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Abstract
A method for calculating capillary pressure functions and saturation-dependent perme-
abilities of geometries containing several length scales is presented. The method does not 
require the exact geometries of the smaller length scales. Instead, it requires the effec-
tive two-phase flow parameters. It does this by generating phase distributions that form 
static equilibria at a selected capillary pressure value, similar to pore-morphology meth-
ods. Within a porous material, the effective parameters are used to obtain the correspond-
ing phase saturation. It is shown how these phase distributions can be used in geometries 
spanning several length scales to calculate the capillary pressure function and saturation-
dependent permeabilities. The method is tested on a geometry containing a simple iso-
tropic porous material and it is applied to a complex textile stack geometry from a liquid 
composite molding process. In this geometry, three different length scales can be distin-
guished. The effective two-phase flow parameters of the textile stack are calculated by the 
proposed method, avoiding expensive simulations.
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1 Introduction

In many practical cases it is not possible to calculate the two-phase flow in a porous medium 
at pore-scale resolution, because the geometries are too large. One way to approximate the 
average behavior of a two-phase flow is to use an effective two-phase flow model. The two-
phase Darcy equations are such a model. It reads

The fluids are assumed to be incompressible and Newtonian. The system of equations was 
introduced as a phenomenological extension of Darcy’s law. Many works have attempted to 
justify these equations theoretically, see e.g., Hornung (1996) and Whitaker (1986b). This 
often resulted in more complicated equations than (1) or additional strong assumptions. 
In particular, all volume averaging approaches rely on the existence of a representative 
elementary volume (REV). The assumption is that all pore-scale dynamics have averaged 
out on the REV. In Rücker et al. (2021) experiments are shown in which pore-scale effects 
lead to fluctuations on the centimeter-scale, typically considered as Darcy-scale. This leads 
to the question of whether it makes sense to assume the existence of such an REV for 
two-phase flow. Another approach is to derive the two-phase Darcy equations based on 
energy dynamics at the pore-scale. This was recently done, at least for stationary flows, in 
McClure et al. (2022). They do not need to assume the existence of an REV.

One of the fluids in the above equations is the wetting phase, denoted by the subscript “w”, 
and the other is the nonwetting phase, denoted by the subscript “n”. Whether a fluid is in the 
wetting or nonwetting phase depends on both fluid phases and the solid phase involved. In 
Eq. (1), typically the phase velocities ud , the phase pressures pd and the phase saturations Sd 
are the unknowns of the PDE system. The phase saturation Sd ∈ [0, 1] shows how much pore 
space is occupied by phase d. �d is the density of phase d, g is gravity and �d is the viscosity 
of phase d. Further � ∈ [0, 1] is the porosity, pc(Sw) is the capillary pressure function, and 
Kd(Sd) is the saturation-dependent permeability tensor of phase d. The porosity determines 
how much space is available for fluids. The capillary pressure function indicates the relation-
ship between saturation and capillary pressure. The saturation-dependent permeability tensors 
model that a fluid is less able to pass through a porous medium if a second phase is present in 
this porous medium. Without the second phase, the saturation-dependent permeability tensor 
is equal to the absolute permeability tensor K0 , which is independent of the fluid. When the 
saturation of a fluid phase is zero, the corresponding saturation-dependent permeability tensor 
is also zero. To summarize

It is often assumed, see e.g., Muskat et al. (1937) and Honarpour and Mahmood (1988), 
that there are scalar functions krw(Sw) and krn(Sn) bounded between 0 and 1, such that

(1)

��Sd

�t
= −∇ ⋅ ud for d ∈ {w, n}

ud = −
Kd(Sd)

�d

(
∇pd − �dg

)
for d ∈ {w, n}

Sw + Sn = 1

pn − pw = pc(Sw).

(2)K
w
(1) = K

n
(1) = K0 and K

w
(0) = K

n
(0) = 0.

(3)Kw(Sw) ≈ krw(Sw) ⋅ K0 and Kn(Sn) ≈ krn(Sn) ⋅ K0.
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This decomposition assumes that the saturation dependence is similar for all tensor entries. 
This assumption is not necessarily fulfilled for anisotropic porous media, see e.g., Bear 
et al. (1987) and Keilegavlen et al. (2012). Because we deal with anisotropic porous media 
in our numerical experiments we do not assume the existence of scalar relative permeabili-
ties and stick with the saturation-dependent permeabilities Kd(Sd).

Using model (1) we can approximate a porous medium as an effective material char-
acterized by some effective parameters. For two-phase flow, these are � , pc(Sw) and 
Kd(Sd) . In the following we refer to these parameters as effective two-phase flow param-
eters or sometimes as effective parameters.

There is not a unique relation between the saturations Sw, Sn and the capillary pres-
sure or the saturation-dependent permeabilities. To account for that, hysteresis can be 
added to these functions, see e.g., Amaziane et al. (2012), Bear et al. (2011), and Kil-
lough (1976). This means that the capillary pressure and saturation-dependent perme-
abilities are dependent on the entire history of saturation values and not just on the 
current saturation value. In our examples, Sect. 4, we consider the effective parameters 
only for primary imbibition. This means that the geometry is initially completely filled 
with the nonwetting phase and then the wetting phase invades the geometry. As a conse-
quence the calculated parameters are not necessarily usable for simulations in which not 
just imbibition occurs.

In McClure et al. (2018) it is shown that the hysteresis of the capillary pressure function 
can be removed by including additional state variables. For the saturation-dependent per-
meabilities, it is not yet completely clear which state variables could be included to remove 
hysteresis, see e.g., Al-Zubaidi et al. (2023), Khorsandi et al. (2017), and Liu et al. (2017) 
for the development regarding this question.

The aim of this work is to efficiently approximate the effective parameters in complex 
geometries spanning several length scales by simulations.

As an interesting example, we consider the liquid composite molding (LCM) process, 
see Sect.  4.2. This is a manufacturing process of composite materials, see e.g., Parnas 
(2014) for further details. The aim is to simulate the infiltration process of a polymer resin 
into a textile stack. The textile stack is a complex porous geometry with anisotropic flow 
properties.

The textile stack consists of several layers of fiber mats. The fiber mats are made up of 
woven rovings and the rovings themselves are made up of many filaments. Therefore, the 
textile structure is a porous material with three clearly distinct scales:

• The filament scale, see Fig. 9a, with a pore size in the order of the filament radius is the 
microscale.

• The woven roving scale, see Figs. 8 and 9b, with a pore sizes in the order of the roving 
size, is named mesoscale.

• The complete textile stack is the macroscale.

At the mesoscale, we distinguish between resolved mesoscale geometries and effec-
tive mesoscale geometries. Resolved mesoscale geometries are mesoscale geometries 
in which all relevant pores are resolved. Resolved mesoscale geometries are of pore-
scale description. Figures 4 and 8 show resolved mesoscale geometries. In contrast, in 
effective mesoscale geometries we have large pores that are resolved and we have effec-
tive porous material. This means that the small pores are not resolved, unlike the large 
pores. Effective mesoscale geometries lie between Darcy-scale and pore-scale descrip-
tion. Figures 2, 5b and 9b show effective mesoscale geometries. We refer to geometries 
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characterizing the effective porous material in an effective mesoscale geometry as 
microscale geometries. Figures 5a and 9a show microscale geometries.

The effective parameters can also be determined through physical experiments. How-
ever, simulations are often more cost-effective and are particularly useful for applica-
tions, where it is difficult to measure the effective parameters experimentally.

We use pore-morphology methods for the simulations. Other possibilities are solv-
ing the coupled (Navier-) Stokes equations or using two-phase flow simulations on pore 
network models. These options are compared in Vogel et al. (2005) and Ahrenholz et al. 
(2008). Pore-morphology methods do not require a pore network model and require less 
memory and runtime compared to solving the coupled (Navier-) Stokes equations. How-
ever, they assume that the flow is dominated by capillary effects.

Pore-morphology methods calculate static fluid distributions in porous media. The 
first publication on pore-morphology methods is Hazlett (1995), in which a totally wet-
ting material was assumed. The method was enhanced in Hilpert and Miller (2001) 
and generalized in Schulz et  al. (2015),  and Schulz et  al. (2007) to partially wetting 
materials and multiple contact angles. In Sect. 2 the used pore-morphology method is 
explained and how it is used to calculate the effective parameters.

However, it is not possible to apply these pore-morphology methods from the litera-
ture to effective mesoscale geometries, because they require pore-scale geometries. In 
Sect. 3 a method is proposed that generalizes the idea of pore-morphology methods to 
effective mesoscale geometries. Figure 1 gives a summary of the method.

With this method it is possible to calculate the effective parameters from the small-
est to the largest length scale. By separating length scales in different geometries, it 
is possible to avoid carrying out expensive calculations on large geometries with fine 
discretizations. The presented method does not perform phase connectivity checks. 
This means that both fluid phases can appear and disappear from the geometry without 

Fig. 1  This is a summary of the procedure presented in Sect. 3. For details we refer to this section. The 
effective microscale parameters �mic, pmic

c
,Kmic

w
 and Kmic

n
 , and the effective mesoscale porosity �̃�eff  , see Eq. 

(9), are assumed to be known or calculated prior to the procedure. The effective microscale parameter can 
be calculated by the methods from the literature shown in Sect. 2
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connection to a phase reservoir. This simplification is the reason why the irreducible 
phase saturations in the computational results in Sect. 4 are always zero.

In the literature, special pore network models, so-called Dual Pore Network Models 
(DPNM), are often used to study two-phase flows in porous media with multiple length 
scales. In these, a pore network model is created that covers the effects of multiple length 
scales on the two-phase flow. Pore network models for multiscale problems can be found, 
for example, in Ruspini et al. (2021), Bultreys et al. (2015), and Jiang et al. (2013). In Rus-
pini et al. (2021), the created pore network model consists of solid-free pores and so called 
Darcy pores. These Darcy pores are filled with an effective porous material and model the 
effects of smaller length scales on the fluid flow. In contrast, the method presented in this 
work calculates the effective parameters on voxelized geometries instead on pore network 
models.

In Sect.  4 the proposed method is tested on two different examples. The method is 
implemented by so-called GeoPy macros from the GeoDict software from Math2Market. 
In both examples the capillary pressure function is close to a calculated reference solution. 
The saturation-dependent permeabilities differ somewhat more, but are also similar to the 
respective reference solution. The first example, Sect. 4.1, is an isotropic porous medium 
with a pyramidal hole.

The second example is the LCM process. Using the presented method, we calculate the 
effective two-phase flow parameters separately for the different length scales. This allows 
us to obtain the effective parameters of the textile stack, while only simulating moderately 
large voxel geometries. The calculated effective two-phase flow parameters can be used to 
simulate the infiltration process of a textile component by using for example the two-phase 
Darcy equations (1). See e.g., Michaud (2016) and Teixidó et al. (2022) for an overview of 
current research on simulation of LCM processes.

All images of geometries are created using GeoDict and all plots showing mathematical 
functions are created using matplotlib.pyplot, a Python library.

2  Calculation of Effective Parameters on Resolved Geometries

This section describes the methods for calculating the effective two-phase flow parameters 
for geometries that do not contain effective porous materials. All methods in this section 
are known from the literature. In the following we refer to such geometries as resolved 
geometries. Keeping in mind that these geometries differ from reality. This is due to the 
voxel discretization and in the case of geometries extracted from images, e.g., micro-CT 
scans, due to the image segmentation threshold. In Saxena et  al. (2019), Saxena et  al. 
(2017), and Leu et al. (2014) the influence of this on parameters such as porosity and per-
meability are analyzed.

Pore-morphology methods are used to calculate stationary phase distributions. With 
these the effective parameters are approximated. In this work the pore-morphology method 
from Hilpert and Miller (2001) is used, with the generalization given in e.g., Schulz et al. 
(2007), to calculate the approximate phase distributions when the solid material is not 
totally wetting. More precisely, for a radius r the capillary pressure pcap is calculated by the 
Young–Laplace equation,

(4)pcap =
2�cos(�)

r
.
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Then, the nonwetting phase distribution is calculated by first eroding the pore space by a 
sphere of radius r and then dilate the result by the same sphere. Between these two mor-
phological operations, connectivity checks of the nonwetting phase to a corresponding res-
ervoir can be performed, but this is not done in this work.

The calculation of capillary pressure functions pc is done as e.g., in Schulz et al. (2007), 
Schulz et al. (2015), and Silin et al. (2011). After static phase distributions are generated 
as described above, we calculate the wetting phase saturations for the phase distributions. 
A calculated saturation together with the capillary pressure computed by Equation (4) is a 
point of the capillary pressure function.

In this work, absolute permeability tensors K0 are calculated by simulating a stationary 
flow for each coordinate direction and using Darcy’s law, see e.g., Hornung (1996) and 
Whitaker (1986a), to obtain the permeability in the flow direction.

This means that for each coordinate direction, the stationary flow through the porous 
medium in that direction is calculated by solving the Stokes equations Chung et al. (2002), 
Anderson and Wendt (1995). Then the mean velocity and the pressure drop in the direction 
of flow are calculated. These values are inserted in Darcy’s law without external forces to 
calculate the permeability in the direction of the flow.

This method can be generalized to effective mesoscale geometries. The difference is that 
instead of the Stokes equations, the Stokes–Brinkman equations Brinkman (1949) are used 
to calculate the stationary flow. The Stokes–Brinkman equations have an additional term 
that is only active in an effective porous material and includes the influence of the perme-
ability of that material.

The calculation of the saturation-dependent permeabilities Kw and Kn is reduced to mul-
tiple calculations of absolute permeabilities. To do this, we select some static phase distri-
butions generated by the pore-morphology method. For each static phase distribution, we 
determine Kw by treating the nonwetting phase as solid and calculate Kw in the same way 
as for the absolute permeability tensor. This means that we treat the nonwetting phase as 
an additional solid phase, i.e., in this case the pore space is only the part of the actual pore 
space that is occupied by the wetting phase. Since we only have one flowing fluid, we can 
again use the Stokes or Stokes–Brinkman equations for the simulation. To calculate Kn , we 
do the same with reversed roles.

The saturation of a phase, together with the calculated permeability of this phase, is a 
point value of the respective saturation-dependent phase permeability. As with the capil-
lary pressure function, this is repeated for several phase distributions and then an interpo-
lant can be calculated from these points.

3  Calculation of the Effective Parameters of Effective Geometries

In this section we explain the method to calculate the effective parameters on effective mes-
oscale geometries, i.e., geometries that contain an effective porous material. This method 
generalizes the idea of pore-morphology methods to effective mesoscale geometries. In 
Fig. 1 a summary of the procedure is given.

We assume that we have the effective two-phase flow parameters �mic, pmic
c

,Kmic
w

 and 
Kmic
n

 from the effective porous material. And for the derivation of the method, we assume 
that there is a microscale geometry with volume Vmic > 0 to which the effective two-phase 
flow parameters fit. In this sense, it represents the effective porous material. In our exam-
ples, Sect. 4, we model the effective porous material by generated geometries, see Figs. 5a 
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and 9a. We simulate the required microscale effective two-phase flow parameters on these 
generated geometries using the methods from Sect. 2. But the formulas of this section can 
also be used without knowing a microscale geometry as long as the effective two-phase 
flow parameters are known.

3.1  Basic Definitions and Calculation of Porosity

The volume of the microscale geometry can be separated into the volume of the pore space 
Vmic
fl

 and the volume of nonporous materials Vmic
npr

 . It is

and the porosity of the microscale geometry is

Let Aeff  be an effective mesoscale geometry with volume Veff > 0 . We decompose it into 
the pairwise disjoint sets Ãeff

fl
 , Aeff

pr  and Aeff
npr such that

We denote Ãeff

fl
 as the mesoscale pore space, Aeff

pr  is the set of porous material whose effec-
tive two-phase flow parameters are characterized by the microscale geometry Amic , and 
A
eff
npr are nonporous materials in the effective mesoscale geometry. The pore space of the 

porous material Aeff
pr  is not included in the set Ãeff

fl
 . Let Ṽeff

fl
 , Veff

pr  and Veff
npr be the correspond-

ing volumes. Then, it is

Vmic = Vmic
fl

+ Vmic
npr

(5)�mic =
Vmic
fl

Vmic
.

Aeff = Ã
eff

fl
∪ Aeff

pr
∪ Aeff

npr
.

Fig. 2  On the left a simple example of an effective mesoscale geometry is shown. The blue circles are 
porous, the red shape is nonporous and the white space is the pore space. On the right side a section of the 
porous material is shown, which we call microscale geometry. In this the green circles are nonporous and 
the white space is the pore space. In the notation of Sect. 3 Ãeff

fl
 is the white space in the effective mesoscale 

geometry, Aeff
pr  is the blue space and Aeff

npr is the red space. Vmic
npr

 is the volume of the nonporous material in 
the microscale geometry, i.e., the green circles, and Vmic

fl
 is the volume of the microscale pore space
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In Fig. 2 there is a simple example of the defined sets and volumes.
We define

the volume of the pore space of the effective mesoscale geometry including the microscale 
pore space. Let

which is not the porosity of the effective mesoscale geometry but the volume fraction of 
the mesoscale pore space. Further, let

be the volume fraction of the porous material of the effective mesoscale geometry.
The porosity of the effective mesoscale geometry including the microscale pore space 

can be calculated as follows:

In the following we call �eff  the effective mesoscale porosity.

3.2  Calculation of Capillary Pressure Functions

To obtain the capillary pressure function of the effective mesoscale geometry, we need the 
microscale capillary pressure function pmic

c
(S).

We calculate the capillary pressure function p̃effc (S) of the effective mesoscale geom-
etry, while treating the porous material as nonporous. This function is just an intermediate 
result.

Let p̄c be a pressure value. The goal is to calculate the corresponding saturation

of the effective mesoscale geometry.
We assume that the capillary pressure is the same in the complete porous material and 

on all fluid-fluid interfaces in the mesoscale geometry. We can calculate the related satura-
tion of the porous material from the inverse capillary pressure function of the microscale. 
From the inverse of p̃effc (S) we get the associated saturation of the mesoscale pore space Ãeff

fl

Veff = Ṽ
eff

fl
+ Veff

pr
+ Veff

npr
.

(6)V
eff

fl
= Ṽ

eff

fl
+ Veff

pr
⋅ 𝜙mic,

(7)�̃�eff =
Ṽ
eff

fl

Veff
,

(8)�̃�eff
pr

=
V
eff
pr

Veff
,

(9)𝜙eff =
V
eff

fl

Veff

(6)
=

Ṽ
eff

fl
+ V

eff
pr ⋅ 𝜙mic

Veff

(7),(8)
= �̃�eff + �̃�eff

pr
⋅ 𝜙mic.

(10)S̄eff
w

=
(
peff
c

)−1
(p̄c)

(11)S̄mic
w

=
(
pmic
c

)−1
(p̄c) =

Vmic
w

Vmic
fl
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Here, Vmic
w

≤ Vmic
fl

 is the volume of the wetting phase in the pore space of the microscale 
geometry and Ṽeff

w ≤ Ṽ
eff

fl
 is the wetting phase volume in the mesoscale pore space. Fig-

ure 3a shows an exemplary static phase distribution in the mesoscale pore space.
The idea is now to calculate S̄effw  using these two saturations. This saturation is given by 

the ratio of the volume of the wetting phase to the volume of the pore space. The volume of 
the wetting phase is given by

We get for the saturation

(12)̃̄Seff
w

=
(
p̃eff
c

)−1
(p̄c) =

Ṽ
eff
w

Ṽ
eff

fl

(13)Veff
w

= Ṽeff
w

+ Veff
pr

Vmic
w

Vmic
⋅

Vmic
fl

Vmic
fl

(5),(11)
= Ṽeff

w
+ Veff

pr
𝜙micS̄mic

w
.

Fig. 3  The effective mesoscale geometry of Fig. 2 is shown. The pore space is filled with two phases that 
form a static phase distribution. The wetting phase is represented by the yellow voxels and the nonwetting 
phase by the light blue voxels. The volume of the wetting phase is Ṽeff

w  . On the right side the wetting phase 
saturation S̄mic

w
 is assigned to the porous material. This saturation corresponds to the same capillary pressure 

as the phase distribution in the mesoscale pore space. The phase distributions together with the saturation 
S̄mic
w

 of the porous material is a static phase distribution of the effective mesoscale geometry
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We can calculate an approximation to the mesoscale capillary pressure function by select-
ing some capillary pressures p̄c and using Eqs. (14) and (10). Thereafter, these points can 
be used to compute an interpolant.

3.3  Calculation of Saturation‑Dependent Permeabilities

To calculate the saturation-dependent permeability tensors on an effective mesoscale 
geometry, we need the effective parameters of the microscale and the capillary pressure 
function of the mesoscale peffc  calculated as shown in Sect. 3.2.

A pore-morphology method is used to generate partially infiltrated effective mes-
oscale geometries. Again, we do this by treating the porous material as nonporous. In 
Fig. 3a an example of such a static phase distribution is shown. These phase distribu-
tions are also generated to compute the capillary pressure function p̃effc  in Sect. 3.2. For 
all of these phase distributions we have an associated wetting phase saturation and cap-
illary pressure related by the function p̃effc .

Now, let S̄w ∈ [0, 1] be a wetting phase saturation, we can calculate the capillary pres-
sure in the effective mesoscale geometry by 

We assume that the capillary pressure in the porous material and in the mesoscale pore 
space is the same. We calculate the saturation of the porous material by 

We search the partially infiltrated effective mesoscale geometries for the geometry that has 
the smallest deviation from the capillary pressure p̄ and use it. In the porous material we 
set the wetting phase saturation S̄mic

w
 , see Fig. 3b .

Now we set Kmic
w

(S̄mic
w

) as the permeability  tensor of the porous material. Then, we 
solve the Stokes–Brinkman equations for the wetting phase to approximate the flow 
through the geometry. As in calculations on resolved geometries, see Sect. 2, we assume 
the nonwetting phase to be rigid during this simulation. We use the resulting flow to cal-
culate the saturation-dependent permeability tensor of the wetting phase Keff

w (S̄w) . This 
is done in the same way as in Sect. 2 for the permeabilities of resolved geometries.

To calculate the saturation-dependent permeability tensor of the nonwetting phase 
K

eff
n (1 − S̄w) we do the same, but we use Kmic

n
(1 − S̄

mic

w
) as the permeability of the porous 

(14)

S̄eff
w

=
V
eff
w

V
eff

fl

(13)
=

Ṽ
eff
w + V

eff
pr 𝜙

micS̄mic
w

Veff𝜙eff

=
1

𝜙eff

⎛⎜⎜⎝
Ṽ
eff
w

Veff
⋅

Ṽ
eff

fl

Ṽ
eff

fl

+
V
eff
pr

Veff
𝜙micS̄mic

w

⎞⎟⎟⎠
(7),(12),(8)

=
1

𝜙eff

�
�̃�eff ̃̄Seff

w
+ 𝜙eff

pr
𝜙micS̄mic

w

�

(12),(11)
=

1

𝜙eff

�
�̃�eff

�
p̃eff
c

�−1
(p̄c) + 𝜙eff

pr
𝜙mic

�
pmic
c

�−1
(p̄c)

�
.

p̄ = peff
c
(S̄w).

S̄mic
w

=
(
pmic
c

)−1
(p̄).
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material and the wetting phase is assumed to be rigid during the simulation. This proce-
dure is repeated for different saturations S̄w ∈ [0, 1].

4  Numerical Experiments

In this section the proposed method is tested on two different examples. In both exam-
ples we calculate the effective parameters on effective mesoscale geometries and a refer-
ence solution on a resolved mesoscale geometry and compare them.

The GeoDict software of Math2Market is used to implement the procedure 
from Sect.  3. GeoDict is also used to create the geometries and the images of those 

Fig. 4  This is the resolved mes-
oscale geometry of Sect. 4.1. The 
voxel size is 1�m

Fig. 5  The voxel size of both geometries is 1�m
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geometries. Two different flow solver implementations from Math2Market are used. The 
first is called the LIR solver, see Linden et al. (2015). Because this solver cannot solve 
the Stokes–Brinkman equations, it cannot be used for simulations on the effective mes-
oscale geometries. In this case the SIMPLE-FFT solver, see e.g., Patankar (2018) and 
Van Doormaal and Raithby (1984), is used.

In Berg et al. (2016) the calculations of the effective parameters with GeoDict are com-
pared to physical experiments with sandstone rocks. A good agreement of the parameters 
was found for drainage experiments. For imbibition experiments the deviations were larger. 
We do not perform connectivity checks in this work, so both results do not fit completely. 
It is also reported that the deviations of capillary pressure functions for saturations close 
to zero can be high. That is because the smallest pores the discrete geometry can have 
are bounded by the used voxel size. This leads by the Young–Laplace equation, (4), to an 
upper bound for the capillary pressure. But in reality there can be smaller pores.

That we do not apply connectivity checks is also the reason why the irreducible phase 
saturations are zero in the results. This can be seen in the Figs. 6, 10, 11 and 13 as the cap-
illary pressure functions are defined from wetting phase saturation zero to one.

4.1  Isotropic Porous Medium with Hole

We consider a porous medium composed of small cylindrical obstacles. The obstacles have 
a length of 25�m and a diameter of 12�m . The orientation of the obstacles is chosen uni-
formly randomly. The porosity of the porous medium is 40% and we use a voxel size of 
1�m . We created a geometry filled with this porous medium that is 600 voxels long in each 
spatial dimension. Then, we cut a hole in this medium that has the shape of an 8-sided 
pyramid. The resulting geometry can be seen in Fig. 4.

The aim is to calculate the effective parameters of this geometry. First we do this by 
applying the corresponding functions shown in Sect.  2 to the geometry. We regard the 
results from this as a reference solution. After that we perform the calculation of the effec-
tive parameters by the procedure shown in Sect. 3. Then we compare the results of both 
ways.

To use the procedure from Sect. 3, we create a microscale and an effective mesoscale 
geometry. As a microscale geometry, we use a cube that is filled with the described porous 

Table 1  This table compares the number of voxels, effective porosities and total runtimes of the imbibition 
experiments in Sect. 4.1

The effective porosity is defined in Eq. (9) and the effective porosity of the reference solution is just the 
porosity of the geometry. For the effective mesoscale geometries it is calculated by Eq. (9). The number 
of voxels in the table needs to be multiplied by 106 . Total runtime means the time required to calculate all 
effective two-phase flow parameters. There is no runtime with the LIR solver on the effective mesoscale, 
since the LIR solver cannot simulate effective mesoscale geometries. Multiscale means that the experiment 
is carried out on an effective mesoscale geometry. For this, a microscale simulation has to be carried out

Reference solution Multiscale ( 1�m) Multiscale ( 8�m)

Meso Micro Meso Micro

Effective porosity in (%) 43.7 43.67 43.76
Number of voxels (106) 216 216 8 ≈ 0.42 8
Total runtime (s) LIR 5.877 511 511
Total runtime (s) SIMPLE-FFT 35,863 23,448 1626 178 1.626
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medium. It has a length of 200 voxels in each spatial dimension and a voxel length of 
1�m , see Fig. 5a. The effective mesoscale geometry is the same as the resolved mesoscale 
geometry, but with an effective porous material instead of the resolved porous medium. We 
create an effective mesoscale geometry with a voxel size of 1�m , see Fig. 5b, and a second 
one with a voxel size of 8�m . Because the pyramidal hole is approximated less well at a 
voxel size of 8�m , we expect the result to deviate slightly more from the reference solution 
than at a voxel size of 1�m.

Table 1 lists the number of voxels, the total runtimes and the effective porosities for the 
three experiments. The porosities are very similar for all three experiments. The calculation 
of the saturation-dependent permeability tensors dominates the total runtime, since for this 

Fig. 6  The two images show the mesoscale capillary pressure functions of the imbibition experiments in 
Sect. 4.1. The black triangles mark the result of simulation of the resolved mesoscale geometry. The other 
lines show the results of simulating the effective mesoscale geometries. Both images show the same lines, 
but the right image in a semi-logarithmic representation. The mesoscale voxel size is denoted by dx

Fig. 8  This is the resolved mes-
oscale geometry of Sect. 4.2. The 
voxel size is 1�m

Fig. 7  The images show the mesoscale permeabilities of the imbibition experiments in Sect.  4.1. The 
curves starting at 0 for a wetting phase saturation of zero are the wetting phase permeabilities. The others 
are the nonwetting phase permeabilities. The black triangles mark the result of simulation of the resolved 
mesoscale geometry with the LIR solver and the blue stars mark the same but calculated with the SIMPLE-
FFT solver. The mesoscale voxel size is denoted by dx
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the Stokes or Stokes–Brinkman equations have to be solved several times. The reference 
solution is calculated with the LIR and the SIMPLE-FFT solver. The LIR solver cannot 
be applied to effective mesoscale geometries. For a fair comparison, the runtimes with the 
SIMPLE-FFT solver should be used. The effective mesoscale geometry with a voxel size 

Fig. 9  A microscale geometry (left) and an effective mesoscale geometry (right) of Sect. 4.2 are shown

Fig. 10  These images compare the imbibition capillary pressure functions and saturation-dependent perme-
abilities of ten microscale geometries of Sect. 4.2. The voxel size of the geometries is 1�m . The black dot-
ted lines show the average calculated as described in Appendix A. The other lines are the results from the 
individual microscale geometries. The permeability curves starting at zero for a saturation of zero are the 
wetting phase permeabilities. The others are the nonwetting phase permeabilities
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of 1�m has the same number of voxels as the resolved mesoscale geometry. Nevertheless, 
the runtime is lower by a small factor. The runtime for the effective mesoscale geometry 
with a voxel size of 8�m is much lower. If we add the 1626s runtime from the microscale 
calculation, the calculation is almost 20 times faster than the reference solution calculation. 
In addition, the effective microscale parameters do not need to be recalculated when the 
same porous material is used in a different effective mesoscale geometry.

The results of calculating the capillary pressure functions on the mesoscale are shown in 
Fig. 6. They are all very similar.

The diagonal entries of the saturation-dependent permeability tensors are shown in 
Fig. 7. The influence of the pyramidal hole to the permeability in the direction of the 
hole is clearly visible in Fig. 7a. For example, the absolute permeability in this direction 
is about twice as large as in the other directions. The permeability curves of the other 
two directions are similar. Both experiments on the effective mesoscale geometries 
have rather small deviations from the reference solution and they give almost the same 
results, except for the saturation-dependent permeability of the nonwetting phase in the 
direction of the hole. The deviation of this curve could be due to the poorer approxima-
tion of the pyramidal hole.

Overall, the method gives reasonable approximations of the mesoscale effective param-
eters. In the case of the effective mesoscale geometry with a voxel size of 8�m , the runtime 
is much lower than the runtime of the reference solution.

4.2  Liquid Composite Molding (LCM) Process

In the LCM process under consideration, a textile stack initially filled with air is infiltrated 
with a polymer resin. The textile stack consists of several layers of fiber mats. The fiber 
mats are made up of woven rovings and the rovings themselves are made up of many fila-
ments. Three different length scales can be distinguished. The largest is the macroscale 
and that is the complete component. Its size is typically in the range of several centimeters 
or meters depending on the application of the composite. Then we have the mesoscale, 
which is a small section of some fiber mats stacked on top of each other. The size of a mes-
oscale geometry is typically in the millimeter range. Figure 8 shows a resolved mesoscale 
geometry and Fig. 9b shows an effective mesoscale geometry. The smallest length scale 
is the microscale, which is a section of a roving, see Fig. 9a. The filaments in this micro-
scale geometry have a diameter of 7 �m . The micro- and mesoscale geometries are visibly 
anisotropic.

The geometry from Fig. 8 and the microscale geometries, see e.g., Fig. 9a, are created 
with GeoDict.

The microscale geometries have a porosity of 35% , a voxel size of 1�m and the size of 
the geometry is 100 voxels in each coordinate direction. Ten different microscale geom-
etries are created with these specifications. These are different, since many geometric prop-
erties are only statistical. In a resolved mesoscale geometry the arrangement of the fila-
ments is also different in different sections of the rovings.

Figure 10 shows the capillary pressure functions and saturation-dependent permeabili-
ties of all ten geometries. The variations of the capillary pressure functions are moder-
ate, but the variations of the saturation-dependent permeabilities are large. To reduce the 
influence of these variations, the effective parameters of all ten microscale experiments 
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are averaged as described in Appendix A. The average values are shown in Fig. 10 and are 
used as the effective parameters for representing the rovings.

The effective mesoscale geometries are constructed by taking the geometry from Fig. 8 
and applying morphological dilations to it until there is no pore space between the fila-
ments. Thereafter, morphological erosions are applied until the rovings have a similar size 
as before the dilations. These morphological operations are defined in Hilpert and Miller 
(2001), for example. After that we coarsen the geometries to reduce the number of voxels 
in the geometry. We increase the voxel size to 2�m and 4�m . These two geometries are 
then the effective mesoscale geometries used in this section. Figure 9b shows the effective 
geometry with a voxel size of 2�m . Increasing the voxel size slightly changes the volume 
of the pore space. The effect on the effective porosity can be seen in the Table 2. The effec-
tive porosity deviates from the resolved mesoscale geometry by 0.44% and 0.92% . In addi-
tion to the less well approximated shapes of the rovings, this also affects the quality of the 
calculated effective parameters.

The runtimes are not included in Table 2, because the resolved mesoscale geometry is 
simulated with the LIR solver and the effective mesoscale geometries can only be simu-
lated with the SIMPLE FFT solver. Because of that a fair comparison of runtimes is not 
possible.

Table 2  This table compares the number of voxels and effective porosities of the imbibition experiments in 
Sect. 4.2 with a microscale voxel size of 1�m

The number of voxels in the table needs to be multiplied by 106 . The effective porosity is defined in equa-
tion (9) and the effective porosity of the reference solution is just the porosity of the geometry. For the 
effective mesoscale geometries it is calculated by Eq. (9). Multiscale means that the experiment is carried 
out on an effective mesoscale geometry. For this, a microscale simulation has to be carried out

Reference solution Multiscale (2� m) Multiscale (4�m)

Meso Micro Meso Micro

Effective porosity in (%) 53.17 52.73 52.25
Number of voxels (106) 1683.36 210.42 10 ≈26.15 10

Fig. 11  The two images show the mesoscale capillary pressure functions of the imbibition experiments in 
Sect.  4.2 with a microscale voxel size of 1�m . The black triangles mark the result of simulation of the 
resolved mesoscale geometry. The other lines show the results of simulating the effective mesoscale geom-
etries. Both images show the same lines, but the right image in a semi-logarithmic representation. The mes-
oscale voxel size is denoted by dx
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Figure 11 shows the results of the calculation of the capillary pressure function of the 
mesoscale. The capillary pressure functions calculated on the effective mesoscale geom-
etries are slightly above the reference solution, but the curves still look similar.

Figure 12 shows the results of the calculation of the diagonal elements of the satura-
tion-dependent permeability tensors. All permeabilities are presented in an ordinary and 
a semi-logarithmic coordinate system. The semi-logarithmic representation is shown, as 
this shows the behavior of the permeability curves close to zero. The saturation-dependent 
permeabilities of the two in-plane directions look similar. While, the saturation-dependent 
permeabilities are different in the out-of-plane direction. The saturation-dependent perme-
abilities of the resolved and effective mesoscale geometry are similar for most saturation 
values. The largest absolute deviation is in the in-plane direction around a saturation of 
0.5. Another deviation is visible in Fig. 12f. There, the wetting phase permeabilities of the 
effective mesoscale geometries are above 0 for significantly smaller wetting phase satura-
tion than in the reference solution.

Overall, the method provides reasonable approximations of the mesoscale effective 
parameters for the LCM example, while allowing the use of geometries with significantly 
fewer voxels. As in the example in Sect. 4.1, the deviations in the saturation-dependent per-
meabilities are larger than in the capillary pressure function.

A major advantage of the method from Sect. 3 is that we can change the voxel size of 
the microscale geometry without changing the effective mesoscale geometry. We run simu-
lations with a microscale voxel size of 0.5�m instead of 1�m . All other parameters remain 
the same and we also use the same effective mesoscale geometries. We have not calculated 

Fig. 12  The images show the saturation-dependent permeabilities of the imbibition experiments in Sect. 4.2 
with a microscale voxel size of 1�m . The black triangles show the result of direct simulation of the resolved 
mesoscale geometry. The other two lines show the results of simulating the effective mesoscale geometries. 
The curves starting at zero are the wetting phase permeabilities. The others are the nonwetting phase per-
meabilities. The mesoscale voxel size is denoted by dx
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a reference solution. A resolved mesoscale geometry with a voxel size of 0.5�m would 
require about 13.5 ⋅ 109 voxels. If we use an effective mesoscale geometry only the number 
of voxels for the microscale geometries increases by a factor of 8.

The results of these simulations can be found in Fig. 13. There are small differences 
in the saturation-dependent permeabilities to the results in Fig. 12. The capillary pressure 
functions near to zero wetting phase saturation are much larger than in Fig.  11. This is 
because the size of the smallest pores in the microscale geometries is halved, resulting in 
twice the capillary pressure for the smallest pores, see Eq. (4).

5  Conclusion

The method for calculating effective two-phase flow parameters of effective mesoscale 
geometries is presented and derived. It is based on pore-morphology methods. This means 
that the flow is assumed to be dominated by capillary effects. The method is defined for 
effective mesoscale geometries containing one porous material characterized by effective 
two-phase flow parameters. Generalizing the method to effective mesoscale geometries 
with multiple porous materials that have different effective parameters should not be a 
problem.

Fig. 13  These images show the imbibition capillary pressure functions and saturation-dependent permeabil-
ities for the LCM process, when we use a voxel size of 0.5�m on the microscale. The permeability curves 
starting at zero for a saturation of zero are the wetting phase permeabilities. The others are the nonwetting 
phase permeabilities. The mesoscale voxel size is denoted by dx
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The shown method is tested on two examples. In both a reference solution is simulated 
on a resolved mesoscale geometry. In both examples, the method provides reasonable 
results, even when the number of voxels in the effective mesoscale geometries is signifi-
cantly lower than in the reference solution.

So far, no connectivity checks are included in the presented method. As a consequence 
we cannot simulate irreducible phase saturations. But in physical experiments and real 
world applications, irreducible phase saturations occur. Connectivity checks would there-
fore be an interesting generalization of the proposed method. In particular for the LCM 
process, as air entrapment can affect the quality of the composite materials produced, see 
e.g., Varna et al. (1995) and Lee and Wei (2000).

However, it is not straight forward to add connectivity checks to the method. To incor-
porate connectivity checks to the method it is necessary to decide how the effective porous 
material is handled during connectivity checks, i.e., defining in which situations a phase 
can pass through an effective porous material. In this case the micro- and mesoscale contri-
butions to the capillary pressure function are coupled and it is no longer possible to come 
up with a mathematical formula like (14) for the capillary pressure function.

An option for connectivity checks through an effective porous material would be to 
allow a phase to pass, if the respective phase saturation of the effective porous material 
is above a certain threshold. A natural choice for the threshold would be the respective 
residual phase saturation. But this may only be realistic if the length of the connection path 
through the effective porous material is comparable to the size of the microscale geom-
etries that were used to calculate the effective parameters of the effective porous material. 
Because on pore-scale level, the larger the porous medium is, the less likely it is to have a 
path only through the corresponding phase, even if the overall phase volume fraction is the 
same.

Appendix A: Averaging of Effective Two‑Phase Flow Parameters

The averaging described in this section is used in Sect. 4.2. There we get different realiza-
tions of the microscale, because some geometrical properties are only known statistically. 
This leads to variations in the effective parameters and these can be reduced by averaging 
the effective parameters of several microscale realizations.

The averaging of capillary pressure functions and saturation-dependent permeabilities 
described here assumes that these parameters are calculated using either the procedure 
from Sects. 2 or 3. In particular it is important that the phase distributions used for the 
calculation of the effective parameters correspond to static phase distributions, where the 
capillary pressure is the same at all fluid-fluid interfaces.

Let n ∈ ℕ
≥2 be the number of geometries, k ∈ {1,… , n} and Vk be the volume of geom-

etry k. We define

If

(15)Vtotal =

n∑
k=1

Vk.

(16)Vk = V for all k ∈ {1,… , n}
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then it is Vtotal = n ⋅ V .
Assume that Vk can be decomposed into a volume of nonporous materials Vk

npr
 and a 

volume of the pore space Vk
fl
 . Let �k be the porosity of geometry k. Then it is

Let pk
c
 be the capillary pressure function and Kk

d
 for d = w, n the saturation-dependent per-

meability tensors of geometry k.
We take the sum of pore space volumes divided by the sum of volumes as the average 

porosity �̄� , i.e.,

Equation (18) shows that �̄� is equal to a weighted arithmetic mean of the porosities �k and 
if assumption (16) is valid it is the unweighted arithmetic mean.

Pore-morphology methods are based on the idea of choosing the fluid distributions 
such that the capillary pressure is the same on all fluid-fluid interfaces, if that is possi-
ble. To be consistent with this in the averaging procedure we average phase distributions 
that corresponds to the same capillary pressure.

Let p̄ be a capillary pressure. Then the wetting phase saturation corresponding to p̄ in 
the k’th geometry is given by

Vk
w
≥ 0 is a wetting phase volume.
We choose the averaged saturation S̄ related to the capillary pressure p̄ as the sum of 

all wetting phase volumes divided by the sum of all pore space volumes, i.e.,

This can also be expressed with the inverse capillary pressure functions as

To average the saturation-dependent permeability tensors, we first fix a saturation 
S̄ ∈ [0, 1] . Through the averaged capillary pressure function, we get by p̄ = p̄c

(
S̄
)
 the capil-

lary pressure corresponding to this mean saturation. In consistency with Eqs. (19) and (20), 
the saturation of geometry k is given by

(17)Vk = Vk
fl
+ Vk

npr
and �k =

Vk
fl

Vk
,

(18)�̄� =

∑n

k=1
Vk
fl∑n

k=1
Vk

=

∑n

k=1
Vk
fl
⋅

Vk

Vk

Vtotal
=

n�
k=1

Vk

Vtotal
𝜙k if (16)

=
1

n

n�
k=1

𝜙k.

S̄k =
(
pk
c

)−1
(p̄) =

Vk
w

Vk
fl

.

(19)
S̄ =

∑n

k=1
Vk
w∑n

k=1
Vk
fl

=

1

Vtotal

∑n

k=1
Vk
w
⋅

Vk
fl

Vk
fl

⋅

Vk

Vk

1

Vtotal

∑n

k=1
Vk
fl
⋅

Vk

Vk

=

1

Vtotal

∑n

k=1
S̄k𝜙kVk

1

Vtotal

∑n

k=1
𝜙kVk

=
1

�̄�

n�
k=1

Vk

Vtotal
𝜙kS̄k

if (16)
=

1

�̄�

1

n

n�
k=1

𝜙kS̄k.

(20)
(
p̄c
)−1

(p̄) =
1

�̄�

n∑
k=1

Vk

Vtotal
𝜙k

(
pk
c

)−1
(p̄)

if (16)
=

1

�̄�

1

n

n∑
k=1

𝜙k
(
pk
c

)−1
(p̄).

(21)S̄k =
(
pk
c

)−1
(p̄) =

(
pk
c

)−1(
p̄c
(
S̄
))
.
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The permeability tensors Kk
d

(
S̄k
)
 correspond to the mean saturation S̄ . In this work we sim-

ply use the weighted arithmetic mean of these permeability tensors as the averaged perme-
ability tensor. Where, the weights are the same as for the averaged porosity �̄� , i.e., the ratio 
of Vk and Vtotal . This leads to

It is possible to use a different mean of these permeability tensors.
The tensors Kk

d
 are equal to, or at least very close to, zero for some saturations. The 

arithmetic mean is of advantage for this case, since it is defined for permeabilities equal 
to zero and it is also not sensitive to permeabilities close to zero. This is not the case if 
one uses the harmonic or geometric mean, for example.
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