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Abstract
We investigate theoretically the impact of adding convective dissolution to the sharp inter-
face problem of gravity current propagation along a sloping permeability jump. Three 
different dissolution modes are explored: constant dissolution, dissolution with simul-
taneous shutdown and dissolution with sequential shutdown. The last two modes are 
bookend opposites that make different assumptions about ambient mixing. For simultane-
ous (sequential) shutdown, different portions of the gravity current interface experience 
dissolution identically (differently). To gage the effectiveness of dissolution for trapping 
e.g., supercritical CO

2
 , we consider the evolution of storage efficiencies and examine the 

impact of changing the dissolution strength, the time, t
1
 , for the onset of shutdown and, for 

t
1
< ∞ , the e-folding decay time, t

2
 , characterizing dissolution decay. We also highlight 

the phenomenon of intermediate run-out, a state where there is a balance between the fluid 
supplied to the gravity current vs. that lost by dissolution and basal draining. The state in 
question is transient because, for time t > t

1
 , shutdown decreases the rate of dissolution. 

The ensuing readjustment causes a remobilization of the previously-arrested gravity cur-
rents and their subsequent (though not indefinite) elongation. Our analysis concludes by 
studying unsteady sources, which provides keen insights into similarities and differences 
between simultaneous vs. sequential shutdown.

Keywords Buoyancy-driven flow · Convective dissolution · Gravity current · Plume

1 Introduction

Curbing the effects of global warming requires reducing carbon dioxide (CO2 ) emis-
sions. Geological sequestration of CO2 emitted by stationary sources is an attractive 
alternative to atmospheric release (Szulczewski et al. 2012; Liyanage et al. 2019). Injec-
tion sites include depleted oil and gas reservoirs, empty coal seams and deep saline aqui-
fers. Of the three, saline aquifers are the most voluminous (Huppert and Neufeld 2014). 
A challenge associated with geological sequestration is to arrest vertical migration. 
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Leakage may occur through fissures, cap rock edges, or poorly-sealed boreholes. As the 
gravity current of CO2 spreads by buoyancy, it samples the underside of the cap rock 
for leakage pathways. A variety of studies have been performed considering confined 
(Nordbotten and Celia 2006; Zhao and Ioannidis 2007) vs. unconfined layers (Pritchard 
2007). In the latter case especially, the rate of leakage increases with the gravity current 
thickness. Leakage leads to lower overall storage efficiencies though details depend on 
formation geometry.

The other possibility is that injectate leakage is distributed. In the large Bond num-
ber limit, this problem has been investigated by, among others, Goda and Sato (2011), 
Sahu and Flynn (2015) and Bharath et  al. (2020). Goda and Sato (2011) and Bharath 
et al. (2020) assume that high- and low-permeability layers are semi-infinite in vertical 
extent. Key to their analysis is to quantify the run-out length, defined as the terminal 
horizontal distance traveled by the gravity current. When run-out is achieved, the influx 
to the gravity current balances draining via leakage. Run-out lengths can also be defined 
when the depth of the low permeability layer is finite. Here, however, run-out is fol-
lowed by a remobilization of the (primary) gravity current due to the formation and 
propagation of secondary gravity currents within the low permeability layer (Bharath 
and Flynn 2021). Here, we examine a complementary problem and instead make the 
high-permeability layer of finite thickness. This change does not alter draining but it is 
crucially important when one additionally considers convective dissolution. We thereby 
demonstrate that the variation of the convective dissolution rate with time, t, provides a 
second remobilization mechanism.

Convective dissolution was studied experimentally by MacMinn and Juanes (2013) in 
a sloping Hele Shaw cell with an impermeable upper boundary. They found that updip 
migration of the buoyant injectate stopped as a result of convective dissolution and the 
formation and propagation of dense fingers resulting from the mixing of the injectate 
and the ambient. Szulczewski et al. (2013) extended this work by categorizing different 
dissolution regimes of which they counted seven: early diffusion, fingering, shutdown/
fingering, shutdown/slumping, shutdown/Taylor slumping, Taylor slumping, and finally 
late diffusion. In the fingering stage, the dissolution rate remains constant because fin-
gers descend at constant speed. As the fingers strike the bottom boundary, a layer of 
contaminated fluid begins to accumulate. Eventually, the thickness of this layer is large 
enough to arrest convective dissolution.

Despite this complexity, convective dissolution can be parameterized according to 
Fig. 1 (MacMinn et al. 2011; Hidalgo et al. 2013). Here, t∗

0
 signifies a non-dimensional 

Fig. 1  Time variation of the con-
vective dissolution rate, Qd ; Qd is 
defined mathematically by (13)
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delay time during which are established the hydrodynamic instabilities that feed fin-
ger growth. (We set t∗

0
= 0 in much of the analysis to follow.) The constant dissolu-

tion regime characterized by the non-dimensional time t∗
1
 corresponds to fingers fall-

ing at a constant velocity. When t∗ = t∗
0
+ t∗

1
 , dissolution slows because fingers make 

contact with an impermeable boundary. Fluid discharged by the fingers then ascends 
as a curtain, depressing the dissolution rate. The time t∗ = t∗

0
+ t∗

1
 represents the onset 

of the so-called shutdown regime during which the dissolution rate decreases with an 
e-folding time t∗

2
.

In light of the above, we will explore the interplay between injectate spreading, 
draining and dissolution. Our work simultaneously extends MacMinn and Juanes 
(2013) (spreading and dissolution, no draining) and Bharath et  al. (2020) (spreading 
and draining, no dissolution). As depicted in Fig. 2 and consistent with Goda and Sato 
(2011), our analysis shall situate a (discrete) source along a sloping permeability jump. 
Here, and in contrast to e.g. MacMinn and Juanes (2013), we assume a dense rather 
than a buoyant injectate. This choice is made for mathematical convenience and also to 
render our analysis consistent with select seminal works on porous media gravity cur-
rents e.g. Huppert and Woods (1995), Vella and Huppert (2006) and Lyle et al. (2005). 
The orientation is immaterial, however, in the Boussinesq limit.

Calculations are for two dissolution modes, one local and the other global. In the 
global case, we assume that fluid containing dissolved injectate propagates with ease 
through the upper layer ambient, i.e., in the space above the up- and downdip grav-
ity currents, concentration gradients are weak [c.f. Fig, 1 of Bolster (2014)]. Thus all 
points along the exposed upper surface of the gravity currents experience shutdown 
simultaneously. The dissolution mode in question is expected to be approximately cor-
rect when draining and/or dissolution is strong such that the up- and downdip gravity 
currents reach their respective terminal lengths in a time that is small compared to 
t∗
1
 from Fig.  1—see e.g., the discussion of the large t∗

1
/small injection time case pre-

sented in Sect. 4.2 below. At the opposite extreme, lateral motion of fluid containing 
dissolved injectate is supposed to be slow and different portions of the gravity current 
surface experience ambient fluid with different injectate concentrations. (Sequential) 
shutdown is therefore experienced at different times; regions proximal to the source 
shut down before distal regions (Hidalgo et al. 2013). Neither of the simultaneous or 
sequential descriptions is strictly correct. However, the predictions afforded by these 
limiting cases must bound the true solution. Where the bound is tight we enjoy good 
insights into the true nature of the flow.

Fig. 2  (Color online) Schematic 
showing the propagation of up- 
and downdip gravity currents 
along a sloping permeability 
jump where the source is situated 
at the origin. Also illustrated are 
dissolution and draining. Here, 
the vertical dimension of the up- 
and downdip gravity currents has 
been exaggerated for clarity
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2  Mathematical Model

2.1  Problem definition and assumptions

We consider a two-layer porous medium with a permeability jump inclined at an angle 
�—see Fig.  2. The upper and lower layer permeabilities and porosities are, respectively, 
(k1,�1) and (k2 ≪ k1,𝜙2 = 𝜙1 = 𝜙) . The rectilinear two-dimensional coordinate system is 
represented by (X, Z). Up- and downdip gravity currents are fed by a constant volume flux 
source located at the permeability jump. The evolution of the up- and downdip gravity cur-
rents is given by a balance between inflow from the constant flux source and outflow due to 
convective dissolution along the upper surface and draining along the lower surface.

We assume a deep lower layer; the upper layer is typically finite. The source fluid has 
a density, �s , that is moderately larger than the ambient density, �0 . Inside the gravity cur-
rents (and also the fluid that drains from the gravity currents), we ignore spatial varia-
tions of density taking these to be either nonexistent or small w.r.t. to the density contrast 
between the gravity currents and the ambient. The gravity currents are assumed long so 
that a hydrostatic (sharp interface) analysis like that of Huppert and Woods (1995) applies. 
In this spirit, note that (i) draining of source fluid from the upper to the lower layer is like-
wise assumed to be driven by hydrostatic forces (Acton et al. 2001; Goda and Sato 2011), 
and, (ii) flows are evaluated in the large Bond number limit such that capillary effects may 
be ignored (Doster et al. 2013; Hidalgo et al. 2013). The source volume flux per unit width 
is qs and the source buoyancy flux per unit width is given by Fs = qsg

� . The reduced gravity 
is g� = g(𝜌s − 𝜌0)∕𝜌0 ≪ g in which g is gravitational acceleration.

2.2  Gravity Currents

Following the derivation presented in Bharath et  al. (2020), we apply Darcy’s law and 
assume incompressibility. Accordingly, and for permeability jump angle, �,

Here uc is the along-jump velocity component, Δ� = �s − �0 , � is the dynamic viscosity 
and x is the spatial coordinate defined in Fig. 1. Equation (1) applies for −xNu

≤ x ≤ xNd
 

where xNu
 and xNd

 , respectively, represent the gravity current nose positions up- vs. down-
dip. The spatio-temporal evolution equation for the gravity current thickness, h, is obtained 
by substituting (1) into the depth-averaged continuity equation, i.e.,

where � is the kinematic viscosity. Also qd (> 0) is the rate of convective dissolution and 
has units (m3/s)/m2 where the denominator corresponds to the upper surface area. (We will 
define qd more precisely later.) Meanwhile, w

drain
(< 0) is the (hydrostatic) draining veloc-

ity, i.e., (Bharath et al. 2020)

(see Fig. 2). Combining (3) with an expression of mass balance gives

(1)uc = −

k1Δ�g

�

(
�h

�x
cos � − sin �

)
,

(2)�
�h

�t
=

k1g
�

�

�

�x

(
h
�h

�x
cos � − h sin �

)
+ w

drain
− qd ,

(3)w
drain

= −

k2Δ�g

�

(
1 +

h

l
cos �

)
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where K = k2∕k1 is the permeability ratio.

2.3  Initial and Boundary Conditions

At t = 0 , the porous medium is fully saturated and h = l = 0 . For t > 0 , (2) requires speci-
fication of an influx boundary condition such that the volume of fluid supplied to the grav-
ity currents matches qs . When � = 0◦ , source fluid is divided equally between the up- and 
downdip directions. For 𝜃 > 0◦ , we denote the dimensionless volume fraction of the flow 
propagating downdip as fa . The influx boundary conditions then read (Bharath et al. 2020)

Equation (5) is applied in conjunction with the following condition of height continuity:

which allows us to solve for fa = fa(t) . The gravity current noses satisfy

2.4  Non‑dimensionalization

Similar to Goda and Sato (2011), we define the following space and time scales to non-
dimensionalize the governing equations:

where � = k1g
�
∕�� . Thus do we define non-dimensional (starred) parameters, i.e.,

Accordingly, the evolution equations for h and l can be rewritten as

and

, respectively. Here, Qd specifies the non-dimensional dissolution rate, which we will define 
more carefully in the next paragraph. At t∗ = 0 , the initial condition is h∗ = l∗ = 0 . The 
dimensionless influx boundary conditions are

(4)�
�l

�t
= −w

drain
= K

k1g
�

�

(
1 +

h

l
cos �

)
,

(5)

k1g
�

�

(
h
�h

�x
cos � − h sin �

)|||0− = (1 − fa)qs [updip]

k1g
�

�

(
h
�h

�x
cos � − h sin �

)|||0+ = −faqs [downdip]

(6)h0− = h0+

(7)h
−xNu

= l
−xNu

= 0 and hxNd
= lxNd

= 0

(8)Πx =
qs

��
and Πt =

qs

��2

(9)x∗ =
x

Πx

, h∗ =
h

Πx

, l∗ =
l

Πx

, t∗ =
t

Πt

(10)
�h∗

�t∗
=

�

�x∗

(
h∗

�h∗

�x∗
cos � − h∗ sin �

)
− K

(
1 +

h∗

l∗
cos �

)
− Qd ,

(11)
�l∗

�t∗
= K

(
1 +

h∗

l∗
cos �

)
,
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Equations (12) are applied subject to h∗
0−

= h∗
0+

 . Furthermore, and at the gravity current 
fronts, we require h∗

−x∗
Nu

= l∗
−x∗

Nu

= 0 and h∗
x∗
Nd

= l∗
x∗
Nd

= 0.

With reference to Fig. 1, and letting p denote the dissolution strength, Qd takes the fol-
lowing generic form (Szulczewski et al. 2013):

[c.f. Eq. (10) of Hidalgo et al. (2013)]. In section 3.1, we suppose that the upper layer is 
very deep such that dissolution, once it begins, never diminishes in intensity. Mathemati-
cally-speaking, we set t∗

1
→ ∞ in (13). Meanwhile, in Sect. 3.2, we assume very rapid hori-

zontal mixing of the solute through the upper layer ambient such that the rate of dissolution 
is spatially uniform along the gravity current length. Here, Qd depends on time but does not 
depend on space, i.e., the onset of shutdown is the same everywhere along the length of 
the up- and downdip gravity currents. Finally, in Sect. 3.3, we explore the bookend oppo-
site limit, i.e., one where the rate of horizontal mixing is slow such that significant spatial 
variations of the dissolution rate may arise. Mathematically-speaking, Qd from (13) is now 
made to be a function of x∗ as well as t∗ such that, with t∗

0
= 0 , dissolution initiates only 

when gravity current fluid first reaches the point in question. For example, if it takes 10 
non-dimensional time units for the gravity current front to reach a horizontal position x̂∗ , 
the local dissolution rate (i.e., Qd measured at x̂∗ ) is

Comparing (13) and (14), we realize that sequential dissolution can be modelled by making 
the term t∗

0
 from (13) an increasing function of x∗ that depends on the speed of the gravity 

current front. An animation meant to further highlight the difference between simultaneous 
and sequential dissolution is included as part of the Supplementary Information.

3  Model Results

3.1  Constant Dissolution Rate

For later comparison with cases having t∗
1
< ∞ , it is helpful to generate “baseline” solutions 

having a constant dissolution rate. We solve the dimensionless governing Eqs.  (11) and 
(13) numerically using a forward finite difference scheme with a grid size Δx∗ = 6 × 10−2 
and a time step Δt∗ = 9 × 10−4 . The source volume flux is assumed constant suggesting a 
continual supply of fluid to the gravity currents.

(12)

(
h∗

�h∗

�x∗
cos � − h∗ sin �

)|||0− = (1 − fa)

(
h∗

�h∗

�x∗
cos � − h∗ sin �

)|||0+ = −fa

(13)Qd = 10−p

⎧
⎪⎨⎪⎩

0, 0 < t∗ < t∗
0

1, t∗
0
≤ t∗ < t∗

0
+ t∗

1

e
−(t∗−t∗

1
−t∗

0
)∕t∗

2 , t∗ ≥ t∗
0
+ t∗

1

(14)Qd(x̂
∗, t∗) = 10−p

⎧
⎪⎨⎪⎩

0, 0 < t∗ < 10

1, 10 ≤ t∗ < 10 + t∗
1

e
−(t∗−t∗

1
−10)∕t∗

2 , t∗ ≥ 10 + t∗
1
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When the dissolution strength is vanishingly small such that the parameter p from (13) 
is indefinitely large, the gravity currents, both up- and downdip, travel comparatively long 
distances before becoming arrested at their respective run-out lengths—see Fig. 3. The fig-
ure exhibits snapshot images showing the temporal evolution for a case where � = 20◦ . For 
such a large value of � , there exists a pronounced asymmetry between the up- and downdip 
flows.

The significance of p is explored in Fig. 4. Figure 4a, b depicts for � = 5◦ and � = 15◦ , 
respectively, the time evolution of the nose positions, x∗

N
 , of the up- and downdip gravity 

currents. Consistent with Fig. 3, gravity currents travel greater distances along the perme-
ability jump as p is increased and dissolution is curtailed. Solutions exhibit the most sen-
sitivity to p downdip for relatively large � . By contrast, dissolution has a weaker influence 
updip where gravity is often as or more important in arresting the flow. Considering the 
same range of p as in Fig. 4a–d show that fa increases sharply then later plateaus as run-out 
is approached.

To gauge the effectiveness of dissolution, we refer to the storage efficiency, E∗

h
 . Consist-

ent with MacMinn et al. (2011), E∗

h
 is defined as the volume ratio of the fluid discharged 

Fig. 3  Spatial-temporal evolution of the gravity currents and draining flow up to t∗ = 500 for an inclined 
permeability jump with � = 20

◦ . Values for p are as indicated
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Fig. 4  Time series of the gravity current nose position (a, b), downdip volume fraction (c, d) and storage 
efficiency (e, f). Left: � = 5

◦ ; right: � = 15
◦
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by the source that remains in the upper layer (whether dissolved or not) vs. the cumula-
tive volume of fluid discharged by the source. In practical terms, the larger E∗

h
 , the greater 

the volume of injectate that can be securely sequestered. Mathematically-speaking, E∗

h
 is 

expressed as follows:

Here V
retained

 is the net volume of discharged source fluid retained in the upper layer by 
advection and dissolution. Also, V

injected
= ∫ t

0
qs dt . Figure 4e, f show E∗

h
 vs. time for dif-

ferent dissolution strengths. For small p, E∗

h
 displays a decrease at early times after which 

it rebounds then plateaus as t∗ → ∞ . The shape of the curves is explained as follows: at 
early times, the gravity current thicknesses remain modest and there is comparatively little 
draining. Over time, the thicknesses increase as does drainage into the lower layer and E∗

h
 

falls. Simultaneously, however, the gravity currents elongate thereby providing more sur-
face area for dissolution. Dissolution then dominates and E∗

h
 increases for sufficiently large 

t∗ . In essence, thickness is punished by draining (which decreases E∗

h
 ) whereas large lat-

eral extents are punished by dissolution (which increases E∗

h
 ). When p is large, by contrast, 

dissolution remains subordinate to draining even when the gravity currents have extended 
to long lengths. Therefore, and for p ≳ 1.5 , E∗

h
 is a monotone decreasing function of t∗ . 

Finally, and in contrast to the panel pairs Fig. 4a–d, the storage efficiency is largely unaf-
fected by � : as the jump angle increases, the downdip gravity current elongates but the 
updip gravity current shortens, i.e., the total surface area available for dissolution is com-
parable. Synthesizing these results, Fig. 5 shows a plot of gravity current run-out length, 
L∗
N

 , vs. p and � . Here � in the range from � = −20◦ to � = 0◦ ( � = 0◦ to � = 20◦ ) shows run-
out lengths measured updip (downdip). When � = 0◦ and the permeability jump is horizon-
tal, the run-out lengths up- vs. downdip are equal. Asymmetry arises for � ≠ 0◦ , however 
significant up- vs. downdip differences arise only for sufficiently large p. Dissolution is 
then weak and so differences between the up- and downdip flows are not masked by mass 

(15)E∗

h
(t) =

V
retained

(t)

V
injected

(t)
= 1 −

V
drained

(t)

V
injected

(t)

Fig. 5  Line plot of the up-(𝜃 < 0 ) 
and downdip ( 𝜃 > 0 ) run-out 
lengths, L∗

N
 , as functions of 

the dissolution strength, p, and 
permeability jump angle, � 
(measured in ◦)



730 M. I. Khan et al.

1 3

loss to the upper layer ambient. In the p → 0 limit, by contrast, dissolution is strong and the 
(short) run-out lengths show a relative insensitivity to �.

3.2  Convective Dissolution with Simultaneous Shutdown

We now consider the case where t∗
0
= 0 , t∗

1
 is finite and, after a time t∗

1
 , the dissolution 

rate decreases in a spatially-uniform way. Figures 6a, c compare, for t∗
2
= 50 , the temporal 

evolution of the gravity current nose for � = 5◦ and � = 15◦ , respectively. When t∗
1
= 0 , 

we implicitly assume an upper layer that is thin so that dissolution begins to slow imme-
diately.1 Conversely, large t∗

1
 corresponds to an upper layer of large depth. Considering the 

Fig. 6  Gravity current nose positions for p = 1 , t∗
2
= 50 and various t∗

1
 a, b � = 5

◦ , c, d � = 15
◦ . The left- 

and right-hand side panels, respectively, consider simultaneous and sequential shutdown

1 Formally speaking, the notion of a thin upper layer is inconsistent with the neglect of an ambient return 
flow in the context of Fig. 2 where motions in the ambient are ignored. We include the case of a thin upper 
layer for two reasons, i.e., (i) doing so provides a limiting case that helps to contextualize instances where 
t
∗

1
↛ 0 , and, (ii) the dynamical influence of the ambient is, in any event, expected to be relatively minor 
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downdip flow, curves of x∗
N

 increase in a monotone fashion and later plateau provided t∗
1
 is 

not small. For t∗ > t∗
1
 , the front is remobilized and there appears a second regime of gravity 

current advance. In the long-time limit, all of the curves in Fig. 6a or in Fig. 6c approach 
the same limiting value. This coincidence is expected because p and � are in all cases the 
same, i.e., p = 1 and � = 5◦ or 15◦ . We refer to the plateau experienced at moderate (late) 
time as intermediate (terminal) run-out. In the former case, the sum of the rates of draining 
and of dissolution matches the influx to the gravity current.

Once t∗ > t∗
1
 , some fraction of the fluid that would have dissolved into the upper layer 

instead accumulates in the gravity current whose height therefore increases leading to front 
remobilization (and additional draining). Although the surface area available for dissolu-
tion increases as the gravity current elongates, dissolution decreases overall—see Fig. 1. 
When, in the long-time limit, the gravity current stops for a second time, there is a balance 
between the rates of influx and draining. To better characterize the aforementioned flow 
asymmetries, we plot in Fig. 7a, c fa vs. t∗ for � = 5◦ and 15◦ , respectively. During re-mobi-
lization, fa increases more rapidly with time than for t∗ < t∗

1
 . As t∗ → ∞ , fa approaches 

a constant, the precise value of which depends on � . Figure 8 shows the variation of E∗

h
 . 

At early times when draining is slight, much of the discharged source fluid is retained in 
the upper layer. As the gravity currents spread, E∗

h
 decreases exponentially. When t∗

1
> 0 , 

E∗

h
 gradually plateaus as intermediate run-out is approached. There is now a fixed balance 

between drainage and dissolution (not yet diminished). Once t∗ = t∗
1
 , this balance is dis-

rupted so as to favour draining; correspondingly, E∗

h
 falls. In the shutdown regime, larger 

values of t∗
1
 lead to larger values of E∗

h
 . Note, however, that whatever the (finite) value of 

t∗
1
 , E∗

h
→ 0 in the long time limit. Furthermore and consistent with Fig. 4e, f, there is little 

variation of the storage efficiency with � . Figure 9a illustrates, in the t∗
1
-� parameter space, 

a surface plot showing the non-dimensional time, t∗
95

 , to reach 95% of terminal run-out. For 
fixed � , Fig. 9a shows that t∗

95
 increases with t∗

1
 : larger t∗

1
 delays the onset of shutdown and 

extends the time spent in intermediate run-out.
Till now, we have characterized the influence of t∗

1
 all the while choosing t∗

2
= 50 . In the 

Supplementary Information, we explore the effect of adjusting t∗
2
.

3.3  Convective Dissolution with Sequential Shutdown

Similar to Fig.  6a–d show the up- and downdip advection but for the sequential shut-
down case. In contrasting the panel pairs of Fig. 6a–d, similar behavior is observed with 
two exceptions. Firstly, and because dissolution stops more gradually, remobilization is 
more measured. Thus the kinks in the curves of Fig. 6b, d that arise when t∗ ≃ t∗

1
 ( t∗

1
= 0 

excepted) are less sharp. Secondly, and because remobilization is associated with the gen-
eration of new interfacial area directly below virgin ambient fluid, more convective dis-
solution will occur after intermediate run-out. Dissolution that occurs in the time inter-
val t∗ > t∗

1
 is more modest than that which occurs for t∗ < t∗

1
 . On the other hand, if t∗

1
 is 

sufficiently large (e.g., t∗
1
= 200 ), dissolution that occurs for t∗ > t∗

1
 may be sufficient to 

again arrest the flow. Solution curves then show a “stop-start” pattern whereby the gravity 
current is remobilized multiple times over as new interfacial area is created, dissolution 

when the mobility ratio is small (Pegler et al. 2014). The mobility ratio is defined as the ratio of dynamic 
viscosities of the injectate to the ambient.

Footnote 1 (continued)
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disrupts the balance between draining and advection, dissolution then slows and stops all in 
a cycle that is repeated approximately twice when t∗

1
= 200 . The sequence just described is 

arrested only by the approach to terminal run-out, terminal run-out lengths being the same 
in Fig. 6b, d and a, c, respectively. However, because the overall dissolution rate declines 
more gradually in the former two figures, the time to reach this asymptotic state is corre-
spondingly larger.

Similar to Fig.  7a–d show the time variation of fa . Consistent with the comparison 
between the figure pairs Fig. 6a–d, we note from Fig. 7 that sequential shutdown is associ-
ated with a more gradual remobilization. Also, the stop-start signatures evident in Fig. 6b, 
d reappear in Fig. 7b, d: as expected, gravity current remobilization and arrest impact the 
fraction of source fluid flowing up- vs. downdip.

Similar to Fig. 8a–d show E∗

h
 vs. time. Differences between the left- and right-hand side 

panels are now not as dramatic e.g., Fig. 8 does not exhibit evidence of stop-start behavior. 
Following intermediate run-out, the process of remobilizing then arresting the gravity current 
involves a trade-off between advection and dissolution. Because both processes retain injectate 
in the upper layer, the start-stop impact on E∗

h
 is subdued. For t∗ ≃ t∗

1
 and excepting t∗

1
= 0 , the 

Fig. 7  As in Fig. 6 but considering the downdip volume fraction, fa
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Fig. 8  As in Fig. 6 but considering the storage efficiency, E∗

h

Fig. 9  (Color online) Time, t∗
95

 , to reach 95% of terminal run-out vs. t∗
1
 and � (measured in degrees) for a 

simultaneous shutdown and b sequential shutdown
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storage efficiencies predicted in Fig. 8b, d decline less dramatically than do their counterparts 
from Fig. 8a, c: injectate retention in the upper layer is larger for sequential shutdown, which 
culminates in larger E∗

h
 over the time interval considered.

Figure 9b shows the time to reach 95% of the terminal lengths. Consistent with our discus-
sion of Fig. 6b, d, the time to reach terminal run-out is extended in the case of sequential shut-
down, characterized as it is, for large t∗

1
 , by intermediate stages of arrested movement. To this 

end, t∗
95

 values are much larger for t∗
1
= 200 where multiple starts and stops are encountered vs. 

t∗
1
= 0 where the advance of the gravity currents is more regular.

4  Unsteady Source

4.1  Problem Formulation

We have so far assumed a steady source , however, in industrial practice, there are many 
instances where the source is instead unsteady, e.g., with alternating periods of activity and 
inactivity. Here we explore the associated dynamics with an emphasis on the evolution (and 
disappearance) of the gravity currents post-injection, i.e., after the source has been “switched 
off.” We examine spreading, draining and dissolution for t∗ > t∗

inj

 where t∗
inj

 is the non-dimen-
sional time over which the source supplies fluid. When t∗ > t∗

inj

 , influx boundary conditions 
specified by (12) are modified so that, for all time, the equations read

where H denotes the Heaviside step function. Figure 10 shows the nose position vs. time 
for simultaneous and sequential shutdown. We consider small t∗

2
 (and also t∗

1
 ) so as to better 

highlight the flow behavior in the period post-injection. Figure  10a, b are similar: for 
t∗ < t∗

inj

 , gravity currents advance quickly at first, then slow as intermediate run-out is 

(16)

(
h∗

�h∗

�x∗
cos � − h∗ sin �

)|||0− = H(t∗
inj

− t∗)(1 − fa)

(
h∗

�h∗

�x∗
cos � − h∗ sin �

)|||0+ = −H(t∗
inj

− t∗)fa

Fig. 10  Gravity current nose positions for t∗
inj

= 50 , � = 0
◦ , p = 1 , t∗

2
= 10 and various values of t∗

1
 . a Simul-

taneous shutdown and b sequential shutdown
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approached. For t∗
1
≤ 45 , intermediate run-out is followed by remobilization. Once 

t∗ = t∗
inj

= 50 , however, the source is switched off. Although the front may travel some 
small additional distance downstream, there follows a period of rapid recession driven by 
basal draining. Assuming e.g., t∗

1
= 0 (simultaneous shutdown), no gravity current fluid 

remains in the upper layer for t∗ > t∗
f
= 56.84 where t∗

f
 indicates the time required for the 

complete disappearance of injectate from the upper layer (except in dissolved form). By 
contrast, note that both x∗

N
 curves collapse when t∗

inj

< t∗
1
(= 60 or 75) . Here the gravity 

current begins to recede before the flow exits intermediate run-out.
The time interval between t∗

inj

 and the instant where x∗
N

 is maximum is modest. This 
applies, especially for large t∗

1
 where the maximum value of x∗

N
 is likewise small. In a simi-

lar spirit, the time, t∗
f
− t∗

inj

 , required for gravity current fluid to disappear after the source is 
switched off is also small when t∗

1
 is large.

Comparing Fig. 10a, b, remobilization evolves more slowly for sequential dissolution. 
Curves of x∗

N
 start at lower maximum values than do the counterpart curves for simultane-

ous shutdown. By repeating the analysis leading to Fig. 10 for different t∗
inj

 (not shown), we 
find that discrepancies between sequential and simultaneous shutdown are more pro-
nounced for smaller t∗

inj

 . By contrast, when t∗
inj

 is large and terminal run-out is approached, 
gravity current recession occurs in a nearly identical manner. So as to further highlight 
similarities and differences between the two different shutdown regimes, Fig.  11 shows 
plots of t∗

f
− t∗

inj

 , which increase with t∗
inj

 . This increasing behavior applies to both simulta-
neous and sequential dissolution but is slightly less prominent in the latter case: incomplete 
shutdown means that less time is needed for gravity current fluid to disappear from the 
upper layer. When t∗

inj

 comfortably exceeds t∗
1
 , a terminal run-out plateau is approached and 

differences between the left- and right-hand side panels decrease. The plots of Fig.  11 
exhibit a second plateau where t∗

1
≥ t∗

inj

 : with short injection times, complete drainage 
occurs before the onset of shutdown and so the details of shutdown become moot.

Whereas Fig.  11a, b consider � = 0◦ , Fig.  11c, d assume instead � = 10◦ . Although 
strong qualitative similarities are evident in comparing Fig.  11a–d, we note that t∗

f
− t∗

inj

 
values are typically smaller when 𝜃 > 0◦ . In this case, a greater fraction of the source fluid 
is directed downdip. Once the source is switched off, it takes less time for this fluid to dis-
appear from the upper layer. The plateaus from Fig. 11 are reproduced in Fig. 12, which 
shows plots of x∗

Nmax
 , the maximum distance traversed by the nose. This distance is large 

when t∗
1
 is small and shutdown occurs early on. Analogous to Fig. 11c, d, the last four pan-

els of Fig. 12 show, for � = 10◦ , the maximum extent of the gravity current down- ( x∗
Nmax,d

 , 
panels c, d) vs. updip ( x∗

Nmax,u
 , panels e, f). On the updip side, there exists a broad high-

level plateau, particularly for simultaneous shutdown: the flow often becomes arrested well 
before t∗ = t∗

inj

 due to gravity. No such impediment exists downdip and so the high-level 
plateau of Fig. 12c is smaller than that observed in either of Fig. 12a, e.

4.2  Solution Bounds

In Sect. 1, we noted that sequential and simultaneous shutdown are idealizations and that 
the true behavior must lie somewhere in between. With reference to the current unsteady 
problem, we identify those regions of the parameter space where the imposed bounds are 
tight vs. loose. Figure 13 shows the difference of x∗

Nmax
 values estimated from the left- and 

right-hand side panels of Fig. 12. From panel a, Δx∗
Nmax

 is small in two opposite limits: 
large t∗

1
/small t∗

inj

 and small t∗
1
/large t∗

inj

 . In the former case, the source is switched off before 
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the onset of shutdown. Consequently, the flow remains in a state of intermediate run-out 
and there is no difference between simultaneous vs. sequential dissolution. In the limit of 
small t∗

1
/large t∗

inj

 , dissolution begins to slow almost immediately and there is ample time to 
reach terminal run-out. In between the large t∗

1
/small t∗

inj

 and small t∗
1
/large t∗

inj

 limits, the 
flow lies between intermediate and terminal run-out and the two dissolution modes display 
differences one to the other owing to differences in the remobilization process. Similar to 
Fig.  13a–c respectively indicate, for � = 10◦ , x∗

Nmax
 in the down- and updip directions. 

Downdip, the gravity current speed increases with � so the trends of Fig. 13a are amplified. 
By comparison, we expect the aforementioned trends to be subdued when considering 
updip flow; Fig. 13c confirms this expectation.

Fig. 11  Time, t∗
f
− t∗

inj

 , taken for gravity current fluid to completely disappear following the injection period 
as a function of t∗

inj

 for various t∗
1
 and at constant p = 1 , t∗

2
= 10 . a, c Simultaneous shutdown and b, d 

sequential shutdown. The top row of panels show the case of a horizontal permeability jump while the bot-
tom row of panels show � = 10

◦
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Fig. 12  Maximum along-jump distance traversed by the gravity current nose as a function of t∗
1
 and t∗

inj

 for 
p = 1 , t∗

2
= 10 . a, c, e Simultaneous shutdown, b, d, f sequential shutdown. The top row shows the case of a 

horizontal permeability jump while the bottom four panels consider � = 10
◦
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5  Conclusions

Herein, we superpose convective dissolution on the advancing front of a gravity current 
that propagates along the permeability jump between a high permeability upper layer and 
a low permeability lower layer. Our primary contribution is to add dissolution to a math-
ematical model that describes, in a sharp-interface, large Bond number limit, the evolution 
of a leaky gravity current. We consider dissolution rates that are constant vs. time-variable. 
In the latter case, Sect. 3.2 considers a “simultaneous shutdown” scenario where the disso-
lution rate is everywhere the same. Section 3.3 considers a “sequential shutdown” regime 
where different segments of the gravity current experience dissolution shutdown at differ-
ent times. Neither scenario is a true representation of dissolution, however, they provide 
helpful limiting cases that bound the actual behavior. To this end, dissolution is parameter-
ized with reference to variables t∗

1
 and t∗

2
 from Fig. 1.

We categorize the evolution of the gravity current shape (Fig. 3), nose position (Figs. 4 
and 6), downdip flow fraction (Figs. 4 and 7) and storage efficiency (Figs. 4 and 8). Once 
the dissolution rate begins to fall, the balance between dissolution, draining and inflow 
is disrupted such that previously-arrested gravity current fronts may remobilize, at least 
temporarily. The stop-start motion just described is reminiscent of that described in Bhar-
ath et  al. (2020). In that paper, the authors consider a lower, rather than an upper layer, 
of finite depth. A secondary gravity current is therefore generated once the draining fluid 
reaches the (impermeable) bottom boundary. This secondary gravity current “tugs” on the 
previously-arrested primary gravity current, causing it to resume its propagation, whereas 
the along-jump gravity current is arrested at most one time in the study of Bharath et al. 
(2020), sequential shutdown offers richer dynamical behavior, at least when t∗

1
 is large, i.e., 

several intermediate stops of the gravity current front may occur.
When the source is unsteady, the gravity current rapidly recedes and ultimately disap-

pears from the upper layer following an injection period, t∗
inj

 . Further, the maximum nose 
distance, x∗

Nmax
 and the time, t∗

f
− t∗

inj

 , taken to fully drain following the injection period 
increase rapidly as t∗

1
 is decreased. Comparing the domains where simultaneous and 

sequential shutdown yield comparable predictions, we observe such similarities in the 
opposing limits of large t∗

1
/small t∗

inj

 and small t∗
1
/large t∗

inj

.
In extending the present study, we wish to model the scenario of “inject low and let 

it rise” by examining, in the context of the inverted geometry of Fig. 1, cases where the 
source lies strictly above the permeability jump (Kumar et al. 2005; Bryant et al. 2008). 

Fig. 13  (Color online) Difference in the maximum nose position, Δx∗
Nmax

 , between sequential and simul-
taneous shutdown for a � = 0

◦ and p = 1 . The last two panels correspond to � = 10
◦ and b downdip flow, 

Δx∗
Nmax,d

 , and c updip flow, Δx∗
Nmax,u
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The up- and downdip gravity currents would then be fed by a descending plume that may 
entrain external ambient fluid during its descent. Because the vertical distance of this 
descent will decrease as the gravity currents grow in height, the influx to the gravity cur-
rent would then be time-variable even when the source is itself steady. Such considerations 
add an extra layer of dynamical complication whose resolution would prove informative.
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