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Abstract
Three isostructural, Iron(III), Manganese(III) and Chromium complexes, with a tetradentate Schiff base ligand (H2L2) 
from o-phenylenediamine and o-vanillin having the general formulae, [M(H2L2)(C2H3O2)(H2O)], where M = Cr, Mn, Fe) 
have been prepared. The complexes were then subsequently characterized by physico-chemical and spectroscopic methods 
and further investigated for their magnetic nature. All the complexes are neutral mononuclear species and crystallize in a 
triclinic space group P-1(2). Single-crystal diffraction studies reveal that the ligand, H2L2, coordinates to the central metal 
ion in a tetradentate fashion through both the azomethine nitrogen and the deprotonated phenolic oxygen generating neutral 
complexes. One of the acetate counter anions and a water molecule is involved in the coordination, generating a distorted 
octahedral geometry in all the complexes. Temperature dependence magnetic susceptibility was measured in a squid mag-
netometer in the temperature range 300–1.8 K and reveals that all of the three complexes show antiferromagnetic behavior 
in the temperature range studied. The experimental susceptibility data fitting, by considering the intermolecular interactions, 
enabled to estimate the magnetic anisotropy D and lead to the parameters (D =  + 0.14 cm−1 and zJ =  − 0.35 cm−1) for FeIII 
and (D =  − 3.95 cm−1; E =  + 0.54 cm−1; zJ =  − 0.35 cm−1) for MnIII ions. This study is aiming and boosting to 'open up' our 
interest to focus more on mononuclear complexes with SMM character with first-row transition metals, which will be more 
interesting as far as the application side is concerned.

Introduction

Molecular magnetism became an interesting field of research 
after the discovery of impressive properties and potential 
applications of d and/or f-metal molecular magnets [1, 2]. 
Due to this, chemists, chemical engineers, physicists, and 
material scientists closely collaborate and try to design, 
synthesize, characterize and model the magnetic proper-
ties of molecule-based materials of the Schiff bases [3–6]. 
Antiferromagnetic behavior is among the most energeti-
cally preferred magnetic configuration. Antiferromagnets 
are magnetic materials with zero net magnetization, which 

is due to the ordered moments being antiparallel between 
the adjacent atomic sites, and are not affected by applied 
external magnetic fields.

For a long time, these materials were thought to be inter-
esting from the theoretical viewpoint only. But, nowadays, 
they are interested in the application viewpoint due to their 
possible use in spintronic technologies, where spin transport 
is the foundation of their functionalities [7–10] and they 
are used in information storage and manipulation [11, 12]. 
Even they can undergo antiferromagnetic switching up to 
two orders of magnitude faster than ferromagnetic switch-
ing in spintronic devices [13]. These materials are ranging 
from insulators to superconductors in their application and 
also play an important role in spintronic sensor and memory 
devices [14].

Another class of magnetic materials is single-molecule 
magnets (SMMs). These are materials that show characteris-
tic magnetic properties, such as slow relaxation at a molecular 
level. Since the magnetization is retained even in the absence 
of an applied field, SMMs can be utilized in information 
storage at the molecular level. They can also be applied in 
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spintronic devices as antiferromagnetic materials [15–17]. In 
the prior history, for this utilization, SMMs of polynuclear 
complexes possessing a high spin ground state with magnetic 
anisotropy were needed. This is because these materials can 
obtain a leading energy barrier to the reorientation of their 
magnetization [18–20]. But, due to structural complexity in 
polynuclear complexes, prediction of the magnetic anisotropy 
for enhancing the energy barrier is becoming complicated. The 
same problem was observed to study the stability in solution 
for explaining the overall magnetic property of these com-
plexes [21–24]. Due to this, the design of SMMs is still a big 
challenge concerning the fundamental understanding of the 
origin of magnetic anisotropy and dynamic relaxation. Mag-
netic anisotropy achieved by strict regulation of geometry is 
the most important factor for high-performance mononuclear 
SMMs [25], which is dependent on axial anisotropy (D), along 
with spin ground state (S) [26]. Nowadays, the studies on mag-
netic properties of mononuclear complexes are growing fast 
and striking that few of the compounds reported to date are 
mononuclear magnets in zero fields [18–20, 27]. Designing 
the ligand field, which can preserve strict axial symmetry 
around the metal ion, is one of the best approaches to increas-
ing the zero-field in d-metal mononuclear magnets. To do so, 
the design and synthesis of new ligands and the proper use 
of existing ones will remain to the fore [28]. In mononuclear 
molecular magnetism, the transition metals should be in low-
coordinate ions of + 2 and + 3 oxidation states and extremely 
Lewis acidic, so that they can readily bind nucleophiles 
(ligands) and can directly bound atoms weakly by compen-
sating for this charge [29]. The majority of mononuclear 3d 
molecular magnets are based on the half-integer spin of the 
metal ion. This is due to its ability to display slow relaxation 
of magnetization in a range of coordination environments [30]. 
For these molecules, magnetic anisotropy is widely used to 
control the mechanism for the relaxation of magnetizations.

In the past, several mononuclear Mn(II), Fe(II), Cr(III), 
and Fe(III) molecular magnets were reported [20, 29, 31–33]. 
Some of them are SMMs [18, 34–37] and others are even spin-
crossover (SCO) compounds with N2O4 coordination environ-
ments [38]. Also, octahedral pseudo-dimeric molecular mag-
nets are very common and show specific properties in their 
structural features [39].

On account of these, herein we report our investigations on 
structural and magnetic properties of three iso-structural CrIII, 
MnIII, and FeIII mononuclear complexes with a tetradentate 
Schiff base ligand having N2O4 coordination with hydrogen-
bonded dimers.

Experimental

Materials and methods

The chemicals,  o-phenylenediamine, o-vanillin, 
Mn(C2H3O2)2·4H2O, FeCl3·6H2O, and CrCl3·6H2O, were 
used from Sigma-Aldrich. Commercially available, diethyl 
ether, methanol, chloroform, hydrogen peroxide, n-hexane, 
DMSO-d6, and ethanol were purchased. All chemicals and 
solvents were used without further purification.

Preparation of the ligand and complexes

Preparation of the ligand (H2L2)

o-Phenylenediamine (OPDA) (8 mmol, 1.112 g) was dis-
solved in 10 mL MeOH and stirred for 20 min. o-Vanillin 
(8 mmol, 1.216 g) dissolved in 10 mL MeOH was added 
gradually to the above solution and stirred again for addi-
tional 20 min. Three drops of H2O2 were added to oxidize 
the aldehyde to carboxylic acid to enhance cyclization. 
The resultant mixture was left under reflux for 6 h with 
constant stirring and cooled (Fig. 1). Yellowish orange 
precipitate formed on cooling was filtered and washed 
thoroughly by diethyl ether and dried under vacuum. The 
existence of both H2L1 and H2L2 was seen by MALDI-
TOF analysis having a molecular ion peak m/z at 241.09 
(M + H) with molecular formula C14H12N2O2 for H2L1and 
377 (M + H) with the molecular formula (C22H20O4N2) 
for H2L2, respectively (Fig. S6). The mixture was further 
purified by column chromatography in silica gel (eluent 
CH2Cl2: n-hexane 100:10) leading to pure compound H2L2 
(1.427 g, 53%.) IR cm−1 (KBr) 3418(s), 1472(s), 1576(m), 
(Fig. S2) (3), 1H-NMR (DMSO-d6; 500 MHz)δ (ppm): 
13.2(d, 2H), 10.7(s, 1H), 10.2(s, 1H), 9.0 (s, 1H), 8.9(d, 
2H), 7.7(t, 3H), 6.9(d, 2H), 6.6(d, 2H), 3.3(s, 6H) (Fig. 
S1); 13C-NMR (DMSO-d6; 500 MHz) δ (ppm) 162,149, 
141, 133, 123, 119, 116, 112 (Fig. S2); MALDI-TOF spec-
trum 377 m/z (M + H), H2L2 (C22H20O4N2) (Fig. S6 and 
S7). CHN calc. (%) for (H2L2: C22H20N2O4): C, 70.21: H, 
5.3; N, 7.44. Found (%): C, 71.02; H, 5.03; N, 7.11.

NH2

NH2
+

HO
O

O

H

N

N

HO O

H

H2O2

120oC, 6h

+
N

N

OH
O

OH
O

H2L2

H2L1

MeOH

Fig. 1   The synthesis scheme of the ligand H2L2
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1.2.3 Preparation of [Mn(H2L2)(C2H3O2)(H2O)]·2CH3OH (1)

A hot methanolic solution of (10  ml) (60  °C) of 
Mn(C2H3O2)2·4H2O (0.490 g, 2 mmol) was added to a 
stirred solution of Schiff base ligand H2L2 (0.754  g, 
2 mmol) in 10 mL methanolic solution. The mixture was 
stirred under reflux for 6 h at 120 °C. The resulting solu-
tion was left overnight with constant stirring at room 
temperature. It was then filtered and left undisturbed. The 
yellow needle-like crystals those suitable for single-crys-
tal X-ray diffraction obtained by slow evaporation after 
20 days with a yield of 0.624 g, 75%) CHN calc. (%) for 
(Mn(H2L2)(C2H3O2)(H2O)·2CH3OH (1) C, 61.25, H, 4.64, 
N, 6.49, Mn, 12.76 Found (%) C, 60.22, H, 4.41, N, 6, 
Mn, 12.05, IR cm−1 (KBr) (3431, s), (2924, w), (1581, s), 
(1435, s), (1193, s), (973, m), (737, s) (Fig. S3).

2.2.2 Preparation of [Cr(H2L2)(C2H3O2)(H2O)]·2CH3OH (2)

A hot methanolic solution (60 °C) of CrCl3·6H2O (0.474 g, 
3 mmol) was added to a stirred solution of the Schiff base 
ligand H2L2 (1.131 g, 3 mmol) in 10 mL methanol in pres-
ence of sodium acetate (1.23 g, 15 mmol). The resulting 
mixture was stirred under reflux for 6 h at 140 °C. Then, 
it was kept overnight with constant stirring at room tem-
perature. It was then filtered and left undisturbed for crys-
tallization. The yellow crystal that is suitable for single-
crystal X-ray diffraction obtained after a month by slow 
evaporation with a yield (0.624 g, 57%). CHN calc. (%) for 
(Cr(H2L2)(C2H3O2)(H2O)·2CH3OH (2) C, 61.68, H, 4.67, 
N, 6.54, Cr, 12.12 Found (%) C, 60.87, H, 4.97, N, 6.02, 
Cr, 12.44, IR cm−1 (KBr); 3258(s), 2086(s), 1604(m), 
1484(s), 1459(m), 1239 (s), 742(s) (Fig. S4).

2.2.2 Preparation of [Fe(H2L2)(C2H3O2)(H2O)]·2CH3OH(3)

A hot 5 mL methanolic solution (60 °C) of FeCl3·6H2O 
(0.474 g, 3 mmol) was added to a stirred solution of the 
Schiff base ligand H2L2 (1.131 g, 3 mmol) in 10 mL meth-
anol in the presence of sodium acetate (0.82 g, 10 mmol). 
The mixture was stirred under reflux for 6 h at 140 °C. 
The resulting solution was left overnight with constant 
stirring at room temperature. It was then filtered and left 
undisturbed for crystallization. The yellow crystal suit-
able for single-crystal X-ray diffraction was obtained after 
15 days by slow evaporation with a yield of 0.624 g, 69%) 
CHN calc. (%) for (Fe(H2L2)(C2H3O2)(H2O)·2CH3OH(3) 
C, 61.11, H, 4.62, N, 6.48, Fe, 12.96, Found (%) C, 62.33, 
H, 4.41, N, 6.02, Fe, 12.01, IR cm−1 (KBr); 3428 (s), 
2922(w), 2085(s), 1604(m), 1479(s), 733(s)(Fig. S5).

Physical measurements

Infrared (FTIR) spectra for ligand and complexes were 
recorded on a Perkin Elmer 100FTIR spectrometer. 1H 
NMR and 13C-NMR spectra for a ligand were obtained 
by using a Bruker Advance II 400 MHz spectrometer in 
DMSO-d6. The mass spectrum for a ligand was collected 
on a Bruker Microflex LT MALDI-TOF–MS spectrom-
eter. The single-crystal X-ray data for complexes were 
collected on an STOE IPDS2T diffractometer equipped 
with a variable-temperature nitrogen cold stream using 
monochromatic MoK\α radiation (λ = 0.71073 Å). The 
magnetic susceptibility measurements were performed 
on crystal samples on a Quantum Design MPMS XL-7 
SQUID magnetometer between 1.8 and 300 K with poly-
crystalline samples of 22 mg, 20 mg, and 23 mg for Cr, 
Mn and Fe, respectively.

X‑ray crystallography

X-ray diffraction data of single crystals for the three com-
plexes up to a maximum of 50° in the 2θ scan mode were 
collected in single-crystal X-ray at 180 K (Table 1). Crystal 
parameters and refinement results for three compounds are 
summarized in Table 1. The structures were solved with the 
olex2.solve structure solution program. The obtained mod-
els were refined with olex2.refine, refinement package using 
Gauss–Newton minimization. In all three systems, all non-
hydrogen atoms were refined anisotropically.

SQUID magnetometer measurements

Magnetic susceptibility measurements were made on micro-
crystalline samples of the complexes 1–3 from 1.8–300 K 
using the SQUID MPMS-XL magnetometer restricted 
to the field BDC = 7 T and T = 1.8–400 K. In measuring 
DC magnetic susceptibility experiments the small field 
BDC = 0.1 T was used.

has been applied in taking the temperature dependence 
of the static magnetic susceptibility between T = 1.8–300 K. 
Analyses were performed on crushed polycrystalline sam-
ples of 20 mg, 23 mg and 22 mg for compounds 1, 2 and 3, 
respectively. These data were corrected for the underlying 
diamagnetism.
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Result and discussion

The structural description of complexes 1–3

Selected bond lengths and bond angles for the complexes 
(1–3) are presented in Table 2, Table S1, S2, S3, and S4. 
The comparative bond parameters for three complexes are 
presented in Table 3. The atom-labeled mononuclear com-
plexes 1–3 are presented in (Fig. 2). The molecular formula 
determined at 180 K, full space group descriptions and 
unit cell parameters are depicted in Table 1. In three of the 
complexes, the crystal lattice contains two slightly different 
metal centers identified as M1A and M1B, where M = MnIII, 
CrIII and FeIII (Figs. 2, S14 and S17). The structural view of 
the complexes along a and b axis is shown in Fig. S9 for 1, 
Fig. S10a and b for 2, and Fig. S14a and b for 3. The com-
plexes are composed of a deprotonated Schiff base ligand, a 
water ligand, and a deprotonated acetate ligand as well. The 

equatorial plane contains two imine nitrogen atoms, N1 and 
N2, and two phenoxido oxygen atoms, O5 and O7, from 
deprotonated Schiff base ligand H2L2.  

The axial positions are occupied by a water ligand and 
a deprotonated acetate ligand. The long Mn–O bond dis-
tances, (Mn-O1 = 2.305(2) and Mn-O2 = 2.153(3), observed 
in 1 for axial coordinating ligands are indicative of a high 
valent Mn(III) oxidation state (Tables 2 and S1 [39, 40]. 
The observed slight variation in bond distances among the 
metal centers of the dimers (M = MnIII, CrIII and FeIII), which 
is (Mn1A-N1A = 1.991 Å to Mn1B-N1B = 1.988 Å for 1, 
(Cr1A-N1A = 1.985(3) Å to Cr1B-N1B = 1.986(4) Å, for 2 
and Fe1A–N1A = 1.990(2) to Fe1B–N1B = 1.9924(18) for 
3 is indicative for the distortion of the octahedral geometry 
in two centers of three complexes.

The characteristic bond distances and bond angles for 
3 appear very similar to 1 and 2, except for the shorter 
bond distances of 2.1506(18) for Fe1A-O2A in 3, which 

Table 1   Crystal structure data for compounds 1–3 

Mn Cr Fe

Empirical formula C50H54Mn2N4O16 C50H54Cr2N4O16 C50H54Fe2N4O16

Temperature, 180 K 180 180 180
Crystal system Triclinic Triclinic Triclinic
Space group P-12) P-1(2) P-1(2)
Crystal size, mm3 0.2 × 0.1 × 0.08 0.206 × 0.122 × 0.081 0.383 × 0.103 × 0.102
a/Å a = 11.9319(6) a = 11.9388(5) a = 11.9345(4)
b/Å b = 12.0613(7) b = 12.0596(6) b = 12.0586(5)
c/Å c = 17.1576(9) c = 17.1575(8) c = 17.1582(7)
Angles/°

α = 97.056(4) α = 97.091(4) α = 97.059(3)
β = 92.766(4) β = 92.761(4) β = 92.728(3)
γ = 102.976(5) γ = 102.970(4) γ = 102.981(3)

Volume, Å3 V = 2380.59(2) V = 2381.49(20) V = 2380.72(16)
Z 2 2 2
ρcalcg/cm3 1.502 1.494 1.505
μ/mm−1 0.609 0.535 0.688
F(000) 1120.0 1116.0 1124.0
Radiation MoK\α (λ = 0.71073) MoK\α (λ = 0.71073) MoK\α (λ = 0.71073)
2Θ range for data collection/° 3.498–51.358 3.5–51.364 4.098–51.358
Index ranges − 14 ≤ h ≤ 14, − 14 ≤ k ≤ 14, 

− 20 ≤ l ≤ 20
− 14 ≤ h ≤ 14, − 14 ≤ k ≤ 14, 

− 20 ≤ l ≤ 20
− 14 ≤ h ≤ 14, − 14 ≤ k ≤ 14, 

− 20 ≤ l ≤ 20
Reflections collected 21,138 21,043 22,742
Independent reflections 8981 [Rint = 0.0783, Rsigma = 0.1055] 9025 [Rint = 0.0689, Rsigma = 0.0983] 13,155 [Rint = 0.0473, 

Rsigma = 0.0710]
Data/restraints/parameters 8981/0/668 9025/0/661 9029/0/661
Goodness-of-fit on F2 0.970 0.990 1.110
Final R indexes [I >  = 2σ (I)] R1 = 0.0523, wR2 = 0.1162 R1 = 0.0507, wR2 = 0.1162 R1 = 0.0441, wR2 = 0.1308
Final R indexes [all data] R1 = 0.0930, wR2 = 0.1417 R1 = 0.0780, wR2 = 0.1409 R1 = 0.0581, wR2 = 0.1428
Largest diff. peak/hole/e Å−3 0.52/− 0.576 0.51/− 0.57 0.43/− 0.73
CCDC number 2,050,778 2,050,777 2,050,776
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is 2.153(3)  Å for Mn1A-O2A in 1 and 2.152(3)  Å for 
Cr1A-O2A in 2. In the second hydrogen-bonded dimer, 
it is 2.1409(17) Å for Fe1B-O2B, which is 2.143(3) Å for 
Mn1B-O2B and 2.144(2) Å for Cr1B-O2B (Table 2). These 
observed similarities among the three structures can also be 
supported by the elongation of a bond distance of Mn1A-
O1A (water) = 2.305(3) Å in the Mn1A center to 2.360(3) Å 
(Mn1B-O1B (water)) in Mn1B and a bond distance of Cr1A-
O1A (water) = 2.305(3) Å in Cr1A center to 2.358(3) Å 

in Cr1B-O1B (water). These can be further supported by 
the observed compression in bond distance of 1.894(3) Å 
in Mn1A-O5A (hydroxyl) to 1.887(2)Å in Mn1B-O5B 
(hydroxyl) (Table.S1) for 1. Similarly, 1.894(3) Å in Cr1A-
O5A (hydroxyl) to 1.885(2)Å in Cr1B O5B(hydroxyl) 
(Table S2) for 2 and 1.8915(15)Å in (Fe1A-O5A (hydroxyl) 
to 1.8922(18) Å in (Fe1B-O5B (hydroxyl) for 3 (Table S3).

The average Cr–O distance of 2.305(2)Å for Cr1A–O1A 
and 2.152(3)Å for Cr1A–O2A is longer than the average 
Cr–N distance of 1.987(2)Å for Cr1A–N1A and 1.994(2)
Å for Cr1A–N2A (Table 2). This is due to the nitrophilic 
character of the Lewis acidic Cr3+unit [41, 42].

The observed slight difference in bond distance of 
1.989(3)Å (Mn1A-N2A) to 1.995(3)Å (Mn1B-N2B) and 
1.988(3)Å (Mn1A-N1A) to 1.995(3)Å (Mn1B-N1B) for 1 
shows that even though the two imines are from the same 
ligand, they are coming from different sides (from water 
and acetate). This is due to the difference in steric hin-
drance for two axial groups (less hindered oxygen from 
water ligand and more hindered oxygen from acetate 
ligand in our compounds). This scenario avoided steric 

Table 2   Selected Bond Distances (Å) and Angles (deg) for compounds 1–3

Mn1 Mn2

Mn1A–O1A 2.305(3) Mn1B–O1B 2.360(3)
Mn1A–O2A 2.153(3) Mn1B–O2B 2.143(3)
Mn1A O5A 1.894(3) Mn1B–O5B 1.887(2)
Mn1A–O7A 1.885(2) Mn1B–O7B 1.904(3)
Mn1A–N1A 1.988(3) Mn1B–N1B 1.991(4)
Mn1A–N2A 1.989(3) Mn1B–N2B 1.995(3)
O1A–Mn1A–O2A 167.55(9) O1B–Mn1B–O2B 169.90(9)
O1A–Mn1A–O5A 92.57(9) O1B–Mn1B–O5B 89.43(10)

Cr1 Cr2

Cr1A–O1A 2.305(2) Cr1B–O1B 2.358(3)
Cr1A–O2A 2.152(3) Cr1B–O2B 2.144(2)
Cr1A–O5A 1.8924(19) Cr1B–O5B 1.8880(19)
Cr1A–O7A 1.8836(19) Cr1B–O7B 1.8974(19)
Cr1A–N1A 1.987(2) Cr1B–N1B 1.992(2)
Cr1A–N2A 1.994(2) Cr1B–N2B 2.000(2)
O1A–Cr1A–O2A 167.06(7) O1B–Cr1B–O2B 170.05(7)
O1A–Cr1A–O5A 93.20(8) O1B–Cr1B–O5B 89.17(8)

Fe1 Fe2

Fe1A–O1A 2.3038(17) Fe1B–O1B 2.3626(17)
Fe1A–O2A 2.1506(18) Fe1B–O2B 2.1409(17)
Fe1A–O5A 1.8915(15) Fe1B–O5B 1.8922(18)
Fe1A–O7A 1.8882(18) Fe1B–O7B 1.9033(15)
Fe1A–N1A 1.990(2) Fe1B–N1B 1.9924(18)
Fe1A–N2A 1.9913(18) Fe1B–N2B 2.000(2)
O1A–Fe1A–O2A 166.96(6) O1B–Fe1B–O2B 169.94(6)
O1A–Fe1A–O5A 93.08(7) O1B–Fe1B–O5B 89.30(7)

Table 3   Some of the selected bond distances to comparison for com-
pounds 1–3 

Mn Cr Fe

M–N1 1.988(3) 1.987(2) 1.990(2)
M–N2 1.989(3) 1.994(2) 1.9913(18)
M–O1 2.305(3) 2.305(2) 2.3038(17)
M–O2 2.153(3) 2.152(3) 2.1506(18)
M–O5 1.894(3) 1.8924(19) 1.8915(15)
M–O7 1.885(2) 1.8836(19) 1.8882(18)



270	 Transition Metal Chemistry (2022) 47:265–274

1 3

hindrance and maintained the stability of the compounds. 
Also, a very small variation in increasing bond length from 
(Mn1A–N2A) to (Mn1B–N2B) in the range of 1.989(3) Å 
–1.995(3)Å = 0.006 Å and from 1.988(3)Å (Mn1A–N1A) 
to 1.995(3)Å (Mn1B–N2B) is observed. This is indicative 
for, even though two axial groups (water ligand oxygen 
and acetate ligand oxygen) are different on the steric bulk, 
their effect on the bond distance is insignificant and both 
bond distances are comparable. On the other hand, the pro-
nounced bond angle variation from 85.91(10)° O2A (acetate 
oxygen)-Mn1A-N2A) to 83.59(10)° (O1A(water oxygen)-
Mn1A-N2A) is due to the bulk acetate group compared to 
water, which prefers to be away from imine nitrogen and 
hydroxyl oxygen, so that to maximize the stability of the 
compound. These scenarios complete the tasks of the bonds 
to be compressed and elongated to a high extent. These all 
properties hold true for complexes 2 and 3 except with slight 
variation in bond distance and bond angle. This slight vari-
ation is due to difference in metal centers, proving the iso-
structural properties of the three complexes.

The observed H-bonding in three compounds played a 
significant role in governing the architecture of the struc-
tures giving hydrogen-bonded dimers. This was expected 
because the H-bonding and π–π stacking have an impor-
tant role in structure modification [18, 19, 39, 43–45]. The 
dominant H-bonding in the complexes is coming in between 
the coordinated H2O, non-coordinated methoxy and hydroxy 
oxygen of the o-vanillin entity and the solvent molecules. 

The longest hydrogen bonding in 1 is observed between 
the hydrogen atoms of the water molecules interacting with 
neighboring coordinated hydroxy oxygen of the ligand pre-
sent in one of the hydrogen-bonded dimers with the bond 
distances of 2.899 Å. Similarly, the shortest hydrogen bond-
ing is observed between the hydrogen atoms of the solvent 
molecule interacting with the neighboring oxygen atom of 
the coordinated acetate group which is present in the second 
dimer with a bond distance ranging from 2.88 to 2.94 Å 
(Fig. 2b).

In complex 2, the longest hydrogen bonding is observed 
between the hydrogen atoms of the water ligand interacting 
with neighboring non-coordinated methoxy oxygen of the 
ligand with the bond distances of 2.896 Å. Similarly, the 
shortest hydrogen bonding is observed between the hydro-
gen atoms of the solvent molecule interacting with the 
neighboring oxygen atom of the coordinated acetate ligand 
of the dimer with a bond distance of 2.88 Å (Fig. S13). In 
complex 3, a similar hydrogen bond formulation happened 
as complex 1, except with the longest and shortest bond 
distances of 2.898 Å and 2.88 Å, respectively (Fig. S16). 
The presence of solvent in the structure lattice did not show 
any disorder in the crystal structure, probably due to their 
coordination in crystal lattice only. As seen in 1, the short 
C–C interplanar distances of two rings of 3.646 Å observed 
in 3 reveal the presence of pronounced π–π stacking in the 
molecule (Fig. 3).

Fig. 2   a The representative crystal structures of 1, 2 and 3; b Hydrogen bonding with 50% probability (crystal structures and hydrogen bonding 
of 1 and 2 are presented in Figs. S16 and S17)
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Magnetic properties

Magnetic susceptibility measurements have been performed 
for compounds 1, 2 and 3, from 300 to 1.8 K at 0.1 T. From 
the χmT vs T curves, it has been concluded that the com-
plexes show dominant antiferromagnetic interaction in the 
temperature studied (Fig. 4).

For the FeIII complex (3), with a spin state of S = 5/2, at 
300 K, the χmT value is 4.48 cm3 K mol−1, which is less than 
the expected value of five unpaired electrons, which may 
be due to weak antiferromagnetic interaction between the 
monomeric metal centers. The χmT product decreases with 
temperature and 1.15cm3K mol−1 at 1.8 K, which indicates 
the presence of intramolecular antiferromagnetic interac-
tions between metal centers [46, 47].

Somewhat the same magnetic behavior has been observed 
for the Manganese analog, (1). At room temperature, the χmT 
value observed for MnIII is 2.99cm3K mol−1 which is close 
to the value of non-interacting high-spin d4 MnIII ion with 
four unpaired electrons of χmT = 3.0 cm3K mol−1 [17, 18]. 
As the temperature decreases, the χmT product decreases 
gradually and reaches a minimum value of 1.03 cm3K mol−1 

Fig. 3   The representative π–π stacking of aromatic groups with 
approximately parallel molecular planes in 2 (complexes 1 and 3 are 
presented in Fig. S18) 

Fig. 4   The χmT versus T plot for compounds 1, 2 and 3 between 1.8 K and 300 K
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at 1.8 K, which is indicative of intramolecular antiferromag-
netic interaction between the metal centers [48, 49].

Similarly, for chromium complex (2), χmT versus T trends 
have been investigated in the temperature range of 300–1.8 K 
at 0.1 T. The χmT value of 1.71 cm3K mol−1 at 300 K is 
less than the expected calculated value for three unpaired 
electrons of CrIII, indicating the weak antiferromagnetically 
interacting chromium centers. The χmT value remains almost 
constant until 50 K, and then, it decreases abruptly to reach a 
value of 0.93 cm3 K mol−1 at 1.8 K suggesting that a domi-
nant intramolecular antiferromagnetic interaction between 
the hydrogen-bonded dimer metal centers [27].

The experimental susceptibility data for the complexes 
were fitted simultaneously including intermolecular inter-
actions to estimate the magnetic anisotropy D and lead to 
the following parameters: for FeIII ion the CASSCF data 
(D =  + 0.14 cm−1) and the fitting including intermolecular 
interactions result in the best fit with (D =  + 0.14 cm−1 and 
zJ = − 0.35 cm−1). Similarly for the MnIII ion, the CASSCF 
data (D = − 3.95  cm−1, E =  ± 0.54  cm−1) and the fitting 
including intermolecular interactions result in the best fit 
with (D = − 3.95 cm−1; E =  ± 0.54 cm−1; zJ = − 0.35 cm−1).

Conclusion

In summing up, three isostructural complexes of Fe(III), 
Mn(III) and Cr(III) with the Schiff base ligand from o-phe-
nylenediamine and o-vanillin have been synthesized, charac-
terized, and further investigated for their magnetic behavior. 
Both the azomethine nitrogen and the hydroxyl groups in the 
deprotonated fashion are coordinated to the central metal 
in all the complexes. In addition, one of the acetate groups 
and a water molecule is also involved in coordination to 
generate a distorted octahedral geometry around the cen-
tral metal. Hydrogen-bonded dimers close packed structural 
arrangement is observable in the unit cell of all the species 
with a considerable amount of π–π interaction between the 
molecules. Magnetic behaviors of the complexes were inves-
tigated in the temperature range 300–1.8 K. All of the three 
complexes show antiferromagnetic behavior in the tempera-
ture range studied.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11243-​022-​00510-x.
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