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Abstract
This study investigates multiphase flow with non-Newtonian fluid at pore scale, using the 
Compressive Continuum Species Transfer (C-CST) method in a microchannel and 2D 
porous media, with emphasis on drainage and mass transfer between fluids through the 
Volume of Fluid (VOF) method. The object of study is the multiphase flow in oil reservoirs, 
where immiscible fluids coexist in the porous media. The use of recovery methods 
becomes relevant in scenarios of low reservoir energy or when the physical properties of 
the oil compromise the flow. The influence of petroleum rheology, especially heavy crude 
oil with non-Newtonian viscoelastic behaviour, is considered. Recovery methods, such 
as the injection of  CO2, aim to optimize the flow by modifying the rheological properties 
of the fluid. This article aims to conduct a numerical analysis using the C-CST method 
with Direct Numerical Simulation (DNS) and volume tracking techniques to capture an 
interface between fluids. The main objective is to numerically implement a non-Newtonian 
rheological model in the linear momentum conservation equation, comparing the flow 
between non-Newtonian and Newtonian fluids at pore scale, and analysing the mass 
transfer at the flow interface with this new approach.

Article Highlights

• Numerical study of drainage and mass transfer using the Giesekus model as a 
constitutive equation.

M. da C. Brito and M. S. B. de Araujo have contributed equally to this work.

 * Manoel Silvino Batalha de Araujo 
 silvino@ufpa.br

 Alínia Rodrigues dos Santos 
 santosalinia@gmail.com

 Matheus da Cunha Brito 
 matheus.brito@itec.ufpa.br

1 Institute of Exact and Natural Sciences, Federal University of Pará, Rua Augusto Correa,01, 
Belém, Pará 66075-110, Brazil

2 Institute of Technology, Federal University of Pará, Rua Augusto Correa,01, Belém, 
Pará 66075-110, Brazil

http://orcid.org/0000-0002-6825-5216
http://crossmark.crossref.org/dialog/?doi=10.1007/s11242-024-02115-7&domain=pdf


 A. R. dos Santos et al.

1 3

• Simulations made in a microchannel and a 2D complex porous medium using the finite 
volume method.

• Thin film and mass transfer coefficients change with the Deborah number.

Keywords Non-Newtonian fluid · Mass transfer · Numerical simulation · Pore scale

1 Introduction

Multiphase fluid flow is a process with many engineering applications, such as acid gas 
treatment, contaminant hydrology, and  CO2 injection for advanced oil recovery. In many 
cases, this flow occurs in porous media, where fluids are complexly distributed according 
to their physicochemical properties. The interaction between the fluids and the porous 
media can lead to the formation of thin films on the wall, trapping one of the phases due to 
capillary effects and fluid–rock interaction (O’Brien and Schwartz 2002).

In the oil industry, the oil reservoir is an example of a porous media where the flow 
of various phases occurs, including oil, other fluids, and contaminants such as  CO2 and 
 H2S. During flow, these chemical species cross the interface that separates the fluids in the 
porous media (Rosa et al. 2006; Coutelieris et al. 2006).

The rheological behaviour of the oil present in the reservoir is a determining factor 
for good productivity in the oil industry. Heavy crude oil, under normal conditions of 
temperature and pressure, presents high viscosity due to the high concentration of high 
molecular weight hydrocarbons, presenting a rheology similar to that of a viscoelastic non-
Newtonian fluid. These viscoelastic fluids exhibit a nonlinear relationship between shear 
stress and strain rate, presenting viscous and elastic behaviour at the same time, and are 
composed of complex molecules with high molecular weight (Bretas and D’Ávila 2005).

A challenge in non-Newtonian fluid rheology is to develop physically realistic 
mathematical models that predict the flow behaviour of these fluids in complex geometries. 
In the literature, the Compressive Continuous Species Transfer (C-CST) method, proposed 
by Maes and Soulaine (2018), simulates the flow of subsurface fluids, considering 
the presence of species as contaminants (CO2 and H 2 S, among others) and treating 
the conditions of mass transfer at the fluid/fluid interface through the VOF (Volume of 
Fluid) approach. However, this method uses fluids with Newtonian characteristics for the 
simulations, which can be a limiting aspect in some scenarios.

There are some studies carried out on numerical simulation of multiphase flow in 
porous media with specific applications in advanced oil recovery, aquifer contamination 
through non-aqueous liquid phases, CO2 injection, and sequestration (Tang et  al. 2016; 
Chang et al. 2017; Li et al. 2021). Some works studied the behaviour of multiphase flow, 
with mass transfer of species at the interface between fluids. At pore scale, an interesting 
study was carried out by Haroun et al. (2010), who developed a robust formulation, called 
Continuum Species Transfer (CST), to treat conditions at the fluid/fluid interface in mass 
transfer using the VOF (Volume of Fluid) approach. In Graveleau et  al. (2017), it was 
proposed to solve flow equations with species transfer between phases using the VOF-CST 
approach extending the process to flow with a moving contact line, present in the injection 
of CO2 in the subsurface. On the other hand, Yang et  al. (2017) showed that for flows 
with Péclet numbers greater than 0.5, the CST method generates numerical instabilities 
and, therefore, would not be useful for these types of flows, unless there was a mesh 
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refinement, which would increase the computational cost in the simulation. Later, Maes 
and Soulaine (2018) proposed a new approach to the CST method, called Compressive 
Continuum Species Transfer (C-CST) in which they introduced an additional compression 
term in the concentration equation, which resulted in a drastic decrease in instabilities 
numbers from the original CST method and allowed simulations with high Péclet numbers. 
However, the mathematical and numerical models proposed in the literature for multiphase 
flows address, more broadly, flows using Newtonian fluids in the simulations, but for non-
Newtonian fluids, research still does not follow this same trend.

Despite the few works present in this area dealing with flows with non-Newtonian 
fluids, those that we can find address problems of great relevance. In Favero et al. (2010), 
numerical studies were carried out using the VOF methodology for the flow of viscoelastic 
fluids with free surface, obtaining good results for the Giesekus rheological model. In 
Fernandes et al. (2017), a methodology was approached based on a modified version of the 
both-sides diffusion technique (BSD), proposed by Guénette and Fortin (1995), aiming to 
increase numerical stability and precision when dealing with complex fluid flows. Shende 
et al. (2021) carry out pore-scale studies where they developed a computational structure 
that simulates the flow of non-Newtonian fluids using the shear thickening fluid, the Meter 
model, and the Phan–Thien–Tanner viscoelastic equation in 2D and 3D heterogeneous 
porous media. Sánchez-Vargas et al. (2023) used a macroscopic model to describe the flow 
in a porous medium with generalized Newtonian fluid. Currently, in the literature, there are 
no numerical results that use the approach of the C-CST method, proposed by Maes and 
Soulaine (2018) to analyse the behaviour of non-Newtonian fluid introducing the Giesekus 
constitutive model.

The main objective of this research is to adapt the C-CST (Compressive Continuum 
Species Transfer) method to simulate flows involving non-Newtonian fluids, focusing on 
pore-scale behaviour. The study aims to numerically analyse the differences in behaviour 
between flows with Newtonian and non-Newtonian fluids, specifically in the context of 
fluid drainage and mass transfer of a chemical component at the interface. To conduct the 
simulations, the Giesekus rheological model will be used, which is suitable to represent the 
rheological properties of non-Newtonian fluids, such as oil.

This article is organized as follows. In Sect.  2, we describe the mathematical 
formulation and the numerical methods that will be used in the implementation of the 
rheological model in the solver. Then, in Sect. 3, we present the validation of the proposed 
new solver and the simulation results to show the potential of our new numerical approach 
to investigate drainage and mass transfer at the interface in a microchannel and in a 2D 
porous media.

2  Governing Equations and Numerical Method

2.1  Governing Equations

The governing equations were implemented according to GeoChemFoam approach (Maes 
and Menke 2019), which uses the Volume of Fluid (VOF) methodology (Hirt and Nicols 
1981). Therefore, the single-field velocity and pressure are solved by continuity equation

and the momentum equation,

(1)∇ ⋅ � = 0,
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where g is the gravity vector, � is the fluid density, u is the velocity field, p is the pressure, 
t is the time, f� is the surface tension force, and � represents the stress tensor. In this work, 
we use the iBSD splitting technique (Fernandes et al. 2017; Araújo et al. 2018) and rewrite 
the stress tensor as follows:

where D =
1

2

(
∇u + ∇uT

)
 is the rate of deformation tensor, �

P
 is the viscosity of the non-

Newtonian fluid at low shear rates, and �
P
 is the stress tensor, given by a constitutive 

equation.
Applying the divergence operator to Eq. (3), and using ∇ ∙∇uT = 0 , the divergence of � 

is now given by

In this work, the non-Newtonian stress is given by the Giesekus model:

where � is the relaxation time, � is a parameter of Giesekus model, depending on the fluid 
(Giesekus 1982), and 

▿

�
P
 is the upper convected derivative applied to the stress tensor:

It is worth mentioning that, although we can use any rheological model, the Giesekus 
model has the advantage of being a simple model that captures nonlinear behaviours. 
Furthermore, considering the computational implementation, in the case of � = 0 in Eq. 
(5), we recover the Newtonian form for the momentum equation (2).

The fluid mobility depends on the relaxation of stresses, represented by the relaxation 
time � (Bretas and D’Ávila 2005). The relationship between � and the time interval t in 
which the strain or stress was applied is determined by the Deborah number, De:

with the characteristic time t given by L/u, where L is a characteristic domain length, and u 
is the speed of the experiment.

In addition to the equations mentioned previously, in a multiphase system, the 
species are present in both fluid phases, and this system is described by using an 
advection–diffusion equation for the concentration Cj of a dilute species j in each phase i:

where ui is the velocity field of phase i, and Dji is the molecular diffusivity coefficient 
derived from Fick’s law (Fick 1855), as studied by Graveleau et al. (2017). Equation (8) 
is only valid while the chemical species are dilute. It is worth noting that only species j is 
miscible in both phases; however, the fluids are not miscible with each other.

(2)
�(�u)

�t
+ ∇ ∙ (�uu) = −∇p + ∇ ∙ � + �g + f� ,

(3)� = 2�
P
D + �

P
− 2�

P
D,

(4)∇ ∙ � = �
P
∇

2u + ∇ ∙ �
P
− �

P
∇ ∙∇u.

(5)�
P
+ �

▿

�
P
+ �

�

�
P

(�
P

∙ �
P
) = 2�

P
D,

(6)
▿

�
P
=

��
P

�t
+ ∇ ∙ (u�

P
) − (∇u)T ∙ �

P
− �

P

∙ ∇u.

(7)De =
�

t
=

�u

L
,

(8)
�Cji

�t
+ ∇ ∙ (uiCji) = ∇ ∙ (Dji∇Cji),
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Finally, considering that the solid is inert, meaning that it does not undergo chemical 
reactions, the boundary condition for the concentration with respect to the solid will be 
Graveleau et al. (2017)

where Φj is an additional flux CST, and ns is the normal vector to the surface of the solid.

2.2  Numerical Method

In this section, we will describe the numerical methods used for the numerical 
implementation of the case to be studied. The governing equations for a multiphase 
multicomponent transport system will be implemented using the VOF method (Hirt and 
Nicols 1981), and the concentration equation using the C-CST method presented by Maes 
and Soulaine (2018).

2.2.1  The VOF Method

In the VOF method, a volume fraction function (or indicator function) of one of the phases, 
� , is determined by the equation

where u is the velocity field shared by the two fluids in the entire computational domain, 
and ur = u1 − u2 is a relative velocity with u1 and u2 being the velocity field of fluids 1 and 
2, respectively.

The expression (10) contains a compression term, whose function is to compress the 
free surface, promoting its better sharpness and thus significantly contributing to a higher 
resolution of the Berberović et al. (2009) interface.

For numerical implementation, a modified pressure field pd is defined as Rusche (2002):

where x is the position vector. Thus, applying the gradient in the above equation, we can 
conclude that the momentum conservation equation (2) will be rewritten as follows:

In addition, the surface tension force, f� , will also have an approximation for numerical 
implementation, according to the theory developed by Brackbill et  al. (2010), who 
represented it from the gradient of the function indicator as

where � is the interfacial tension, and � is the mean curvature of the free surface, given by

(9)(D̂j∇Cj + Φj)
∙ ns = 0,

(10)
��

�t
+ ∇ ∙ (�u) + ∇ ∙

(
�(1 − �)ur

)
= 0,

(11)pd = p − �g ∙ x,

(12)
�(�u)

�t
+ ∇ ∙ (�uu) = −∇pd − g ∙ x∇� + ∇ ∙ � + f� .

(13)f� = ��∇�,

(14)� = −∇ ∙

�
∇�

‖∇�‖

�
.
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2.2.2  The C‑CST Method

To use the VOF formulation, the physical properties must be weighted based on the 
distribution of the volume fraction function. As a result, for concentration, a global variable is 
introduced from this weighting, given by

where Cj,1 and Cj,2 are the concentrations of a diluted species j in phases 1 and 2.
Haroun et al. (2010) proposed a formulation of the governing equation for the evolution 

of Cj based on VOF, which was later called the Continuum Species Transfer (CST) method, 
which calculates the evolution of species concentration in both phases, considering the 
interfacial effects on the flow. Thus, the equation for the overall concentration is written as 
follows:

where

In this phase, the simplification Fj = Cju is used for (17), and it can be shown by Deising 
et al. (2016) that the flux Jj can be written as follows:

with

where Φj is an additional flux (CST flux).
Thus, the equation for the global variable used in the standard CST formulation is given by 

the equation

The local mass flux ṁj (Graveleau 2016) and the total interface mass flux per interfacial 
area ΦT

j
 (Maes and Soulaine 2018) are given, respectively, by

with A12 being the interfacial area.

(15)Cj = �Cj,1 + (1 − �)Cj,2,

(16)
�Cj

�t
+ ∇ ∙ (Fj) = ∇ ∙ Jj,

(17)Fj = � Cj,1u1 + (1 − �)Cj,2u2,

(18)Jj = �
(
Dj,1∇Cj,1

)
+ (1 − �)

(
Dj,2∇Cj,2

)
.

(19)Jj = D̂j∇Cj + Φj,

(20)D̂j =
1

𝛼1

Dj,1

+
𝛼2

Dj,2

, Φj = −D̂j

1 − Hj

𝛼1 + Hj𝛼2
Cj∇𝛼1,

(21)
𝜕Cj

𝜕t
+ ∇ ∙ (Cju) = ∇ ∙ (D̂j∇Cj + Φj).

(22)ṁj = (Cj(u − w) − D̂j∇Cj − Φj)
∙ ∇𝛼1,

(23)Φ
T
j
=

∫
A12

ṁjdA

∫
A12

|∇𝛼1|dA
,
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For multiphase flow, the interface between the fluids and the solid surface forms a 
contact angle � . To establish � , apply a normal vector n� to the fluid/fluid interface on the 
solid surface, which gives us

where ns is the normal vector to the surface of the solid, and ts is the tangent vector to 
the solid. The contact angle will depend on the solid surface composition and the fluid 
properties.

In Graveleau et al. (2017), a boundary condition was developed for the concentration on 
solid walls in the case of triple contact lines (fluid/fluid/solid), in order to extend the VOF-
CST model to the global variable of concentration. This condition is given by

Although the CST method using VOF (VOF-CST) is attractive for subsurface simulations 
with a moving contact line, Yang et  al. (2017) showed that when the flow regime has 
convection dominating over diffusion near the interface, the method generates numerical 
errors. These regimes are described by the Péclet number (Pe), which is defined as follows:

with L and U being, respectively, a reference length and velocity, and Dj,w is the diffusion 
coefficient of the species in the wetting phase. This dimensionless number gives us 
the convection rate by the diffusion rate, where for Pej > 1 , the system has a dominant 
convection regime, and for Pej < 1 , the diffusion regime is dominant.

Maes and Soulaine (2018) proposed a new approach to the CST method in order to 
obtain more accurate results for a wide range of Péclet numbers, considering an additional 
compression term in the convective flow, present in the second term on the left side of 
the Equity (21). This new approach was named Compressive Continuous Species Transfer 
(C-CST), providing results with greater accuracy than the CST method for flows with high 
Péclet numbers.

The new convection flux considered was obtained directly, introducing into the 
convective flux the identities u1 = u + (1 − �)ur e u2 = u − �ur , obtaining

with Fj representing the convective flux in the method. The first term of Eq. (27) comes 
from the advective flux of the CST method, and the second part of Eq. (27) represents the 
additional term in the convective flux.

The conditions at the interface impose a continuous conservation of mass on both sides, 
as described by Graveleau (2016), where at the interface between the fluids, there is a 
continuity of mass fluxes and chemical potentials, in which these potentials are described 
by a partition relation coming from Henry’s law, stating that the concentration in the liquid 
phase is proportional to the partial pressure in the gas phase. Therefore, the boundary 
conditions at the interface will be given by

(24)n� = ns cos � + ts sin �,

(25)(D̂j∇Cj + Φj)
∙ ns = 0.

(26)Pej =
LU

Dj,w

,

(27)Fj = Cju + (Cj,1 − Cj,2)�(1 − �)ur,

(28)n12 ∙ (C1,j(u1 − w) − D1,j∇C1,j) = n12 ∙ (C2,j(u2 − w) − D2,j∇C2,j),
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where n12 is the normal to the interface, w is the velocity at the interface, and Hj is the 
partition coefficient of Henry’s law. While this condition is not satisfied, mass transfer 
between phases will occur until reaching thermodynamic equilibrium. Considering that the 
solid is inert, that is, it does not undergo chemical reactions, the boundary condition for the 
concentration in relation to the solid will be

with i representing the fluid phases of the media.
From Henry’s law (29) and global concentration (15), the convective flux can be 

rewritten as follows:

This species convection described in (31) is consistent with the transport equation (10). 
From this, the concentration equation for the C-CST method will be written as follows:

Maes and Soulaine (2018) showed that the C-CST formulation is more accurate than the 
standard CST due to the flexibility of the C-CST method in modelling problems that are 
dominated by convection and diffusion without the need to change the model or numerical 
scheme, which can be used as a problem for a wide range of Péclet numbers.

2.2.3  Numerical Procedure

The starting point for entering the non-Newtonian model is an OpenFOAM solver called 
interFoam. Its use is related to problems that have free surface flows. This solver uses 
the VOF methodology together with the numerical scheme MULES (Multidimensional 
Universal Limiter for Explicit Solution) (Marquez Damian 2013), for the solution of the 
indicator function equation (10). The interFoam is already implemented in the source code 
that we will use here, the GeoChemFoam (Maes and Menke 2019). Among the various 
solvers in this package are interTransportFoam, which Maes and Soulaine (2018) used to 
simulate the C-CST method and thus obtain results for simulations with multiphase flows 
involving mass transfer at the fluid/fluid interface. Into this solver that we will insert the 
Giesekus constitutive model.

The viscoInterTransportFoam was built based on interTransporFoam with modifications 
in the codes createFields and UEqn, in order to insert the libraries related to the Giesekus 
model. The procedure used to implement the constitutive model in the original code is 
summarized in the following steps: 

1. The constitutive model is implemented in the file CreateFields.H, declaring an 
object of type viscoelasticModel, in which the constitutive model is present, as 
done by Favero (2009). This object function is to exchange information between the 
main function and the constitutive model Giesekus function.

(29)C1,j = HjC2,j,

(30)ns ∙ ∇Ci,j = 0, with i = 1, 2,

(31)Fj = Cju +

(1 − Hj)Cj

� + Hj(1 − �)
�(1 − �)ur.

(32)
𝜕Cj

𝜕t
+ ∇ ∙ (Cju) = −∇ ∙

( (1 − Hj)Cj

𝛼 + Hj(1 − 𝛼)
𝛼(1 − 𝛼)ur

)
+ ∇ ∙ (D̂j∇Cj + Φj).
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2. Inside this object, there is a member function called divTau, defined in the file 
UEqn.H, in which the momentum conservation equation is introduced, in which the 
function visco.divTau(alpha1, U) contains all the parcels it relates the viscous 
and elastic terms of stress.

3. Finally, the final solver will be described in the file viscoInterTransportFoam.C. This file 
contains the calculation sequence according to the PISO algorithm (Pressure Implicit 
Splitting Operator).

The procedure for solving the PISO algorithm is described by the following steps: 

1. Initially, we considered the known fields at time tn as the pressure pn = p(x, tn) , the 
velocity un = u(x, tn) , the stress �n = �(x, tn) , the concentration Cn

= C(x, tn) , and the 
indicator function �n

= �(x, tn).
2. The conservation of momentum equation below is solved, 

 obtaining a field u∗.
3. With the new velocity values u∗ , the new pressure field p∗ is calculated. The pressure 

equation can be solved more than once in each step.
4. The need for pressure correction is checked. Then, the calculation of the stress tensor � 

is performed, using the constitutive equation (5).
5. If the PISO converges, the indicator function equation and the concentration equation are 

solved. Then, the calculation is finished, and new values for the fields are stored in time 
tn+1 . Thus, the calculation returns to step 1, and a new calculation starts for a new time 
step until the maximum simulation time is reached, and the calculations are finished.

In all simulations, the initial conditions for velocity, pressure, and stress are zero fields. A 
constant velocity is imposed on the inlet, and at the solid–liquid interface, the no-slip condition 
is adopted for velocity and zero gradient for pressure and stress. On the outlet, the pressure is 
zero, and for other fields, the zero gradient condition is adopted.

Inside the code of the viscoInterTransportFoam.C file, the stress calculation was added 
by calling the visco.correct() function after the pressure calculation. This function is 
responsible for solving the constitutive equation and for updating the stress values to be used 
in the momentum conservation equation. The function returns the solution of the Giesekus 
constitutive model, solving the stress equation 5.

Therefore, from this new numerical formulation, we build the solver 
viscoInterTransportFoam to solve a system with non-Newtonian fluid. Our proposed solver 
was implemented in GeoChemFoam making the changes described here. The simulations that 
we will show here were performed using a branch of OpenFOAM, foam-extend 4.0, and the 
post-processing visualized in the Paraview software.

(33)
�(�u)

�t
+ ∇ ∙ (�uu) − �0∇

2u

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
implicit

= −∇pd − g ∙ x∇� + ∇ ∙ � − �0∇ ∙ (∇u) + f�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

explicit

,
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3  Validation and Results

We will carry out a comparative numerical analysis between the drainage behaviour of 
Newtonian and non-Newtonian viscoelastic fluids in a 2D microchannel and in a 2D porous 
media with different porosities. Through this study, we will investigate the differences 
observed in the flows and the influence of using a rheological model on the transport of a 
chemical component in the interface formed between the fluid phases.

3.1  Validation

To validate the solver, we simulated the multiphase flow in a 2D microchannel of 
size 800� m × 100� m, as shown in Fig.  1, comparing the results with the original 
GeoChemFoam code for the drainage of a Newtonian fluid through air carrying a miscible 
component that diffuses through the interface between the fluids. A subdomain Ω is defined 
to analyse the results in order to avoid effects of boundary conditions in the microchannel.

3.1.1  Comparison with Analytical Solution

For a Newtonian fluid, the analytical solution of the fully developed velocity profile in a 
channel between parallel plates is given by a parabola, whose equation is Bird et al. (2007)

where L is the channel height, and ū is the average inlet velocity.
In the following experiments, the microchannel is filled with ethanol, and air 

is injected at a velocity of U = 0.4m∕s with the fixed pressure on the right side of the 
microchannel ( p = 0 ). The fluid properties are: for air �1 = 1 kb∕m3 and �1 = 18 μ Pas , and 
for ethanol �2 = 789 kg∕m3 and �2 = 1.2mPa s . The interfacial tension is � = 20mN∕m . 
The liquid phase is the wetting phase, and the microchannel contours contain contact 
angle � = 20◦ . The mesh used contains 200 × 40 cells, non-uniformly distributed so that 
�ymin = 0.6 × 10−6 m , taken adjacent to the walls.

The velocity profile is measured at the centre of the microchannel at x = 4 × 10−4 m 
and t = 5 × 10−4 s , time in which the air has not yet reached this point, and the liquid is 
already fully developed. The comparison with the analytical solution is shown in Fig. 2, 
and the excellent agreement with the analytical solution is evident, thus showing that the 
modification of the solver with the introduction of the Giesekus rheological model manages 
to reproduce the Newtonian result for this case.

Now, it will be verified if the modification of the original solver interTransportFoam, 
from the introduction of the Giesekus rheological model, resulting in the solver 

(34)u(y) =
(
−
6ū

L2

)
(y − L)y,

Fig. 1  Dimensions of the 2D microchannel in the drainage of a fluid, forming a thin-film deposition on the 
domain wall



Pore‑Scale Simulation of Interphase Multicomponent Mass…

1 3

viscoInterTransportFoam, can reproduce the results of draining a Newtonian fluid 
obtained with GeoChemFoam.

In this experiment, the gas phase carries a component A of concentration 
C = 1 kg∕m3 , and initially, the liquid phase does not contain any concentration 
of this component. The diffusivity of the component in the gas and liquid phases is 
DA,g = DA,l = 2 × 10−7 m2

∕s , and the Henry coefficient is H = 0.1.
We simulate the drainage of ethanol through air and the evolution of the A component 

through the interface formed between the fluids, as shown in Fig. 3a and b.
We can qualitatively observe, through Fig.  3a and  b, that the drainage of the 

Newtonian fluid using the two solvers for the same simulation presents the same air 
advance time inside the microchannel when draining the ethanol. In Fig.  3b, we note 
that as air is injected into the microchannel, the component diffuses into the ethanol 
close to the interface between the fluids.

In the Newtonian fluid drainage, there is the formation of stable thin films deposited 
on the walls of the microchannel. The thickness of these thin films is estimated from 
a relation, known as semi-empirical Taylor’s law, proposed by Aussilous and Quéré 
(2000), which relates the thickness of the thin film h and the radius of the microchannel 
R with the capillarity number Ca, as shown by Eq. 35.

Fig. 2  Comparison for the component ux of the velocity field in a channel between parallel plates
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The capillarity number, Ca, is given by Ca = �wU∕� , with �w being the viscosity of 
the wetting phase, in which for this simulation, Ca = 2.4 × 10−2 . For the  35, we have 
hempirical = 4.35 μm . To find the thickness of the thin film in the microchannel, we consider 
the domain Ω (1). The simulation with interTransportFoam resulted in a thin film of 
h = 4.71 μm , while viscoInterTransportFoam resulted in h = 4.70 μm , with a relative error 
of 0.21% , which shows good agreement between the viscoelastic solver and the Newtonian 
solver. In both cases, the comparison with hempirical showed a relative error of the order of 
8% . Other numerical experiments, such as a close-wall mesh refinement study, may lead 
to more accurate results, but due to the limitation of the time step required for numerical 
stability, these studies have not yet been performed.

After draining the ethanol from the microchannel, we can analyse the residual saturation, 
Sr . Figure 4 shows the residual saturation of ethanol over time. Again, we observed good 
agreement between the numerical results. In this case, interTransportFoam obtained 
saturation Sr(itf ) = 9.93% while viscoInterTransportFoam obtained Sr(vitf ) = 9.90% , 
resulting in a relative error of 0.25%.

In Fig. 5, we present a result comparison of the component concentration in each phase 
and the mass flux per interfacial area and the difference of concentrations in the subdomain 
Ω . In both cases, viscoInterTransportFoam shows excellent numerical agreement with the 
original results.

The component propagates through the air by convection and diffusion until it reaches 
the Ω region around 0.3 ms, where the component crosses the interface and accumulates 
in the thin film until thermodynamic equilibrium is satisfied with equality between the 
concentration of the component in the air and in the liquid phase. In the slope of the 

(35)
h

R
=

1.34Ca2∕3

1 + 3.35Ca2∕3
.

Fig. 3  Validation: a drainage of a Newtonian fluid in a microchannel and b evolution of the concentration 
of a component at the interface between the fluids in the microchannel
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concentration curve in Fig. 5a, we note the same component concentration variation rate 
in the phases using both solvers for the simulation. On the other hand, we can also quantify 
the component mass transfer between the fluids through the total mass flux per interfacial 
area graph and the difference in concentrations over time (Fig. 5b). We note that the two 
curves are strongly related because most models based on the use of a representative 
elemental volume (REV) for mass transfer use a non-local equilibrium formulation, which 
assumes the average flow of mass transfer across an interface fluid/fluid as a linear driving 
force (Soulaine et al. 2011). We also observed a similar behaviour between the curves in 
the simulations with both solvers. These curves can be related through a mass transfer 
coefficient, k, from a linear function given by

(36)FAf = k(HCg − Cl),

Fig. 4  Validation: residual ethanol saturation in the microchannel

Fig. 5  Validation: a component concentration in each phase and b total mass flux per interfacial area and 
concentration difference. Data measured in the subdomain Ω in the microchannel
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with FAf  being the mass flux per interfacial area, and k is the mass transfer coefficient. This 
coefficient is obtained from the graph of mass flux per interfacial area given as a function 
of concentration difference, as shown in Fig. 6.

As the concentration difference decreases, the mass transfer rate also decreases, due 
to the mass transfer reaching equilibrium after a certain simulation time ( t = 1.3m s ). A 
linear relationship between the mass flux and the difference in concentrations in the last 
simulation times is performed, and from this relationship, the mass transfer coefficient of 
the component between the phases is extracted using Eq.  36. The simulation with both 
solvers showed similar behaviour between the curves and the mass transfer coefficients 
obtained were kitf = 1.752 × 10−2 and kvitf = 1.749 × 10−2 , with relative error of 0.17%.

The same simulation is performed for various values of the diffusion coefficient in 
order to show the dependence of the mass transfer coefficient k on the Péclet number (Pe). 
Figure 7 plots the values of k for Péclet numbers ranging from 1 to 103.

We observe that the mass transfer coefficient has a linear dependence with the Péclet 
number. Comparing the values of k with both solvers shows a relative error of 0.5%.

3.2  Results

3.2.1  Numerical Analysis of the Flow in a 2D Microchannel

After performing the validation of the proposed solver comparing with the simulation 
of the original solver, we verified that the obtained results were similar, presenting low 
relative errors. From this, we will then carry out drainage simulations, now using non-
Newtonian fluids in the same domain as the previous 2D microchannel. The non-
Newtonian characteristic of the fluid is measured using the Deborah number, De (see 
Eq.  7). The variation of De was obtained with the variation of the relaxation times, � . 
So the Deborah numbers used are De = 0.1 with �De=0.1 = 2.5 × 10−3 s , De = 0.2 with 
�De=0.2 = 5 × 10−3 s , and De = 0.3 with �De=0.3 = 7.5 × 10−3s . The mobility factor for the 
fluids is: �1 = 0 and �2 = 0.15 for both non-Newtonian fluids.

Fig. 6  Validation: evolution of the total mass flux per interfacial area as a function of the concentration 
difference with linear approximation to obtain k in the microchannel
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The obtained results were the drainage of non-Newtonian fluids through the air and the 
evolution of a component A through the interface formed between the fluids in the region 
Ω of the microchannel, as shown in Figs.  8 and 9. These results are compared with the 
Newtonian fluid drainage simulation.

It is observed in Fig.  8 that as the air is being injected, the presence of stable thin 
films occurs on the microchannel walls. We note that the greater the Deborah number of 
the fluid, the greater the relaxation time, and the smaller the thickness of this thin film. 

Fig. 7  Validation: mass transfer coefficient k as a function of the Péclet number Pe in the microchannel

Fig. 8  Drainage of Newtonian and non-Newtonian fluids with different Deborah numbers in the 
microchannel
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This effect can be more clearly observed in the component concentration evolution in the 
subdomain Ω in the microchannel, as shown in Fig. 9.

The capillary number for this simulation is Ca = 2.4 × 10−2 . By Eq. (35), we have that, 
for the Newtonian fluid, hempirical = 4.35 μm . In simulations with non-Newtonian fluids, we 
find hDe=0.1 = 3.36 μm , hDe=0.2 = 1.90 μm , and hDe=0.3 = 1.14 μm . The semi-empirical 
equation 35 was acquired by Aussilous and Quéré (2000) using Newtonian fluids; however, 
the behaviour of the thin-film deposition for non-Newtonian fluids does not occur in the 
same way. As far as we know, this relation is valid for Newtonian fluids, not being found 
results that confirm its validity for non-Newtonian viscoelastic fluids.

On the other hand, in Fig. 8, we observed that in the drainage of non-Newtonian fluids, 
the injected air takes longer to drain the fluid and cross the other side of the domain. The 
slow flow is a characteristic of the material, where the non-Newtonian fluid has a longer 
relaxation time to flow, causing the fluid to perform slower molecular movements until it 
reaches its equilibrium form again.

After the fluids are drained, we can quantify the residual saturation of each non-
Newtonian fluid, as shown in Fig.  10. We noticed a reduction in the residual saturation 
of each fluid with the increase in its viscoelastic characteristic, with Sr(De=0.1) = 7.17% , 
S
r(De=0.2) = 4.19% , and S

r(De=0.3) = 2.63%.
The component concentration graph in each phase is shown in Fig. 11a together with 

the total mass flux per interfacial area and the concentration difference in the subdomain Ω 
(Fig. 11b).

In Fig. 11a, the component propagates through the air by convection and diffusion until 
it reaches the Ω region in 0.3ms . In the slope of the concentration curve, we noticed a 
variation in the component concentration decreasing for the fluids with the highest Deborah 
number, resulting in the delay of the thermodynamic equilibrium between the phases.

However, we can also quantify the mass transfer of the component between fluids. The 
total mass flux per interfacial area and the concentration difference are plotted against time 
in Fig.  11b. In the initial times, the air has not yet reached the central Ω region in the 

Fig. 9  Concentration evolution 
in time t = 0.001 s in the 
drainage of Newtonian and 
non-Newtonian fluids with 
different Deborah numbers in the 
subdomain Ω in the microchannel
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microchannel, where the concentrations in the graph are equal to zero (axis in red). When 
the air reaches the central area of the microchannel at t = 0.3ms , we observe a similar 
behaviour between the curves. An increase in concentration in the gaseous phase occurs 
until reaching a point where the mass transfer from air to liquid reaches equilibrium. 
Similar to the one seen in Sect.  3, the two curves are strongly correlated, and a mass 
transfer coefficient k can be stipulated from the linear function given by Eq.  36. We 
obtain k by the mass flux per interfacial area graph given as a function of the difference in 
concentration, as shown in Fig. 12.

Fig. 10  Evolution of fluid saturation with time in the microchannel

Fig. 11  a Component concentration in each phase and b total mass flux per interfacial area and 
concentration difference in subdomain Ω in the microchannel
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For viscoelastic non-Newtonian fluids, the component mass transfer between the fluids 
is smaller compared to the Newtonian fluid, where for the fluid with De = 0.1 , De = 0.2 , 
and De = 0.3 , we have kDe=0.1 = 1.37 × 10−2 ms , kDe=0.2 = 0.98 × 10−2 ms , and 
kDe=0.3 = 0.78 × 10−2 ms , while for the Newtonian fluid, we have kNewt = 1.74 × 10−2 ms.

A possible explanation for this decrease in the mass transfer coefficients is in relation 
to the non-Newtonian characteristics of the fluid. As we increase the Deborah number, 
the viscoelastic characteristics of the fluid also increase. This increase in viscoelasticity is 
directly related to the increase in molar mass. The increase in viscoelastic characteristics 
and molar mass of non-Newtonian fluids may be related to the entanglement of molecular 
chains. In viscoelastic systems, such as some non-Newtonian fluids, molecular chains can 
intertwine and form a tangled structure that contributes to the viscoelasticity of the fluid, 
resulting in complex flow behaviour and increased resistance to flow (Ramli et al. 2022). 
As the Deborah number increases, the molecular chains have more time to entangle, in 
which they interact with each other, making it more difficult for the contaminant mass 
transfer at the fluid/fluid interface. This occurs because the entanglement of molecular 
chains creates a network that restricts molecular diffusion and decreases the efficiency of 
mass transfer.

However, we can also show a dependence of the mass transfer coefficient k on the 
Péclet number Pe . We performed simulations with the Newtonian fluid and the non-
Newtonian fluid with De = 0.2 for different values of the diffusion coefficient, resulting 
in Péclet numbers ranging from 101 to 103 , as shown in Fig. 13. We note that k has a linear 
dependence with Pe , and for non-Newtonian fluids, mass transfer decreases its efficiency, 
as previously stated, presenting smaller values of k compared to the Newtonian fluid.

Another point of interest to be considered in the numerical analysis of non-
Newtonian fluids is the study of the behaviour of stresses resulting from the 
introduction of the rheological model in the governing equations. For flow between 
parallel plates, for example, we saw in Sect. 3 that the velocity profile for a Newtonian 
fluid is a parabola. When we introduce viscoelasticity, through the Deborah number, 

Fig. 12  Evolution of the total mass flux per interfacial area as a function of the concentration difference 
with linear approximation to obtain k in the microchannel
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the profile changes and moves away from the known parabolic profile. Figure 14 shows 
the profiles of the velocity component ux in the middle of the channel, similarly to the 
one performed in Sect. 3, but now includes the profile for different Deborah numbers.

We can observe that the increase in De provokes a decrease in the maximum value 
of the velocity in its profile. As a consequence of these changes, the shear rates at each 
point in the cross-section also change. In this specific case, the rate at each point is 
given by

By observing the profiles close to the contour, it can be seen that the increase in the 
Deborah number results in a high shear rate, leading, in principle, to a local reduction in 
viscosity, since Bretas and D’Ávila (2005)

The shear stresses, �xy , also show a similar behaviour close to the boundary. However, in 
this case, the stress decreases with the increase in the Deborah number. These results are 
shown in Figs. 15, 16, and 17.

These figures show the profile of �xy at a height y = 10−6m from the lower wall, 
in the Ω domain. We note that the stresses have higher values for fluids with lower 
Deborah numbers. After the fluid is drained, in the thin-film region, the stresses 
present a mixed behaviour, as shown in Fig. 17. Non-Newtonian fluids exhibit complex 
flow behaviour. We could infer that this behaviour influences the height of the thin 
film, which would justify the non-validity of Taylor’s semi-empirical law 35 for non-
Newtonian fluids. However, further investigations are needed for further conclusions.

(37)�̇� =
dux

dy
.

(38)𝜂(�̇�) =
𝜏xy

�̇�
.

Fig. 13  Mass transfer coefficient k as a function of the Péclet number Pe in the microchannel
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Fig. 14  Difference between velocity profiles for different Deborah numbers

Fig. 15  Shear stress �xy taken in the region Ω at y = 10−6 m, at time t = 5 × 10−4s . On the right, we see the 
position of the interface for each Deborah number
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3.2.2  Numerical Analysis of Flow in a 2D Complex Porous Media

In this simulation, we propose to investigate the phenomenon of mass transfer at pore-scale 
multiphase flow in a 2D complex porous media. The results of numerical simulations of 
the drainage efficiency of non-Newtonian fluids by water will be presented, which will be 

Fig. 16  Shear stress �xy taken in the region Ω , at y = 10−6 m, at time t = 12.6 × 10−4s . On the right, we see 
the position of the interface for each Deborah number

Fig. 17  Shear stress �xy taken in region Ω , at y = 10−6 m, at time t = 15.6 × 10−4s . On the right, we see the 
position of the interface for each Deborah number
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analysed along with the mass transfer of a component at the interface. A comparison of 
these results will be made with drainage and mass transfer using a Newtonian fluid.

The drainage of a Newtonian and non-Newtonian fluid in the domain is simulated 
through the injection of water, with it carrying a component that diffuses through the 
interface between the fluids during the flow. The fluids used were water (a Newtonian 
fluid) and three non-Newtonian fluids, characterized by different values of De . The fluid 
properties are for water �1 = 1000 kg∕m3 and �1 = 1mPa s and for the non-Newtonian 
fluids �2 = 840 kg∕m3 and �0 = 6.5mPa s . The Deborah numbers used for non-Newtonian 
fluids are De = 0.1 with �De=0.1 = 1.5 × 10−4 s and De = 0.2 with �De=0.2 = 3 × 10−4 s . The 
mobility factor for the fluids is �1 = 0 for the Newtonian fluid and �2 = 0.15 for both non-
Newtonian fluids. Water is the non-wetting phase with contact angle � = 135◦ . The porous 
media to be used is shown in Fig. 18. The mesh was generated using snappyHexMesh from 
OpenFOAM, from a rectangular region of 1mm × 0.5mm , with the computational mesh 
containing 500 × 250 cells, totalling 62,165 cells. The average pore diameter of the media 
is L = 15 μm , and the porosity is 50%.

Initially, the porous media is filled with liquid, and water is injected at a velocity 
U = 0.01m∕s , where only water carries a concentration of the component. The 
porous media has an average pore diameter of L = 10 μm . The concentration of a 
component A in water is C = 1 kg∕m3 , the diffusivity of the component in both phases is 
DA,1 = DA,2 = 10−9 m2

∕s , and the Henry coefficient H = 0.5.
We first performed the simulation with water draining a Newtonian fluid in the media, 

and then, we considered the drainage of non-Newtonian fluids varying their viscoelastic 
properties by the Deborah number, De , from the relaxation time of the fluid, � . Figure 19 
shows the results of drainage in the porous media, and Fig. 20 shows the evolution of the 
component concentration between phases.

We noticed in Fig.  19 that the non-Newtonian fluid with De = 0.2 presents greater 
resistance to being drained compared to the other fluids, in which the water manages to 
cross the media in t = 0.06 s in the drainage of the Newtonian and non-Newtonian fluid 
with De = 0.1 , while in the drainage of the fluid with De = 0.2 , the water crosses the media 
only in t = 0.07 s.

Fig. 18  Porous media geometry with 50% porosity
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After the fluids are drained, we quantify the residual saturation of each fluid, as shown in 
Fig. 21. At the end of drainage, the fluids showed residual saturation of Sr(Newt) = 21.87% , 
S
r(De=0.1 = 23.94% , and S

r(De=0.2 = 26.94% . Newtonian fluids have lower resistance to 
flow in porous media due to their constant viscosity and ability to obey Darcy’s law. These 

Fig. 19  Drainage of one Newtonian fluid and two non-Newtonian fluids with De = 0.1 and De = 0.2

Fig. 20  Evolution of the component concentration A in a Newtonian fluid and in non-Newtonian fluids with 
De = 0.1 and De = 0.2
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characteristics allow these fluids to flow smoothly, more uniform, and predictable through 
the pores, resulting in a lower resistance to flow. On the other hand, non-Newtonian fluids 
have a more complex and less predictable rheological behaviour in a porous media.

We noticed that, for the microchannel in the previous simulation, the residual 
fluid saturation in the media was decreasing to the extent to which we considered a 
non-Newtonian fluid with a longer relaxation time and, consequently, with a greater 
Deborah number. The microchannel is a well-defined structure, where the flow path 
is one-dimensional; however, the porous media presents a more complex structure, 
with heterogeneity and spatial variability in terms of pore size, pore distribution, and 
connectivity, making the flow of the fluids present different paths. In Fig. 22, it is possible 
to notice the preferential paths that the fluids take when entering the porous media through 
the streamlines. Non-Newtonian fluids, in the presence of pores and more complex 
structures in a porous media, may present variations in the strain rate in different parts 
of the media, indicating non-uniform flow and with different flow resistances. We show 
this by analysing the stress variations along the flow, taking three different regions of pore 
throats in the media (Figs. 23 and 24).

It is possible to observe in Fig. 24 the variations that the stress presents in each region of 
the pore throat taken in the porous media. We note that the stress is not uniform throughout 
the flow of non-Newtonian fluids.

However, by analysing the component concentration evolution in the media (Fig. 20), 
we can carry out a more complete analysis of a component diffusivity in the fluids through 
the graphs of the component concentration in both phases, the graph of the mass flux per 
interfacial area and the difference in concentrations (Fig. 25a and b)

It is observed in Fig. 25a that the component diffusivity in non-Newtonian fluids (red 
axis) occurs more slowly compared to the Newtonian fluid.

This is because the entanglement of molecular chains creates a network that restricts 
molecular diffusion and decreases the efficiency of mass transfer. We observed this 
effect in the simulation of drainage of non-Newtonian fluids in a microchannel; however, 
in the porous media, the non-Newtonian fluid presents a more complex behaviour due 
to the porous structure, as previously mentioned. The viscoelastic and rheological 
properties of the non-Newtonian fluid, together with the entanglement of molecules and 

Fig. 21  Evolution of fluid saturation with time in porous media
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interactions with the pore structure, can affect mass transfer, resulting in different mass 
transfer coefficients compared to Newtonian fluid. This is shown in Fig. 26 through the 
linear approximation using Eq. 36 at the last simulation times.

The Newtonian fluid shows a knewt = 3.32 × 10−5 m∕s relatively smaller than 
the mass transfer coefficient of the non-Newtonian fluid with De = 0.1 , with 
kDe=0.1 = 3.61 × 10−5 m∕s . The non-Newtonian fluid with De = 0.2 shows a 
kDe=0.2 = 3.13 × 10−5 m∕s , smaller than the other simulated fluids.

Performing a comparison of k of the Newtonian and non-Newtonian fluid with 
De = 0.2 for different values of the diffusion coefficient, we show the dependence of k 
with the Péclet number Pe (Fig. 27). A similar behaviour to the previous porous media 

Fig. 22  Preferred paths for each fluid inlet

Fig. 23  Regions of the porous media where the shear stress �xy will be measured
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is observed, in which the mass transfer coefficient assumes larger values as the Péclet 
number increases.

4  Conclusion

In this work, the properties of multiphase flow at pore scale were studied with the 
implementation of viscoelastic non-Newtonian fluid. Numerical analyses were conducted 
to investigate the flow behaviour and the mass transfer between the present phases.

It was observed that drainage of non-Newtonian fluid in a microchannel exhibited 
slowness due to longer relaxation times, resulting in higher Deborah numbers. This 

Fig. 24  Shear stress �xy taken in regions 1, 2, and 3 of the porous media of 50% porosity, close to the wall of 
each pore throat, at time t = 0.01 s
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occurs because the non-Newtonian fluid has a longer relaxation time to flow, due to 
slower molecular movements until it reaches its equilibrium. However, it was noted that, 
despite the slow flow, the residual saturation decreased for non-Newtonian fluids with 
higher Deborah numbers, which demonstrates greater efficiency in draining the fluid 
from the microchannel. On the other hand, the diffusivity of the component between the 
phases was slow in non-Newtonian fluids due to the viscoelastic characteristics of these 
fluids. The molecular chains of these fluids can intertwine, forming a tangled structure 
that restricts molecular diffusion, thus decreasing the efficiency of mass transfer.

The novelty of the proposed method proposed in this paper is the analysis of shear 
rates at each point in the domain, which demonstrated that increasing the Deborah 

Fig. 25  a Component concentration in each phase and b total mass flux per interfacial area with the 
difference in concentration in the porous media

Fig. 26  Linear approximation with the mass transfer coefficients of each fluid in the porous media
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number results in high shear rates, leading to a local reduction in viscosity. The shear 
stress graphs showed a decrease in stress values for fluids with higher Deborah numbers.

When considering the complex porous media in the simulation, two porous media 
with different porosities were analysed. The fluid drainage behaviour was different 
from the microchannel, due to the more complex structure of the porous media, with 
variations in pore size and distribution, which led the fluid to take different paths. 
These preferred paths resulted in different velocities and shear rates, showing a shear 
thinning behaviour of the non-Newtonian fluid. The component diffusivity in non-
Newtonian fluids was slower compared to Newtonian fluids, due to the rheological and 
viscoelastic properties of these fluids, along with the entanglement of molecules and 
their interactions with the pore structure.

In conclusion, this work demonstrated the possibility of carrying out simulations of 
multiphase flows with the presence of a component, taking into account the viscoelastic 
characteristics of non-Newtonian fluids by introducing the Giesekus rheological model. 
Future studies intend to adapt other models to the solver and expand its application 
for comparisons with empirical studies involving viscoelastic fluids in industrial 
applications.
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