lump crystals of 2 were pro-
duced with a yield of 24% (based on Ni). Calculated value 

of C35H31NiN5O11: C, 55.58; H, 4.13; N, 9.26%. Found: 
C, 55.41; H, 3.95; N, 9.01%. IR (KBr, cm−1): 3376 m, 
2917w,1644 s, 1516 s, 1495 s, 1351 s, 1270 m, 1223 m, 
1172 m, 1104 m, 1036 m, 844 w, 729 m.

Preparation of [Cu(L)(5‑NIPA)]·H2O (3)

CuCl2·2H2O (0.0340 g, 0.2 mmol), L (0.045 g, 0.1 mmol), 
5-NIPA (0.021 g, 0.1 mmol), NaOH (3.6 mL, 0.1 M), and 
H2O (6.4 mL) were added into a 25-mL Teflon-lined reac-
tion kettle and heated in an oven at 120 °C for 4 days. After 
allowing to cool to room temperature, massive blue crys-
tals of 3 were obtained with a yield of 23% (based on Cu). 
Calculated value of C35H29CuN5O10: C, 56.56; H, 3.93; N, 
9.42%. Found: C, 55.39; H, 3.76; N, 9.23%. IR (KBr, cm−1): 
3368 m, 2938w, 1636 s, 1530 s, 1500 s, 1432 m, 1347 s, 
1232 m, 1176 m, 1113 w, 921 w, 836 w, 785 w, 726 w, 
696 w.

Preparation of carbon‑paste electrodes of 1–3 
(1–3CPEs)

A mixture of 15 mg of the title complex and 100 mg of 
graphite powder was placed in an agate mortar and ground 
thoroughly for about 1 h. Paraffin wax (about 1 mL) was 
then added and mixed well to obtain a paste-like mixture. 
The paste mixture was then placed in a glass tubem, and 
electrical contact was established by a polished copper rod. 
Finally, the shiny electrode surface was polished with weigh-
ing paper.

Results and discussion

Description of structural features for CPs 1–3

The single-crystal X-ray diffraction analysis shows that 
CPs 1 and 2 have the same space groups (P21/n), crystal 
systems (monoclinic), coordination environments, topol-
ogy structures and similar crystallographic parameters 
(Table 1). In 1 and 2, each metallic ion [M=Co(II) for 1 
and Ni(II) for 2] is six-coordinated by three carboxylic 
O atoms, one coordination water and two N atoms from 
the pyridyls of L to form typical octahedral coordination 
patterns (Fig. 1a and b). The Co−O distances are in the 
range of 2.040(2) Å–2.421(2) Å. The corresponding Ni−O 
distances are in the range of 2.0510(17) Å–2.2856(19) Å. 
The Co−N and Ni−N distances are from 2.066(2) Å to 
2.111(2) Å (Tables S1–S2). The bond length of the Ni-
related coordination bonds in CP 2 is slightly shorter than 
that of Co(II) in CP 1, mainly because the atomic radius of 
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Ni(II) is slightly smaller than that of Co(II). When Cu(II) 
with a smaller ionic radius is selected to combine with L 
and 5-NIPA, CP 3 with two crystallographically independ-
ent Cu(II) ions is obtained. In CP 3, Cu1 is six-coordi-
nated by four carboxylic O atoms and two N atoms from 
the pyridyls of L to form typical octahedral coordination 
pattern (Fig. 1a and b). Cu2 is four-coordinated by two 
carboxylic O atoms and two N atoms from the pyridyls 
of L to form quadrilateral coordination pattern (Fig. 1a 
and b). The Cu−O distances are in the range of 1.908(3) 
Å to 2.489(3) Å. The Cu−N distances are 1.988(4) Å and 
2.026(4) Å (Tables S3). In 1 and 2, the N atoms are in 
the cis-position of the octahedral coordination conforma-
tion, and the bond angles of N−M−N are 94.15(10)ο and 
93.47(9)ο, respectively, while the N atoms in 3 are in the 
trans-position with the N−M−N bond angles of 180ο. In 
CPs 1−3, metal ions are all extended into 1D metal-car-
boxylate chains through 5-NIPA, but 5-NIPA anions are 
on the same side of the metal-carboxylate chains in 1−2, 
and on both sides of the chain in 3 (Fig. 1c). Owing to the 
conformational flexibility of the ether group (−O−) and 

three methylene groups (−CH2−) in L, the metal ions are 
both extended into 1D helical chains through L in 1−2, 
but one wave like Cu-L chain was obtained in 3. (Fig. 1d 
and e). Finally, the metal-carboxylate chains and metal-L 
chains are extended into regular (for 1−2) and twisted (for 
3) (4,4)-connected networks by co-metallic centers. The 
above in-depth structural analysis shows that the metal 
ions have obvious guiding effect on the structures of the 
title complexes. 

Characterization of CPs 1–3

The infrared (IR) spectra of CPs 1–3 are shown in 
Fig. S1. The characteristic peaks appearing at 3376, 
3368, 3368  cm−1 for the CPs 1–3 are assigned to the 
stretching vibrations of the N–H bond from the amide 
group in L ligand [27]. The characteristic peaks of 
C–N bond in pyridine ring of L ligand are present at 
1636–1644 cm−1 [28]. The stretching vibration of nitro 
appears at 1530–1500 cm−1 [29]. The absorption peaks 
at 1200–1300 cm−1 are attributed to the antisymmetric 
stretching vibration of the ether bond in L ligand, and 
the peaks of symmetric stretching vibration appear at 
1036, 1045, 1045 cm−1 [30]. The characteristic peaks of 
–CH2– in L ligand locate at 2917, 2917 and 2938 cm−1, 
respectively [31].

The powder X-ray diffraction (PXRD) patterns of 1–3 
were measured to determine the purity of CPs 1–3 and the 
crystallinity of bulk crystals. As shown in Fig. S2, the dif-
fraction peaks of as-prepared 1–3 are basically consistent 
with the simulated ones, indicating the great phase purity 
and crystallinity of CPs 1–3. The differences in peak inten-
sity may be due to the change of preferred orientation of 
crystals [32].

The thermal stability of CPs 1–3 was characterized by 
the thermogravimetric analysis (TGA). As shown in Fig. 
S3, the weight loss before 170 °C is attributed to the loss of 
the crystallization and coordination water in CPs 1–3. The 
thermal stability can reach to about 300 °C for CP 1, 310 °C 
for CP 2 and 250 °C for CP 3, respectively, after which the 
frameworks of CPs 1–3 collapse.

Cyclic voltammograms of 1–3CPEs

Cyclic voltammetry (CV) curves of CPs 1–3 modified car-
bon paste electrodes (1–3CPEs) were measured at differ-
ent scan rates (20–500 mVs−1) in the electrolyte solution of 
0.1 M H2SO4 + 0.5 M Na2SO4 aqueous solution. As shown 
in Fig. 2 and S4, a pair of reversible redox peaks exists in 

Table 1   Crystallographic data for complexes 1–3 

a R1 = Σ||Fo| − Fc||/Σ|Fo|. bwR2 = Σ[w (Fo
2 − Fc

2)2]/Σ[w (Fo
2)2]1/2

Complexes 1 2 3

Empirical 
formula

C35H31CoN5O11 C35H31NiN5O11 C35H29CuN5O10

Fw 756.58 756.35 743.17
CCDC 2,167,798 2,167,807 2,167,801
Crystal system monoclinic monoclinic triclinic
Space group P21/n P21/n P–1

a(Å) 17.9988(12) 17.8787(7) 11.5706(11)
b(Å) 10.0281(7) 10.0681(4) 12.2156(12)
c(Å) 18.0928(12) 18.1057(7) 12.7384(11)
α(°) 90 90 108.698(2)
β(°) 95.0410(10) 95.4050(10) 100.457(2)
γ(°) 90 90 95.580(2)
V(Å3) 3253.0(4) 3244.6(2) 1653.6(3)
Z 4 4 2

Dcalc(g/cm3) 1.545 1.544 1.493
μ/mm−1 0.601 0.671 0.729
F(000) 1564.0 1560.0 766.0
Rint 0.0490 0.0354 0.0346
R1

a [I >  = 2σ 
(I)]

0.0431 0.0395 0.0625

wR2
b (all data) 0.1133 0.1369 0.1815

GOF 1.020 0.935 1.018
Δ ρmax(e·Å−3) 0.349 0.573 0.828
Δ ρmin(e·Å−3) − 0.335 − 0.338 − 0.687
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CV curves of all three carbon paste electrodes in the point 
range from 600 to − 200 mV. The average peak potentials 
E1/2 = (Epa + Epc)/2 of 1–3CPEs are 271, 240 and 250 mV, 
respectively, belonging to the redox processes of Co, Ni 
and Cu centers in CPs 1–3 [33–35]. In addition, the peak 

currents of 1–3CPEs increase as the scan rate increases and 
are approximately linearly correlated with the scan rate, 
proving that the redox process of CPs 1–3 is surface con-
trolled [36].

Fig. 1   The crystal structures of CPs 1–3. a and b The coordination environments of metal ions [M = Co(II), Ni(II) and Cu(II)] in CPs 1−3. 
c M-(5-NIPA) units. d M-L units. e Polytorsional features of amides in 1–3. f The topology structures
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Catalytic properties for AA

The electrocatalytic properties of the three complexes for 
AA were investigated owing to fast and convenient detec-
tion of electrochemical method. As shown in Fig. 3a, S5a 
and S6a, the oxidation peak current of 1–3CPEs gradually 
increased with the increase in AA concentration, and the 
corresponding reduction peak current gradually decreased. 
Compared to the 1–3CPEs, bare electrode composed of 
Cu-wire with carbon past (bare-CPE) presented low elec-
trocatalytic activity for AA sensing (Fig. S7), manifesting 
the great electrocatalytic oxidation behavior of CPs 1–3 
toward AA. In addition, the current responses of 1–3CPEs 
with continuous addition of different concentrations of AA 
solution with 30-s interval were monitored at optimal volt-
ages (Fig. 3b, S5b and S6b). It was found that the response 

current exhibited an excellent linear relationship with the 
concentration of AA (5–1000 μM) in Fig. 3c, S5c and S6c. 
According to the equation (S/N = 3), the detection limits 
(LOD) of 1–3CPEs for AA were 0.320, 3.360 and 3.600 μM, 
respectively (Table S4). The differences of 1–3CPEs in elec-
trochemical sensing capabilities may be due to the differ-
ences of morphology, roughness and defect sites on the sur-
faces of the modified electrodes, and different composition 
and structure of complexes [37–39].

The selectivity of electrochemical sensors in the real 
environment is an important indicator to evaluate their 
performances. Some of potentially interfering substances 
including glucose, sodium citrate, sodium thiosulfate and 
fructose were added to the electrochemical sensing sys-
tem of AA (Fig. 3d, S5d and S6d). The results showed 
that the response of current was weak in all cases when 
these interfering substances were added. Thus, it can be 
demonstrated that 1–3CPEs possess excellent selectivity 
for the electrochemical detection of AA.

Catalytic properties for Cr(VI)

The electrocatalytic performances of 1–3CPEs for 
Cr(VI) were also explored. The reduction peak currents 
of 1–3CPEs gradually enhanced and the corresponding 
oxidation peak currents weakened with the increase in 
Cr(VI) concentration (Fig. 4a, S8a and S9a). At the same 
condition, the low electrocatalytic sensing performance 
of bare-CPE for Cr(VI) was observed (Fig. S10), indi-
cating the excellent electrocatalytic reduction activity of 
CPs 1–3 for Cr(VI). As shown in Fig. 4b, S8b and S9b, 
1–3CPEs exhibited satisfactory current responses with 
continuous addition of different concentrations of Cr(VI) 
at optimal voltages with 30-s interval. The great linear 
relationship between current and Cr(VI) concentration 
(5–150 μM) was observed in all of 1–3CPEs (Fig. 4c, 
S8c and S9c). The detection limits of 1–3CPEs for 
Cr(VI) concentration were calculated (0.2349, 0.9928 and 
3.6054 μM, respectively), which presented the same order 
as that of AA (1 < 2 < 3) and low LOD values compared 
to reported working electrodes (Table S4). Furthermore, 
the selective sensing of 1–3CPEs for Cr(VI) vs interfer-
ing substances (Na+, Cd2+, Co2+, Ca2+ and Cu2+) was 
investigated. The unchanged current response for these 
interfering substances demonstrated the excellent elec-
trochemical detection selectivity of 1–3CPEs for Cr(VI) 
(Fig. 4d, S8d and S9d).

The stability of CPs 1–3 was demonstrated by the 
PXRD patterns of recycled electrode materials. As shown 
in Fig. S11, the X-ray diffraction peaks of recycled CPs 

Fig. 2   a CV curves of 1-CPE in the electrolyte solution of 0.1  M 
H2SO4 + 0.5 M Na2SO4 aqueous solution at different scan rates (20–
500 mV s−1). b Linearity of current versus scan rates for 1-CPE
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1–3 were consistent with the simulated ones and the low 
peak intensity was due to the low content of CPs 1–3 in 
electrode materials. These results indicated the outstand-
ing stability of CPs 1–3 in the electrochemical sensing 
process of AA and Cr(VI).

Conclusion

In summary, three 2D complexes were prepared by select-
ing different metal centers (Co, Ni and Cu) assembling with 
amide ligand L and dicarboxylic acid co-ligand 5-NIPA. 
These complexes exhibited outstanding electrochemical 
sensing properties for AA and Cr(VI) with the detection 
limits of 0.320, 3.360 and 3.600 μM for AA and 0.2349, 
0.9928 and 3.6054 μM for Cr(VI), respectively. The design 

and synthesis of these complexes provide new candidates 
for highly efficient and selective detection of AA in human 
body and Cr(VI) in environment.

Supporting materials

Supporting materials includematerials, characterization, X 
ray crystallography, andadditional tables and figures for the 
s tructures and performances of CPs 1–3 . CCDC2167798, 
2167807 and 2167801 contains the supplementary crystal-
lographic data forCPs 1–3. These data can be obtained free 
of charge viahttp://www.ccdc.cam.ac.uk/conts/retrieving.
html, or from the CambridgeCrys tallographic Data Centre, 
12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)1223 
336 033; or e mail: deposit@ccdc.cam.ac.uk.

Fig. 3   a CV curves of 1-CPE in 0.1 M H2SO4 + 0.5 M Na2SO4 elec-
trolyte solution including different concentrations of AA (scan rate 
of 60 mV  s−1). b Current response of 1-CPE with continuous addi-

tion of different concentrations of AA solution. c Calibration curve 
between current and concentration of AA measured by 1-CPE. d Cur-
rent response of 1-CPE to AA and potentially interfering substances
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