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Abstract
Transport in porous media plays an essential role for many physical, engineering, biologi-
cal and environmental processes. Novel synchrotron imaging techniques and image-based 
models have enabled more robust quantification of geometric structures that influence 
transport through the pore space. However, image-based modelling is computationally 
expensive, and end users often require, while conducting imaging campaign, fast and agile 
bulk-scale effective parameter estimates that account for the pore-scale details. In this 
manuscript we enhance a pre-existing image-based model solver known as OpenImpala to 
estimate bulk-scale effective transport parameters. In particular, the boundary conditions 
and equations in OpenImpala were modified in order to estimate the effective diffusivity 
in an imaged system/geometry via a formal multi-scale homogenisation expansion. Esti-
mates of effective pore space diffusivity were generated for a range of elementary volume 
sizes to estimate when the effective diffusivity values begin to converge to a single value. 
Results from OpenImpala were validated against a commercial finite element method pack-
age COMSOL Multiphysics (abbreviated as COMSOL). Results showed that the effective 
diffusivity values determined with OpenImpala were similar to those estimated by COM-
SOL. Tests on larger domains comparing a full image-based model to a homogenised (geo-
metrically uniform) domain that used the effective diffusivity parameters showed differ-
ences below 2 % error, thus verifying the accuracy of the effective diffusivity estimates. 
Finally, we compared OpenImpala’s parallel computing speeds to COMSOL. OpenImpala 
consistently ran simulations within fractions of minutes, which was two orders of magni-
tude faster than COMSOL providing identical supercomputing specifications. In conclu-
sion, we demonstrated OpenImpala’s utility as part of an on-site tomography processing 
pipeline allowing for fast and agile assessment of porous media processes and to guide 
imaging campaigns while they are happening at synchrotron beamlines.
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1  Introduction

Advancements in precision engineering and imaging technologies have enabled studies of 
porous media in unprecedented detail than ever before. In particular, micro-X-ray com-
puted tomography (XRCT) has shown great promise in enhancing understanding of how 
pore-scale structures influence mass transport (Keyes et al. 2013; Koebernick et al. 2019). 
XRCT now routinely provides 3D geometric features at the micron scales. By analysing 
these features, researchers have developed simple morphological metrics that provide qual-
itative insights into how pore-scale features influence bulk-scale processes (Vogel 2002) 
such as water and nutrient transport in soils (Vereecken et al. 2016). Understanding these 
transport processes can aid in improving agricultural practices through enhanced fertiliser 
use efficiency (Duncan et al. 2018) and enhancing agricultural yields, thus mitigating many 
issues associated with food security and environmental pollution. However, making scien-
tific inferences based on imaged structural data alone is difficult without inclusion of the 
physical process governing the phenomena (Vereecken et al. 2016).

XRCT data sets are often large, with single tomographies producing images containing 
1010 voxels, resulting in 40GB of data for a single scan. Experiments often require tens to 
hundreds of scans, and data analyses for these scans are expensive in terms of time and 
computing resources. It is difficult to assess what resolution is representative of a given 
domain or scientific problem prior to image acquisition. Furthermore, structural images 
alone seldom provide sufficient information about physical processes such as chemical 
reactions or biological activity (Keyes et al. 2022). As such, XRCT images often have to 
be coupled with auxiliary measurements or supplemented with specific theoretical models 
and computations.

The technique of image-based modelling (i.e. using the 3D XRCT image as a physical 
modelling domain) provides a beneficial avenue to supplement XRCT imaging (Ruiz et al. 
2021). Image-based models create a digital replica (i.e. digital twin) of the physical setup 
that often is impossible to investigate experimentally. Thus, these simulations act as in sil-
ico experiments. They enable rigorous quantification of processes occurring in the physical 
systems, which enables the extraction of functional results from structural imaging data 
sets. Furthermore, image-based modelling enables researchers to generate inferences on 
quantities or processes otherwise unmeasurable by conventional experimental techniques 
(Ruiz et al. 2020).

In order to generate image-based models on large XRCT data sets, computational and 
analytic methods are often used to reduce the computational infrastructure load. These 
methods involve downsampling data at the cost of image resolution. Another approach is 
to select a representative elementary volume (REV), which can be potentially subjective. 
Other methods discretise the images via a pore network modelling approach (Yang et al. 
2019; Callow et al. 2020). Thus, most studies do not require all of the pore-scale details 
and would suffice with a practical description of the modelled domain.

Alternatively, a multi-scale asymptotic homogenisation approach may be used to extract 
effective parameters to avoid running several computationally expensive image-based 
models. This method has been used in soil physics studies to formally derive Darcy’s law 
(Hornung 1996) and upscale partially water saturated flow on a representative elementary 
volume (Cooper et  al. 2017). The method ultimately extracts effective parameters that 
account for necessary pore-scale heterogeneities on a large-scale domain. Thus, the effec-
tive parameters are often representative of what studies have measured at bulk scales. As 
such, there is value in obtaining effective parameters that describe an imaged system at 
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larger scales while simultaneously obtaining images at a beamline as this will allow for live 
functional characterisation of the imaged samples and possible changes in sampling and 
imaging.

The dual imaging and diffraction (DIAD) beamline at the diamond light source (Rein-
hard et al. 2021) is developing an open-source simulation package named OpenImpala that 
endeavours to provide users with bulk-scale effective transport parameter estimates on-site. 
OpenImpala is a highly parallelisable finite difference package (FDM) for solving equilib-
rium partial differential equations (PDEs) directly on image domains which can leverage 
high-performance computing infrastructures for large data sets associated with XRCT data. 
In this study, we adapt OpenImpala to efficiently extract effective transport properties from 
XRCT images, with the goal of being able to perform simulations at rates that could be 
conducted while a user is at the beamline. As such, the objective of this paper is to:

•	 Update OpenImpala such that it generates estimates for effective diffusive transport 
properties used in homogenised approaches

•	 Generate comparisons between OpenImpala’s estimates and a commercial benchmark 
finite element model (FEM) for varying elementry volume (EV) size

•	 Use the time-dependent FEM solver to estimate the error between the effective param-
eters in the homogenised model and the full image-based model

•	 Determine time efficiency when using OpenImpala as opposed to the commercial FEM 
package

We will start by providing a brief overview of the theoretical framework used in the study. 
We will then describe the imaged domain used for generating effective parameter estimates 
for varying EVs. Subsequently, we generate a periodically repeating imaged domain to 
test the efficacy of the effective parameter. Lastly, we will compare the computational time 
between OpenImpala and the commercial FEM package and discuss similarities and differ-
ences in the context of different scientific disciplines.

2 � Theoretical Consideration

2.1 � Mathematical Homogenisation Method

2.1.1 � General Overview

Quantifying mass transport of solutes in domains with complex geometries can be 
computationally expensive or even unfeasible. In many fields associated with porous 
media (e.g. soil science and electrochemistry), it is often more productive and informa-
tive to obtain effective transport parameters for a bulk domain rather than include all of 
the nuanced geometric complexities (Daly et al. 2016; Hack et al. 2020). This process 
only works if we look at the problem solution on the scale of a collection of many 
different particles or pores. Such formal effective parameter estimation for different 
physical phenomena in porous media is well established (Hornung 1996). This cur-
rent paper focuses on modelling the diffusive transport of solutes in the porous media 
domain that is obtained from imaging. As stated, a critical assumption that will be fol-
lowed in this work is that there exists a separation of scales associated with the large-
scale processes, i.e. it is associated with the large length scale LX and the small scale 
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associated with the small length scale l� (Fig. 1 A). The small scale presents all of the 
imaged detail in the pore space and is assumed mathematically to be repeating, and 
hence (semi-)periodic, in the different directions (Fig. 1 A–B). The large-scale domain 
modelling problem can then take the estimated effective (or homogenised) diffusiv-
ity and generate estimates sufficient for describing the large transport scale behaviour 
without explicitly considering all pore-scale geometric detail.

Fig. 1   Generating effective parameter estimate based on XCT images. A Representation of a large-scale 
pore space Ω comprised of periodic subdomains Ω

i
 . The length scale of the large domain is represented 

by L
X
 while the length scale of the subdomain is represented by l� . B The full image-based geometry rep-

resenting the pore space within a porous media (soil pore space in the given example). C Determining the 
representative elementary volume sufficient for obtaining reasonable effective parameter (i.e. diffusivity) 
estimates. D Generating a region of interest for a given size at a random location in the modelled domain
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2.1.2 � Non‑dimensionalising the Diffusion Equation

Here, we will only present the essential description needed to estimate effective parameters 
(i.e. diffusivity). For an in-depth derivation, see SI. Considering the diffusion equation:

where c̃ [mol m −3 ] is a concentration of a transporting solute, t̃ [s] is time, D̃ [m2 s −1 ] is the 
diffusivity of the solute in liquid, x̃ is the spatial coordinate system associated with regions 
in the domain volume Ω (Fig. 1 A), and ∇̃ is the spatial differentiation operator. We non-
dimensionalise the equation with the following scalings

where LX [m] is the large length scale, � [s] is the time scale, and c̄ is the average initial 
concentration of solute. The non-dimensional diffusion equation is now given by

We assume that the domain Ω =
⋃n

i
Ωi , where each Ωi is a periodically repeating sub-

domain (or cell) (Fig. 1 A–B). As such, the boundary condition for periodicity is given as:

where �Ωi is the outer boundary of a cell (Fig. 1 B). We assume that solutes cannot move 
across internal boundaries between pore-space and solids:

where Γi represents the internal boundaries between solids and pore-space (Fig. 1B).

2.1.3 � Multi‑scale Expansion

The dimensional differential operator can be expanded into a large scale estimate and a 
small-scale corrector of the spatial derivative

where X and � are the large and small scale spatial variable, respectively. The dimensional 
scaling of the differential operators is given by:

Considering the relationship between the large scale and small scale as LX >> l𝜉 , we say 
that the ratio between the scales is given by l�

Lx
= � where � is a small number. Our dimen-

sionless differential operator, assuming these scales are independent, can be expressed 
using chain rule as

(1)
𝜕c̃

𝜕t̃
= ∇̃ ⋅ (D̃∇̃c̃), x̃ ∈ Ω,

(2)
∇̃(⋅) =

1

LX
∇(⋅), t̃ = 𝜏t

c̃ = c̄c, D̃ =
L2
x

𝜏
D
,

(3)
�c

�t
= ∇ ⋅ (D∇c), x ∈ Ω.

(4)c − periodic, x ∈ �Ωi,

(5)n̂ ⋅ (D∇c) = 0, x ∈ Γi,

(6)∇̃(⋅) = ∇̃X(⋅) + ∇̃𝜉(⋅),

(7)∇̃X(⋅) =
1

LX
∇X(⋅), ∇̃𝜉(⋅) =

1

l𝜉
∇𝜉(⋅) ,
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We then assume that the concentration can be expanded in power of � and assuming that 
concentration c is dependent � and X independently we get

Substituting in Eqs. 8 and 9 in Eq. 3 (see SI for full workings), we obtain the following 
equation on the cell:

with the associated no flux conditions:

and periodic boundary conditions

We note that given the periodicity of the cell, it is sufficient to consider D = D(�) . We split 
the equations in accordance with the different orders O(�n) and extract specific informa-
tion from each order of � (see SI for more details). To summarise, the order O(�−2) equa-
tions inform us that c

(0)(t, �,X) = c
(0)(t,X) , thus not varying on the small scale. The order 

O(�−1) equations are used to generate the system of equations whose solutions will act as 
small-scale corrections to the large-scale solution

where �k is the small-scale corrector in the kth direction (see Fig. 2 for details). Finally, we 
can determine our homogenised equation on the order O(�0) equations:

where �eff  is the 3-by-3 effective diffusivity tensor (where diagonal entries define the effec-
tive diffusion in each direction) and depends on the solutions of the cell problems (Eq. 13):

where I is the 3-by-3 identity tensor and ∇𝜉𝜒k ⊗ êk =
∑n

i=1
∇𝜉𝜒kê

T

i
 . We emphasise that a 

representative image-based volume is needed for only the cell problem (Eq. 13), which is 
a steady state equation. The solution from that problem can then be applied and upscaled 
for much larger homogenised domains, subsequently alleviating the need to simulate large 

(8)∇(⋅) = ∇X(⋅) + �−1∇�(⋅).

(9)c = �0c
(0)(X, �, t) + �1c

(1)(X, �, t) + �2c
(2)(X, �, t) +O(�3)

(10)
�0
�c

(0)

�t
= �−2∇� ⋅

(
D∇�c(0)

)
+ �−1(∇� ⋅ (D(∇�c(1) + ∇Xc(0)))

+ ∇X ⋅ (D∇�c(0))) + �0(∇� ⋅ (D(∇�c(2) + ∇Xc(1)))

+ ∇X ⋅ (D(∇�c(1) + ∇Xc(0))) +O(�1), � ∈ Ωi,

(11)
𝜖−2n̂ ⋅ (D∇𝜉c(0)) + 𝜖−1(n̂ ⋅ (D(∇𝜉c(1) + ∇Xc(0))))

+𝜖0(n̂ ⋅ (D(∇𝜉c(2) + ∇Xc(1)))) +O(𝜖1) = 0, � ∈ Γi,

(12)c
(0), c(1), c(2), ... − periodic, � ∈ �Ωi.

(13)

⎧⎪⎨⎪⎩

∇𝜉 ⋅ (D∇𝜉𝜒k) = −∇𝜉 ⋅ (Dêi), � ∈ Ωi

n̂ ⋅ (D(∇𝜉𝜒k + êi)) = 0, � ∈ Γi

𝜒k − periodic, � ∈ 𝜕Ωi

,

(14)
�c

(0)

�t
= ∇X ⋅ (�eff∇Xc(0)), X ∈ Ω,

(15)�eff =
1

‖Ωi‖ ∫
Ωi

(D(∇𝜉𝜒k ⊗ êk + I))d�,
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geometrically complex problems and ultimately reducing the net computational time by 
orders of magnitude (Duncan et al. 2018).

3 � Methods

3.1 � Homogenisation of Elementary Volumes (EVs) of an Image‑Based Model

In this study, we take a detailed pore space segmentation from XRCT scans obtained from 
the TOMCAT beamline at the Paul Scherrer Institute, Villigen Switzerland (Fig. 1B) Daly 
et al. (2016) and generate model domains based on these images. The full domain repre-
sents a 2 mm soil pore space (Daly et al. 2016). We partition the pore space into 8 concen-
tric EVs and run simulations on each of the domains ((Fig. 1C). For each domain size, we 
calculate the effective diffusivity using Eq. 15.

The effective parameter is calculated numerically using the finite difference method 
(FDM) in OpenImpala and the finite element method (FEM) in COMSOL Multiphys-
ics (abbreviated as COMSOL) Multiphysics (1998). For FEM simulations, image-based 
meshes were generated using a software called ScanIP (Johnson and Officer 2005). A rela-
tively fine mesh specification was used since the FEM solution was to act as benchmark. 
The full domain mesh comprised of 899,248 tetrahedral elements and meshes of subvol-
umes were meshed to obtain a similar volume-to-mesh-element ratio and mesh quality. 
This mesh quality was chosen to ensure the numerical solution had little error introduced 
by meshing. Components of the effective diffusivity tensor were reported for the diagonal 
values (i.e. x, y, and z directions) and the mean values of all the tensor components. Values 
obtained for FDM and FEM were compared for the different EVs. Convergence behaviour 
was also monitored for increasing EVs.

Furthermore, using OpenImpala, we generate a region of interest of a fixed size at ten 
random locations within the small-scale subdomain. For different fixed sizes, we estimate 

Fig. 2   Visual representation of the modification of OpenImpala’s boundary conditions for the cell problem. 
A Dirichlet input and output conditions on opposing faces, with zero flux implemented on the remaining 
faces, as detailed in Le Houx and Kramer (2021). B Modified boundary conditions where input and output 
Neumann conditions are implemented on opposite sides of the non-porous particles, the remaining walls 
use a periodic boundary condition
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ensemble means of the effective diffusivity and monitor the variability associated with the 
different-sized regions of interest.

3.2 � OpenImpala–Finite Difference

OpenImpala was chosen for the FDM simulations as it is an open-source image-based model-
ling tool capable of leveraging advantages from HPC infrastructure, such as massive paralleli-
sation (Le Houx et al. 2020; Fraser et al. 2022). OpenImpala uses a labelled XRCT-generated 
voxel data set to discretise the problem, meaning no additional meshing is required. In order 
to perform equivalent effective parameter estimation using OpenImpala, it was necessary to 
modify the computer code to implement the same simulation conditions as is typically per-
formed on representative soil volumes. A 2D visual representation of this modification can be 
seen in Fig. 2.

Originally, OpenImpala employed a steady-state through-flow type simulation, as dis-
cussed in Le Houx and Kramer (2021). For this study, the Dirichlet boundary conditions were 
imposed on the two opposing inlet and outlet faces, and a no-flux wall condition was imposed 
on the remaining faces, as seen in Fig. 2A As discussed in Nguyen et al. (2020), flow-through 
type simulations discount ’dead-end pores’ from the effective parameter estimation, where 
’dead-end pores’ are those that do not fully connect across the thickness of the image data set. 
In the case of soil, porous battery electrodes, supercapacitors and fuel cells, this is not accurate 
as these samples do not require transport from one side of the structure to the other. Instead, 
the combination of transport throughout the interconnected volume between different regions 
contributes to the effective parameter estimation. Thus, OpenImpala’s Fortran kernel was 
modified to represent the equations derived in Sect. 2.1. In practice, this meant implementing 
periodic boundary conditions on each domain faces and modifying the inlet and outlet bound-
aries to opposing sides of non-conducting media, as seen in Fig. 2B The routines developed 
during this paper have been released within v1.1.0 of OpenImpala on the publicly accessible 
Github repository, https://​github.​com/​krame​rgroup/​openI​mpala/.

3.3 � Data Processing Pipeline Architecture

The Dual Imaging And Diffraction beamline at the Diamond Light Source (Reinhard et al. 
2021) has developed an on-site deployable semi-automated data processing pipeline. As 
part of this pipeline, X-ray tomography data sets are reconstructed into 3D volumes using a 
filtered-back projection algorithm through the Python-based package, Savu Wadeson et  al. 
(2016), segmented into constituent phases using a supervised convolutional neural network 
using SuRVoS (Pennington et al. 2022), and finally, the classified, real 3D domain is used as 
the basis for an image-based model. These results can then inform experimental procedure 
while beamline experiments are still running. In order to achieve this, a voxel-based solver is 
desirable to remove the time and resource-costly meshing step. The methods developed this 
paper will be used as part of this pipeline and are highlighted in Fig. 3.

3.4 � Model Validation of Homogenised Solution Considering Periodically Increasing 
Domain Length

To validate the homogenisation procedure, we performed a comparison between the image-
based simulation and a uniform 1D domain with effective diffusivity parameters using an 

https://github.com/kramergroup/openImpala/
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analytic solution to capture time dependence. The full image-based domain was duplicated 
along the x-direction five times ( Fig. 4A). The simulations were conducted with a fixed con-
centration on the left hand side and no flux condition on the right hand side. A 1D model with 
the same lengths was created with the same boundary conditions (see SI section 2 for details). 
The homogenised effective diffusivity was used in the uniform geometry. For the different 
lengths, the average concentration was measured and compared between the image-based and 
uniform 1D homogenised models over time. The maximum differences between the two simu-
lation approaches were used to estimate the error between the two models:

where ⟨c⟩i and ⟨c
(0)⟩i are the average concentration of the boundary at length i.

(16)�
%,i =

‖⟨c⟩i − ⟨c
(0)⟩i‖∞

⟨c⟩i 100%,

Fig. 3   Overview of the semi-automated reconstruction, segmentation and simulation pipeline

Fig. 4   Simulations conducted on A Image-based domains and B uniform 1D domain for increasing domain 
length. Simulations were conducted for both on a length associated with a domain length of 1 (red), 2 
(green), 3 (yellow), 4 (pink) and 5 (black). Simulations consider a Dirichlet boundary at the far left surface 
and no flux at the far right end
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4 � Results

4.1 � Homogenisation Comparison Between COMSOL FEM and OpenImpala FDM

Figure 5 illustrates the cell problem solutions ( �k ) for the full image-based domain in each 
direction k. Results show both the variation of �k between the directions (k) and spatially 
within each solution. Due to the differences in solution between directions we expect the 
effective diffusion parameters (calculated by Eq.  15 using �k ) in each direction to vary, 
i.e. an-isotropic diffusion. The spatial variation within solutions highlights the importance 
of using a large enough EV so that when calculating �eff  (Eq. 15, which can be thought 
of as performing an average on some linear function of �k ), the mean is representative of 
the material. The cell problem was solved for all sub EVs in order to obtain the effective 
diffusivity tensor at their respective scales (Fig. 6). The diagonals were solved using the 
OpenImpala FDM solver and the FEM solution. Diffusivity tensors were compared for the 
x component (Fig. 6A), y component (Fig. 6B), z component (Fig. 6C) and the overall ten-
sor mean (Fig. 6D). The general trend is similar between the FDM and FEM results, with 
a rapid decay in the diffusivity values for all directions with increasing EV length scale. 
For the x component, z component, and overall mean diffusivity tensor, the FEM appears 
slightly larger than the FDM for the smallest EV. However, all of the diffusivity values 
appear slightly smaller for the FEM results at the larger EV length scale than the FDM. 
Both methods appear to converge near �eff ≈ 0.4 − 0.6.

We used OpenImpala to test the variability of effective diffusivity and porosity values 
obtained for a given subdomain size by generating different regions of interest at random 
positions in the small-scale domain, as seen in Fig.  7. The results demonstrate that the 
ensemble mean of the randomly positioned regions of interest results in consistent val-
ues for the effective diffusivity parameter. However, the variability greatly diminishes with 
the increasing size of the region of interest, which is a key result. For a specific material, 
property or geometry, similar variability of effective parameter plots can be produced to 
determine the appropriate size of the representative elementary volume (REV). This func-
tionality is expected to be used during imaging beamtimes to inform experimentalists of 
the statistical relevance of domain sizes.

Similar trends can be seen for the porosity (Fig. 7B). It is worth noting that the mag-
nitude of the porosity is not sufficient for scaling the effective diffusivity, which is further 
discussed in Tjaden et  al. (2016). Furthermore, geometric information of the pore space 
plays a role in illustrating differences in the effective diffusivity that would not be captured 
by only tracking the porosity.

4.2 � Comparing Image‑Based Simulations to Uniform Domain Simulations 
that Consider Effective Parameters

The homogenisation procedure and the utility of the effective diffusivity were validated by 
comparing a 1D homogeneous-domain analytic solution using the effective diffusivity ten-
sor to an image-based domain model using COMSOL (Fig. 8). The transient comparison 
between the averaged concentration at the end of each block for both methods highlights 
that the homogenised simulation slightly lags behind the image-based simulation for the 
single block and becomes similar in comparison for the increasing block lengths (Fig. 8A). 
Considering the maximum percentage difference at the end of each block over the duration 
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of the simulations, we see that the percentage difference between the two simulations 
begins at around 6% for the single block (Fig. 8B). As we consider a larger domain size (2 
blocks), the difference between the simulations drops to about 1.5 % (Fig. 8B). For larger 
domain sizes, the difference between the full image-based model and the homogenised uni-
form model drops below 1 % error (well below any experimental measurement error that 
you would find on a field site, Keller et al. (2017)), illustrating the utility of considering the 
homogenised model for domains exceeding the 3 blocks in length (Fig. 8B).

Fig. 5   Illustrative results of the cell problem solution ( �
k
 ) in each direction for the full domain. A and B 

highlight the result for the small-scale corrector ( �
k
 ) along the x-direction. C and D highlight the result for 

the small-scale corrector along the y-direction. E and F highlight the result for the small-scale corrector 
along the z-direction
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4.3 � Comparing Simulation Times Between OpenImpala and COMSOL

The cell problem was solved using OpenImpala and COMSOL on the IRIDIS5 high-
performance computing facility in Southampton using a single node and 40 threads. 
The resulting COMSOL model required 102 min to solve the cell problem. By contrast, 
OpenImpala solved the cell problem in 15 s. Similar tests were conducted using 20 and 
10 threads, with similar results. Further scaling performance for OpenImpala can be 
seen in Le Houx and Kramer (2021), detailing performance for larger domain sizes.

5 � Discussion

In this study, we have updated the capabilities of OpenImpala (Le Houx and Kramer 
2021) to account for more complex boundary conditions which can be used to esti-
mate effective transport properties in porous media. Specifically, we have included flux 
modifications to the boundaries internal to the model domain and augmented the outer 
boundary conditions to consider periodic conditions for consistency with the homogeni-
sation theory (i.e. Eq. 13). OpenImpala can now generate computationally fast estimates 
for effective diffusivity based on the geometry imaged at the synchrotron beamline using 
rigorous integration with asymptotic theoretical considerations (Hornung 1996).

Fig. 6   Comparison of the effective diffusivity obtained for different regions of interest via COMSOL FEM 
and OpenImpala FDM method. A compares the diffusivity component along the x-direction, B compares 
the diffusivity along the y-direction, C compares the diffusivity along the z-direction, and D compares the 
mean value of the diffusivity tensor for the two methods
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To ensure the accuracy of the effective diffusivity estimates generated by OpenIm-
pala, we compared OpenImpala’s results with a standard commercial FEM modelling 
package (COMSOL) for different EV domain sizes (Fig.  1B). The resulting effective 
diffusivity tensors (Fig.  6) highlighted similar trends in the values of tensor elements 
in various x,y, and z directions and the directional mean diffusivity (Fig. 6). All of the 
simulation results show a decay down to dimensionless values between 0.4−0.6. Con-
sidering that most nitrogen fertilisers (e.g. NO−

3
 , NH+

4
 ) have diffusivity values in free 

water on the order of 1.8 × 10−9 m 2 s −1 (Ruiz et al. (2020)), these nutrients would have 
effective diffusivity values on the order of 0.7 − 1.0 × 10−9 m 2 s −1 due to geometric 
impedance in soil. The similarities in the results give us confidence that the estimates 
provided by OpenImpala are consistent with industry-standard packages like COMSOL. 

Fig. 7   Comparison of A the effective diffusivity and B the porosity obtained for different subdomain sizes 
randomly positioned in the full domain. A subdomain/region of interest of a fixed size was placed in 10 ran-
dom locations within the full domain
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However, we subsequently ran simulations on larger domains to ensure that the effective 
diffusivity tensor predictions were accurate.

Simulations comparing larger domains with heterogeneous structure to the homogenised 
uniform 1D domains were carried out in COMSOL, as OpenImpala cannot currently carry 
out time-dependent simulations (Fig. 4). Using the previously determined effective diffu-
sivity tensor, we demonstrated that differences between the structured and homogenised 
domains were within 7% error for a single domain size but rapidly dropped to about 1.5% 
when considering a domain size of two imaged units. After three blocks, the error dropped 
below 1%. In the context of soil science, even the most robust  field-scale measurement 
systems are seldom capable of producing results at such low uncertainty values (Keller 
et al. 2017). Thus, for agricultural field practices, consideration of homogenised effective 
diffusivity is likely sufficient for practical use.

While this work has highlighted the utility of OpenImpala for general porous media 
transport studies, there are still certain restrictions that need to be overcome in the future. 
OpenImpala can only solve time independent, i.e. stationary, problems. While this was suf-
ficient for estimating the effective diffusivity tensor, OpenImpala was limited in its abil-
ity to run verification independently. For a diffusion equation (no convection), an explicit 
time solver (i.e. Euler time stepping) might be sufficient. However, given the presence of 
advection, the solver will likely have to consider implicit time stepping approaches, such as 
Crank-Nicolson Crank and Nicolson (1947).

Another major use of multi-scale asymptotic homogenisation in porous media is quan-
tifying hydraulic conductivity or permeability derived from Stokes flow (i.e. Darcy’s law 
(Daly and Roose 2014)). As Stokes flow is a steady-state equation, the OpenImpala solver 
can generate estimates of effective bulk-scale conductivity values. However, several equa-
tions would have to be introduced to account for the flow vector field and the pressure in a 
domain.

The effective diffusivity extracted in this work is a function of the geometric and 
topological information (Fig. 6), where for smaller sub-regions, we have higher poros-
ity and thus higher effective diffusivity. The subdomains also have heterogeneity, which 
result in, albeit minor, anisotropy in our effective diffusivity tensor. Regarding multi-
phase pore space domain, we can simplify diffusivity of inert solutes in fixed partially 

Fig. 8   Comparison of results form an image-based model and a uniform 1D domain considering the hom-
genised effective diffusivity. A Time-dependent response highlights the average concentrations at the end of 
the respective blocks considering the full geometry and the uniform geometry using the homogenised effec-
tive diffusivity. B highlights the maximum error amongst the different block simulations from A, highlight-
ing that the effective diffusivity falls below 1% after 3 blocks
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saturated regimes as single-phase transport by considering only the liquid phase. These 
model details can be found in Ruiz et  al. (2020). While this work focused on validat-
ing the utility of rapidly extracting the influence of geometric impedance from an CT 
image, we understand that representative volumes may be different considering interac-
tions between solutes and solid surfaces. Particular solute-surface reaction rates would 
play a role in how they influence representative volumes. Theoretically, many of these 
surface interactions would likely manifest as effective domain sources and sinks (see 
SI section  3 for details). However, if a solute is rapidly adsorbed and dissolved from 
surfaces at rates much quicker than the rates of transport, this could be simplified to 
another impedance term (formally considered as buffer power (Barber 1995), see SI sec-
tion 4 for details). We endeavour to include these details in future versions of the model.

While the results from this study give us confidence in the estimated effective param-
eters generated by OpenImpala, we note that there were slight differences with some 
of the absolute values of the parameters (Fig.  6), with percent difference below 10%. 
Despite using the same imaged data set, the FEM simulations required a mesh instead of 
voxel images. As such, we generated a mesh from the segmented image stacks. This will 
produce a discrepancy between the two simulations, as the surfaces can be smoothed 
during segmentation and may no longer retain the full imaged information. However, 
FEM provides a more robust and reliable estimate for fluxes, given the weak-form treat-
ment of the equations (Reddy 2019). Thus boundary conditions are likely better handled 
compared to the FDM employed by OpenImpala. These discrepancies are likely more 
relevant when considering the full heterogeneity of an image-based model. However, 
for estimating effective diffusivity values for the use of large-scale analysis, these differ-
ences are negligible.

A critical advantage that OpenImpala has over COMSOL for calculating effec-
tive transport properties, particularly, on site is the simulation speed, provided there 
is access to a parallel computing facility. Table 1 highlights the rapid solution time of 
OpenImpala, which was often two orders of magnitude faster than COMSOL. Further-
more, OpenImpala can be sped up further by increasing the thread count of parallelisa-
tion, whereas COMSOL appears to plateau after 10 threads. The speed of calculations 
is particularly important given that OpenImpala has to operate close to real time in the 
DIAD tomography processing pipeline. Figure 9 B. shows the parallel efficiency (Hill 
and Marty 2008) of OpenImpala as a function of thread count, for the largest domain 
size. Additionally, unlike finite element solvers such as COMSOL or finite volume solv-
ers, OpenImpala can generate image-based models directly from segmented images, 
relinquishing the need for computationally expensive and technical meshing proce-
dures. Lastly, OpenImpala is now tailored for effective parameter estimation, which 
facilitates its utility for non-modelling users. In conclusion, the rapid rate of computa-
tion, reliability of the results, ease of use, and seamless use of image data demonstrates 

Table 1   Comparison of simulation times between OpenImpala and COMSOL to solve the cell problem for 
the largest domain size (8 × 106 voxels)

Method Threads / min

1 Thread 5 Threads 10 Threads 20 Threads 40 Threads

OpenImpala 3.07 0.70 0.39 0.28 0.19
COMSOL 150 82 73 80 100
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OpenImpala’s capability for efficient on site effective parameter estimation, and thus its 
use as part of a semi-automated tomography processing pipeline.
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