
Vol.:(0123456789)

Transport in Porous Media (2022) 145:367–387
https://doi.org/10.1007/s11242-022-01855-8

1 3

REVIEW PAPER

The Potential of Quantum Computing for Geoscience

Muhammad Sahimi1 · Pejman Tahmasebi2

Received: 2 June 2022 / Accepted: 7 September 2022 / Published online: 17 September 2022 
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Characterization and modeling of geomedia, computing their effective flow, transport, 
elastic, and other properties, and simulating various phenomena that occur there consti-
tute some of the most intensive calculations in science and engineering. Over the past 
twenty five years, however, development of quantum computers has made great progress, 
and powerful quantum algorithms have been developed for simulating many important and 
computationally difficult problems, with the potential for enormous speed-up over the most 
efficient classical algorithms. This perspective describes such algorithms and discusses 
their potential applications to problems in geoscience, ranging from reconstruction and 
modeling of geomedia, to simulating fluid flow by the Stokes and Navier-Stokes equations, 
or lattice Boltzmann and lattice gas methods, numerical solution of the advection-diffusion 
equation, pattern recognition in and analysis of big data, machine learning methods, and 
image processing. Although several hurdles remain that must be overcome before practical 
computations with quantum computers, and in particular those associated with geoscience, 
become possible, such as designing fault-tolerant quantum computers, which is still far into 
the future, noisy intermediate-scale computers are already available whose capabilities 
have been demonstrated for various problems.

Keywords Quantum computing · Geoscience · Optimization · Navier-Stokes equation · 
Image processing

1 Introduction

Modeling of almost any phenomenon in geological formations requires three essential 
ingredients: (i) the correct governing equations describing the phenomenon; (ii) a model of 
the formation that represents faithfully the most important features that affect the outcome 
of the phenomenon, and (iii) efficient and large-scale computations, not only for generat-
ing the model, but also for solving the governing equations. The governing equations are 
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usually known, as they are based on the fundamental conservation laws. It is the second 
and third ingredient that necessitate large-scale and intensive computations.

Geological formations are heterogeneous over many distinct and disparate length 
scales, from pore, to core, field, and regional scales. At small length scales, the hetero-
geneities manifest themselves in the morphology of the pore space—the size and shape 
of the pores, the structure of their rough surface, and their pore connectivity. At much 
larger length scales the heterogeneities are represented by the spatial distributions of the 
porosity, flow and transport properties, and the elastic moduli, as well as the distribu-
tions of fractures and faults. Given that the length scales over which such heterogenei-
ties are widely separated and differ by many orders of magnitude, developing a model 
that incorporates the effect of all of them is very difficult, if not impossible. Thus, the 
best strategy may perhaps be a multiscale approach in which the results of simulations 
at one scale can be used as the input to those at a larger and distinct length scale. Even 
within such a framework, the computations are still very intensive, particularly those for 
the largest scales—field and regional.

Aside from the complexity associated with geological formations, one must also 
consider the effect of various factors that are contributed by phenomena with distinct 
physics, without which an accurate model of such systems might not be developed. For 
example, coupling the variables due to chemical, thermal, mechanical, and hydrome-
chanical effects has been shown to represent the complex physics of fluid–solid interac-
tions in geomedia, but such a coupling is computationally very expensive. Furthermore, 
one must also decide the level of complexity and resolution for each of such factors 
that should be used. Clearly, the higher the resolution, the more expensive are the 
computations.

Significant advances have, of course, been made in the computer technology, hence 
helping to increase the speed of computations very significantly. In addition to the 
developments in computer languages that allow one to program computations more effi-
ciently, such as new versions of Fortran and C++, as well as Python (Guttag 2016), 
such technologies as graphics processing units (GPU) (Matthews 2018) and optical 
computing that uses photons (Cohen et  al. 2016) and new materials (Bretscher et  al. 
2021) can increase the speed of computations even further and are still being developed.

But the most promising route to computations with speeds that can even be hardly imag-
ined is, perhaps, through use of quantum computers (QCs), the subject of this perspective.

2  Quantum Computers

In a seminal paper, physicist Paul Benioff (1980) proposed a microscopic quantum mechan-
ical model of computers. The computer was represented by a Turing machine. More spe-
cifically, Benioff showed that for every number n and Turing machine T  one has a quantum 
mechanical Hamiltonian (total energy) HT

n
 and a class of appropriate initial states, such 

that if ΨT

n
(0) is the initial state, then ΨT

n
(t) = exp(−iHT

n
t)ΨT

n
(0) will describe correctly the 

states that correspond to the completion of the first, second, ⋯ , nth computation step of T  
at times t3, t6, ⋯ , t3n . Benioff also showed that, at all times after completion of a step and 
before the beginning of the next, or after 3n steps, the energy of the systems is the same as 
it was at the beginning. In other words, there is no net transfer of energy to the computer as 
the computations move forward. Thus, he suggested that such computers would dissipate 
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no energy and, therefore, produce no heat, which have always been a problem in large com-
puters. Benioof’s paper is now considered as the initial foundation for the QCs. Shortly 
thereafter, Nobel Laureate Richard Feynman suggested (Feynmann, 1985) that QCs could 
potentially perform computations that classical computers can not.

But, how do QCs work?

2.1  Quantum Logic Gates

In classical computers that we have been using, logical operations are carried out using the 
definite position of a physical state for anything that is to be computed. Such states are binary, 
implying that the operations are based on one of two positions, with a single state, such as 1 or 
0, being called the familiar bit. But as the word quantum suggests, the QCs carry out computa-
tions based on probabilities. Their operations utilize the quantum state of an object in order 
to produce what is called a qubit, which are states that are undefined properties of an object 
before they are detected. Thus, as in quantum mechanics, instead of having a well-defined 
position, unmeasured or unoccurred quantum states exist in a mixed superposition of both 1 
and 0, somewhat similar to a coin that is spinning through the air, and whose state is unknown 
to us, until it lands on the ground, or on a table. Quantum computing also takes advantage of 
such properties as entanglement, a phenomenon in which any change in the state of one qubit 
results in changes in the state of another qubit, even if it is “far away.”

It is due to such properties that QCs can, in principle, solve many classes of problems much 
faster than classical computers. For example, using 53 qubits, Arute et al. (2019) reported that 
their QC carried out a specific calculation that is beyond the realm of current practical capa-
bilities of a classical computer. They estimated that the same calculation with even the best 
classical supercomputer will take 10,000 years to complete.

We use the bra-ket notation to denote a quantum state. A ket is of the form �v⟩ and denotes 
a vector v that, physically, represents a state of a quantum system. A bra is of the form ⟨� � and 
represents a linear map that maps each vector in a vector space onto a complex number in the 
complex plane. Then, consider n bits of information. A memory that consists of such informa-
tion has 2n possible states, forming a probability vector in which each entry represents one of 
the 2n states. In other words, the memory is represented by the probability vector. In the limit 
n = 1 a memory is either in the 1 or 0 state. Thus, we have

On the other hand, a quantum memory is expressed in terms of a quantum superposition 
��⟩ of the two states �1⟩ and �0⟩:

where a and b are called quantum amplitudes and are, in principle, complex numbers. One 
must also have |a|2 + |b|2 = 1 , implying that when the quantum memory ��⟩ is measured 
or realized, the states �0⟩ and �1⟩ will occur with probabilities, respectively, of |a|2 and |b|2 , 
as their sum adds up to one (conservation of probabilities).

Given the representation (1), one sets up a quantum logic gate Gn for n bits of information. 
The simplest of such gates is what is referred to as the NOT gate, represented by a matrix �1 
given by �1 = (�1⟩ �0⟩) , which is also referred to as the X gate. Thus,

(1)�1⟩ ∶=
�
0

1

�
, �0⟩ ∶=

�
1

0

�

(2)��⟩ ∶= a�0⟩ + b�1⟩ ,
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so that, �1�0⟩ = �1⟩ and �1�1⟩ = �0⟩ , i.e., the operations are simple matrix multiplications. 
Other gates can also be constructed. For example, with a = 1∕

√
2 and b = −1∕

√
2 one 

obtains the Hadamard- or H-gate:

Similarly, in the limit n = 2 , the two-qubit quantum memory can be in one of four states:

Associated with the four states is the so-called cNOT quantum logic gate �2 , also called 
XOR gate, and is given by, �� ∶= (�00⟩ �01⟩ �11⟩ �10⟩) , or

�2 has some interesting properties, since �2�00⟩ = �00⟩ and �2�01⟩ = �01⟩ , whereas 
�2�11⟩ = �10⟩ and �2�10⟩ = �11⟩ . This implies that if the first qubit is �0⟩ , �2 does nothing 
to either qubit, but if and only if the first qubit is �1⟩ , �2 operates the NOT gate �1 on the 
second qubit. One also has a two-qubit gate, referred to as the SWAP-gate, which, as its 
name suggests, exchanges the state of two qubits with each other:

Clearly, one can define quantum logic gates �3, �4,⋯ , �n for n qubits of information, 
which are, however, interrelated. Thus, quantum computation is represented by a network 
of such quantum logic gates and is executed as a sequence of single-qubit gates �1 and the 
cNOT gate �2 . Although it may seem that such a set of gates is infinitely long, American 
mathematician Robert M. Solovay and, independently, Russian-American physics profes-
sor Alexei Kitaev (Kitaev (1997)) proved that it can be done by a finite set of gates, which 
is now known as the Solovay-Kitaev theorem.

(3)�1 = X gate = NOT gate =

(
0 1

1 0

)
,

(4)H-gate =
1√
2

�
1 1

1 − 1

�
.

(5)�11⟩ ∶=
⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠
, �10⟩ ∶=

⎛
⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎠
, �01⟩ ∶=

⎛
⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎠
, �00⟩ ∶=

⎛
⎜⎜⎜⎝

1

0

0

0

⎞⎟⎟⎟⎠

(6)�2 = XOR gate =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠
.

(7)SWAP-gate =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠
.



371The Potential of Quantum Computing for Geoscience  

1 3

3  Potential Applications to Geoscience

Although we are still away from large-scale complex computations with the QCs, we 
can envision the potential use of such computers for several important classes of prob-
lems in geoscience.

3.1  Reconstruction of Porous Media as an Optimization Problem: Quantum 
Annealer

Developing models of porous media, at both small and large cales, has always been a prob-
lem of great interest to chemical and petroleum engineers, geoscientists, materials scien-
tists, and applied physicists. The model depends, of course, on the amount of data that 
is available, and there are many approaches to modeling of porous media (Sahimi 2011; 
Blunt 2017). One approach to the problem is by reconstruction: Given a certain amount of 
data for a porous medium, one tries to construct a model, or a plausible realization of the 
medium, which not only honors the data, but also provides accurate predictions for those 
properties of the medium for which no data were used in the reconstruction, or they were 
not available. Sahimi and Tahmasebi (2021) provide a comprehensive description of the 
current reconstruction methods.

Several approaches to reconstruction have been proposed, including generative adver-
sarial neural networks (Mosser et al. 2020 and references therein), simulation based on a 
cross-correlation function (Tahmasebi and Sahimi 2013, 2016a, b), and other methods (see 
Sahimi and Tahmasebi (2021) for a review). An important approach is based on optimiza-
tion: One defines a cost or an energy function C as the sum of the squares of the differences 
between the data and the corresponding predictions by the reconstructed model and deter-
mines its global minimum, which would represent the “best” matching model for the given 
data. Determining the global minimum of C is, of course, an optimization problem.

A popular optimization method used extensively is simulated annealing (SA), first pro-
posed by Kirkpatrick et  al. (1983) for statistical mechanical problems, which was then 
developed for modeling of complex porous media, first by Long et al. (1991) and then by 
Yeong and Torquato (1998). The cost or total energy C of the system is defined by

where �j and �j are vectors of the observations or data, and simulated (or reconstructed) 
predictions of the system, respectively, � is a constant, and f (�) is a real monotonic function. 
The data could be of any type, depending on the nature of the system whose global mini-
mum energy (GME) is to be determined. The SA method may be used if one has, (i) a set of 
possible configurations of the system; (ii) a method for systematically changing the configu-
ration; (iii) the cost or energy function to be minimized, and (iv) an annealing schedule of 
changing a temperature-like variable, so that the system can be driven toward its true GME.

Consider, as an example, the development of a model for an oil reservoir or an aqui-
fer. A configuration means a given spatial distribution of the permeabilities and porosi-
ties. A set of configurations means many of such models, or realizations, in which the 
permeability and porosity of any given block of the computational grid representing the 
medium vary from realization to realization. To systematically change the configurations, 
one defines the neighboring states (see below). The energy function is defined by Eq. (5) 
where the observed response can, for example, be the oil production of the reservoir at a 

(8)C =
∑
j

|f (�j) − f (�j)|� ,
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particular point (well) and time, or the tracer concentration at a well. The annealing sched-
ule is defined shortly.

Suppose that {C} denotes the set of all the possible configurations of the system under 
study. Requirement (iii) is a method by which a given configuration is varied. We assign a 
probability function for randomly selecting a configuration, and then decide probabilisti-
cally whether to move the system to a new configuration, or keep it in the current one. One 
may also define the neighborhood NC of C as the set of all the configurations that are very 
“close” to C. Annealing the system means selecting a configuration from the set NC and 
comparing it with C. In order to make the comparison precise, one defines the energy or 
cost function C , the third ingredient of the SA method. The probability distribution of the 
configurations is then assumed to be expressable as the Gibbs’ distribution

where a is a renormalization constant, and T a temperature-like variable.
Because p(C) is a Gibbs’ distribution, C, the current configuration of the system may 

be modeled as a Markov random field, implying that the transition probability for moving 
from C to C′ depends only on the two, and not on the previous configurations farther away 
from the set {C} . Thus, the transition probability can change from configuration to configu-
ration, but it does not depend on the previous configurations that were examined. Given C 
and NC , the transition probability for moving from C to C′ is equal to the probability that 
one selects C′ times the probability that the system would make the transition to configura-
tion C′ . Therefore,

where for the last equation we must have, C ≠ C′ . The final ingredient of the model is 
a schedule for lowering the temperature as the annealing proceeds. This means that as 
the annealing continues, one is less likely to keep those configurations of the system that 
increase the energy. Many annealing schedules have been proposed; for discussions and 
comparison of the schedules see Capek (2018).

The quantum version of the SA is quantum annealing (QA). Whereas the classical SA 
takes advantage of the thermal, or thermal-like, fluctuations in order to determine the GME, 
in the QA the GME is computed by a process based on quantum fluctuations. It is, therefore, 
a procedure for identifying a process that computes the absolute minimum from within a very 
large but finite set of possible solutions. Given the earlier discussions, it should be clear that 
evaluating the cost or energy function in the QA must be done probabilistically, due to the 
large extent of the space of configurations of size 2n for large n qubits of data.

Quantum annealing was originally proposed by Finnila et al. (1994), and in its present 
form by Kadowaki and Nishimori (1998) for the transverse Ising model (TIM). The TIM 
is the quantum version of the classical Ising model, a model of thermal phase transition. 
Similar to its classical version, the TIM consists of a lattice of spins with nearest-neighbor 
interactions that are set by the alignment or anti-alignment of spin projections along the z 
axis (perpendicular to the plane of the lattice), and an external magnetic field perpendicu-
lar to the z axis. The QA procedure for the TIM is as follows (see Heim et al. (2015) for a 

(9)p(C) = a exp[C(C)∕T] ,

(10)p{C → C��C} =

⎧
⎪⎪⎨⎪⎪⎩

0 C� ∉ NC ,

p(C��C) × 1 C� ∈ NC ,

C(C�) − C(C) ≤ 0 ,

p(C��C) exp{[C(C) − C(C�)]∕T} C� ∈ NC ,

C(C�) − C(C) > 0 ,
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careful analysis). (i) The computations begin from a quantum-mechanical superposition of 
the all possible states—the candidate states—to which equal weights are attributed. (ii) The 
system then evolves according to the time-dependent Schrödinger equation. The candidate 
states’ amplitudes change continuously, generating a quantum parallelism according to the 
time-dependent strength of the transverse field, and causing quantum tunneling between 
states. The system remains close to the ground state of the instantaneous Hamiltonian (total 
energy) of the TIM, if the rate of change of the transverse field is slow enough. But if the 
rate is increased, the system might temporarily come out of the ground state and produce 
a higher probability of ending up in the ground state of the final Hamiltonian. When the 
transverse field is finally removed, the system reaches, or should reach, the ground state 
of the classical Ising model that corresponds to the solution of the original optimization 
problem. The success of the QA for random magnets was demonstrated experimentally by 
Brooke et al. (1999).

O’Malley (2018) has proposed the use of the QA to hydrologic inverse problems, which 
in essence is the reconstruction problem that was described above. To apply the QA to 
problems other than the TIM, such as the problem of reconstruction of porous media, as 
well as fluid flow problems (see below), the variables in the problem are viewed as the 
classical degrees of freedom, and the energy or cost functions to be the classical Hamil-
tonian. A suitable term that consists of non-commuting variable(s)—those with nonzero 
commutator with the variables in the original problem—must be introduced artificially 
(“by hand”) in the Hamiltonian, which play the role of the tunneling field in the TIM, i.e., 
the kinetic part. The process is controlled by the strength of tunneling field F  , which is 
the analogue of temperature in the SA (hence the name QA). The quantum Hamiltonian, 
constructed by summing the original function and the non-commuting term, is then used 
in the computations, and the simulation with the Hamiltonian proceeds in the same man-
ner as for the TIM. At the beginning, the strength of the tunneling field is high, so that the 
neighborhood consists of the entire space, but the strength is gradually shrunk and reduced 
to a few configurations. The efficiency of the annealing depends on the choice of the non-
commuting term. Das and Chakrabarti (2008) provide a good review of the QA.

It has been demonstrated that, in certain cases, particularly when the potential energy 
landscape consists of very high but thin energy barriers surrounding shallow local minima, 
the QA can outperform the SA. As discussed earlier, the transition probabilities in the SA 
are proportional to the Boltzmann’s factor exp[−ΔC∕(kBT)] , which depends only on the 
height ΔC of the barriers. If the barrier is very high, it is extremely difficult for thermal 
fluctuations in the SA to push the system out of such local minima. But, as argued by Ray 
et al. (1989), the quantum tunneling probability through the same barrier depends not only 
on the height ΔC , but also on its width w and is approximately given by, exp(−

√
ΔCw∕F) . 

In the presence of quantum tunneling the additional factor w can be of great help in speed-
ing up the computations, because if the barriers are thin enough, i.e., if w ≪

√
ΔC , then 

quantum fluctuations can surely take the system out of the shallow local minima.
The DWave machines (see https://www.dwavesys.com/software) were the first commer-

cially available annealing-based quantum computers (one of which is at the University of 
Southern California). It uses quantum mechanical phenomena of superposition, entangle-
ment,1 and tunneling to explore a given energy landscape and returns the distribution of 

1 When a group of particles, or more generally, elements interact, or share spatial proximity such that the 
quantum state of each of them cannot be described independently of those of the others, including when 
they are separated by large distances, one has quantum entanglement.
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possible energy states with the global minimum, ideally as the state with the highest prob-
ability, hence solving an optimization problem. We will return to this point later.

3.2  Simulating Fluid Flow

Let us first point out that quantum algorithms have been developed for solving partial 
differential equations (Heinrich 2006; Childs et  al. 2021), which can be exploited in the 
numerical simulation of fluid flow problems. The solution of the governing equations for 
fluid flow, either the Navier-Stokes (NS) equation when inertial is important, or the Stokes’ 
equation in the limit of slow flow, is the most important aspect of simulating any flow 
phenomenon in a pore space. There are two approaches for implementing a computational 
approach on a QC, which are as follows.

3.2.1  Direct Quantum‑Computation Algorithms

An important point must first be mentioned: The macroscale behavior of a system in which 
the NS equation is solved by a QC is classical (deterministic), but the microscale dynamics 
is quantum mechanical. The algorithms for solving the governing equations of fluid flow 
may be divided into two groups, namely the lattice gas (LG) and lattice Boltzmann (LB) 
models, and those that solve the NS equations.

Quantum LG and LB Models. To our knowledge, the first direct route for quantum com-
puting of problems in hydrodynamics was proposed by Yepez (1998), (Yepez 2001) who 
considered a LG or LB model. As is well known, the LG model was first proposed by 
pioneered Hardy et  al. (1976) and Frisch et  al. (1986) for numerical simulation of fluid 
flow problems, and represents the precursor to the LB methods that are now used routinely 
in many studies of hydrodynamic phenomena. The sites on a lattice can take on a certain 
number of various states, with the various states being particles with certain velocities. The 
system evolves in discrete time steps, and after each time step, the state at a given site is 
determined by the state of the site itself and its neighbors. The state at each site is purely 
Boolean, namely there either is or is not a particle moving in each direction emanating 
from that site, and at each time step two processes are carried out, namely propagation 
(particle movement between sites) and collision. In order to recover the NS equation in the 
continuum limit, the lattice must have high symmetry, such as the hexagonal lattice in two 
dimensions.

The way the system evolves in a quantum algorithm is as follow. If one has n qubits, the 
quantum state �Ψ(t)⟩ (the wave function of the system) resides in a large Hilbert space with 
2n × 2n dimensions.2 For a short period of time � , a new quantum state �Ψ(t + �)⟩ is gener-
ated by application of a unitary operator (i.e., a bounded linear operator U ∶ H → H on 
a Hilbert space H that satisfies U∗U = UU∗ = I , where U∗ is the adjoint of U, and I is the 
identity operator) represented by a unitary matrix of size 2n × 2n:

If applying exp(iH�∕ℏ) is continued, one obtains an ordered sequence of states, with each 
given a unique time label. For example, if the first state is labeled by t, then the next one is 

(11)�Ψ(t + �)⟩ = exp(iH�∕ℏ)�Ψ(t)⟩ .

2 The Hilbert space generalizes the methods of linear algebra and calculus from finite-dimensional Euclid-
ean vector space to those that may be infinite-dimensional ones. It is a vector space with an inner product 
that defines a distance function for which it is a complete metric space.
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labeled by t + � , and the next by t + 2� , and so on. Thus, one may view the computational 
time as advancing incrementally in unit steps of duration �.

Then, given Eq. (11), Yepez’s formulation of quantum mechaical LG model is as 
follows. A group of qubits resides at each site of the lattice that are acted upon by a 
sequence of quantum gates (see above) whose action is mediated by external control. 
The evolution of the quantum LG is described by a special limit of Eq. (11) in which 
one sets, exp(iH�∕ℏ) ≡ �� , so that

where N is the number of lattice nodes, �i is the spatial position of node i, and S and C 
are, respectively, the streaming and collision operators, which have classical versions in the 
standard (“classical”) LG and LB methods. S is a square orthogonal permutation matrix, 
i.e., one that has only one entry of 1 in each row and each column and 0 elsewhere, such 
that if it is multiplied by another matrix A, it permutes the rows in A if SA is formed, 
or columns in A if AS is formed. S is the same as in the classical LG streaming opera-
tor, which causes particles to move from one site to the next by exchanging qubit states 
between nearest neighboring sites. C, on the other hand, is a unitary collision operator, i.e., 
one whose conjugate is the same as its inverse, which has complex entries, such that the 
quantum LG reduces to the classical one when C is a permutation matrix. If C is stochasti-
cally switched between various permutation matrices during the dynamical evolution of 
the lattice, then the quantum LG reduces to the classical LG.

As is well known, in the classical LG and LB models one has a particle distribution 
function fi(�, t) for the ith local state, which is defined at the mesoscopic scale whose 
numerical estimates are obtained by either ensemble averaging over many independent 
microscopic realizations, or by coarse-grain averaging over space-time blocks with a 
single microscopic system. In the quantum version, fi(�, t) is expressed in terms of the 
quantum mechanical density matrix, �(�, t) = �Ψ(�, t)⟩⟨Ψ(�, t)� , such that

where Tr denotes the trace operation, and �i is the number operator for the ith local state. 
As soon as the particle distribution function is defined in terms of �(�, t) , i.e., in terms of 
�Ψ(�, t)⟩ and ⟨Ψ(�, t)� , one has the usual formulation of the LG and LB models, namely 
expressing the particle density �(�, t) and momentum �(�, t)�(�, t) in terms of fi(�, t) and, 
hence the quantum formulation of the LG and LB models with which quantum computa-
tions can be carried out.

Mezzacapo et al. (2015) further developed the quantum algorithm for the LB model. 
They utilized the similarities between the Dirac and LB equations in order to develop a 
quantum simulator, which is suitable for encoding fluid dynamics phenomena within a 
lattice kinetic formalism. They showed that both the streaming and collision processes 
of the LB dynamics (see above) can be implemented with controlled quantum opera-
tions, using a heralded quantum protocol to encode non-unitary scattering processes.

Solution of NS Equation. Steijl and Barakos (2018), Steijl (2019), and Gaitan (2020) 
proposed algorithms for solving the NS equation with a QC (see also Gaitan (2021), for 
a brief review of the methods). In the work of Steijl, and Steijl and Barakos, quantum 
Fourier transform (QFT) is used in order to develop the numerical algorithm. Recall that 
in the classic discrete Fourier transform, one expresses a vector, � = (x0, x1,⋯ , xN−1)

T in 
terms of another vector y,

(12)�Ψ(�1, �2,⋯ , �N ;t + �)⟩ = ���Ψ(�1, �2,⋯ , �N ;t)⟩

(13)fi(�, t) = Tr[�(�, t)�i] ,
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Similarly, the QFT expresses a quantum state �Ψ⟩ = ∑N−1

i=0
Ψi�i⟩ in terms of a quantum state ∑N−1

i=0
yi�i⟩ , given by

It has been shown (Nielsen and Chuang 2000) that the QFT can be computed highly effi-
ciently on a QC with a decomposition into a product of simpler unitary matrices. Using a 
simple decomposition, the discrete FT on 2n amplitudes can be implemented as a quantum 
circuit consisting of only O(n2) Hadamard and controlled phase shift gates (see above), 
with n being the number of qubits, which should be compared with the classical discrete 
FT that takes O(n2n) gates, with n being the number of bits, which is exponentially larger 
than the former. In addition, the QFT is now a part of many quantum algorithms, such 
as Shor’s algorithm (1997) for factorization that is used in the solution of systems of lin-
ear equations, as well as computing the discrete logarithm. Thus, using the QFT, one can 
take the governing equations to the QFT space, and compute the numerical solution with a 
QFT. Post-processing of the results will yield the solution in real space.

Gaitan (2020) used a more direct approach for solving the NS equation using a QC. He 
discretized the spatial derivatives by finite difference, hence reducing them to algebraic 
equations. When the resulting equation is rearranged, one obtains the following equation 
for the velocity field v of the fluid,

which constitutes a set of ordinary differential equations (ODEs). This is the crucial point, 
because there is already an (almost) optimal quantum algorithm for computing the numeri-
cal solution of a set of nonlinear ODEs (Kacewicz (2006)). Therefore, Gaitan (2020) 
showed that by combining spatial discretization and the quantum algorithm for solving 
ODEs, one obtains a quantum algorithm for solving the NS equation.

The quantum algorithm for solving ODEs utilizes the quantum amplitude estimation 
algorithm (QAEA), developed by Brassard et  al. (2000), to obtain an approximate solu-
tion of ODEs. The QAEA is a generalization of a search algorithm developed by Grover 
(1996), who developed a quantum algorithm for an unstructured search that, with high 
probability, identifies the unique input to “a black box” function that produces a particular 
output value. It is a nearly optimal algorithm since it utilizes only O(

√
M) evaluations of 

the function, where M is the size of the function’s domain. The analogous problem in clas-
sical computation cannot be solved in fewer than O(M) evaluations.

3.2.2  Solution as an Optimization Problem

When the governing equations for flow, transport, deformation, or wave propagation are 
to be solved in a given geomedium, they are first discretized by, for example, the finite-
difference or finite-element method. If the equations are linear, one naturally obtains a 

(14)� =
1√
N

N−1�
n=0

xn exp(−2�kni∕N) , k = 1, 2,⋯ ,N − 1 .

(15)� =
1√
N

N−1�
n=0

Ψn exp(2�kni∕N) , k = 1, 2,⋯ ,N − 1 .

(16)
d�

dt
= F(�) ,
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large set of linear equations. If they are nonlinear, then they are linearized so that they 
can be solved by an iterative method, such as Newton’s iteration. In both cases, one 
must solve a large set of linear equations.

Solving such a set of equations by a quantum algorithm has distinct advantage over 
the classical methods. Quantum computing is based on matrices acting on vectors in 
high-dimensional space and, therefore, it can be perfectly adopted for solving the set of 
equations much faster than any classical method. Indeed, it has been demonstrated that, 
by constructing matrix transformations, quantum computers perform common linear 
algebraic operations exponentially faster than their best efficient classical counterparts 
((Harrow et al., 2009; see also the next section).

But there is another way of formulating the problem by a quantum algorithm. Vaez 
Allaei and Sahimi (2005) demonstrated how the solution of a set of linear equations can 
be obtained more efficiently, if formulated as an optimization problem. Thus, just as the 
reconstruction problem described earlier can be formulated as an optimization problem, 
to which quantum optimization, and in particular quantum annealing, can be applied, 
one can also take the same approach in the present problem.

Since the quantum processor unit (QPU) of the DWave QC is based on annealing, it 
may be used for the problem of minimizing an unconstrained binary objective or cost 
function (see above), which is also known as the quadratic unconstrained binary opti-
mization (QUBO) problem. Ray et  al. (2019) used the second-order central finite-dif-
ference scheme to discretize the spatial derivatives in the NS equation, and backward/
implicit Euler scheme for the time derivative that describes the dynamic evolution of 
the flow field. Then, they mapped the resulting set of equations onto a QUBO form and 
solved the resulting problem with the DWave quantum annealer. To do so, they used a 
two-step approach. First, they converted real variables (the discretized fluid velocity at 
the grid points) to binary variables by using a fixed-point approximation, and then uti-
lized a linear least-squares formulation to transform the problem to one of optimization 
with binary variables.

Fixed-point representation is a discrete representation for real data that have a fixed 
number of digits after a radix/fixed point and, therefore, it represents a real number by scal-
ing an integer value with an implicit scaling factor that remains fixed throughout the com-
putations (O’Malley et al. 2016). Therefore, the solution vi at grid point i is represented by

where m represents the precision of the representation, j0 is the position of the fixed point, 
and qj is the jth binary variable. Thus, if we fix the precision and vary j0 , we obtain various 
ranges of decimal values. For example (Ray et al. (2019)), for n = 1, 2,⋯ , 6 the maximum 
bound for real values with fixed point after position 1 are, respectively, 1, 1.5, 1.75, 1.875, 
1.9375, and 1.96875, with the leftmost position being the starting bit. Note that increasing 
the precision n by one increases the range by an amount 2n+1 , whereas moving the fixed 
point position by one would lead to doubling the maximum value.

(17)vi =

m∑
j=1

2j0−1qj ,
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3.3  Burgers’ Equation

Burgers’ equation, first introduced by Bateman (1915), but studied extensively by Burg-
ers (1948), is a simplified, 1D version of the Navier-Stokes equation,

and has been used for studying turbulence. If the spatial derivatives are discretized over a 
discrete space xi with i = 0, 1, 2,⋯ ,m with x0 and xm representing the boundaries of the 
system, one reduces the Burgers’ equation to m − 2 ODEs in the time domain. Thus, as dis-
cussed above, one can employ the quantum algorithm developed by Kacewicz (2006) for 
solving the nonlinear ODEs to compute the numerical solution of the Burgers’ equation, an 
approach suggested by Oz et al. (2022). Their analysis indicated that the quantum solver 
for ODEs provides very significant speed-up over the classical solvers. Clearly, that is also 
true of the full NS equation. Note that Burgers’ equation has found many applications other 
than those in hydrodynamics.

3.4  Mass Transport and Groundwater Contamination

Dispersion in flow through a porous medium is a highly important problem that appears in 
a wide variety of phenomena, ranging from spreading of contamination in groundwater, to 
miscible displacement and enhanced oil recovery, and operation of packed-bed reactors. 
As is well known (Sahimi (2011); Blunt (2017)), dispersion is modeled by the convec-
tive-diffusion equation (CDE), also referred to as the advection-diffusion equation (ADE). 
Budinski (2021) proposed a quantum algorithm for solving the CDE by the LB method 
(see above), the classical version of which was developed by many; see, for example, Shi 
and Guo (2009) and Chai and Zhao (2013). His algorithm is composed of two major steps. 
In the first step, equilibrium distribution function fi(�, t) , presented in the form of a non-
unitary diagonal matrix, is quantum circuit implemented by using a standard-form encod-
ing approach. In the second step, the quantum walk (QW) procedure is used in order to 
implement the propagation step of the LB approach. Budinski (2021) developed his algo-
rithm as a series of single- and two-qubit gates, as well as multiple-input controlled-NOT 
gates (see above).

The QWs are quantum analogues of classical random walks. As one may expect, unlike 
the classical random walk in which the walker occupies definite states and the random-
ness arises due to stochastic transitions between states, in the QWs randomness is due to 
quantum superposition of the states; non-random, reversible unitary evolution (see above), 
and collapse of the wave function �Ψ(�, t)⟩ due to measuring the the state. Childs (2009) 
showed that a QW can be a tool for universal quantum computations, while Shakeel 2020 
presented an efficient algorithm for implementing a QW.

3.5  Machine Learning

Machine learning (ML) algorithms have begun to play a leading role in breakthroughs in 
science. It is, therefore, becoming increasingly clear that it is imperative to adopt advanced 
ML methods for problems in geoscience, because they may enable researchers to solve 

(18)�v

�t
+ v

�v

�x
= �

�2v

�x2
,
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many problems that would otherwise be very difficult, if not impossible, to address. At the 
same time, one can use the already existing extensive knowledge of geomedia to endow the 
ML algorithms in order to develop novel physics-guided approaches and models, especially 
modeling of fluid flow, transport, deformation, geochemical reactions, and wave propaga-
tion in such media. Indeed, there has been an explosion of papers reporting on various 
applications of the ML algorithms to problems in geoscience; for a compreghensive recent 
review, see Tahmasebi et al. (2020).

But, similar to every major computational problem, application of the ML methods to 
geoscience hits the ultimate wall of speed and duration of the calculations. A way out of 
the problem may perhaps be through quantum machine learning (QML) algorithms (Sasaki 
and Carlini 2002; Almuer et al. 2013; Schuld et al. 2014; Biamonte et al. 2018), because a 
wide variety of methods of data analysis, as well as ML algorithms are based on carrying 
out matrix operations acting on vectors in a high-dimensional vector space, which is the 
essence of quantum mechanics and quantum computations.

Recall, as described above, that the quantum state of n qubits is a vector in complex 
vector space whose dimension is 2n , and that quantum logic operations or measurements 
performed on qubits simply multiply the corresponding state vector by 2n × 2n matrices. It 
has been demonstrated that, by constructing such matrix transformations, quantum com-
puters perform common linear algebraic operations exponentially faster than their best 
efficient classical counterparts (Harrow et  al., 2009). Examples include Fourier transfor-
mation (Shor 1997) that was already described, determining eigenvectors and eigenval-
ues of a large matrix (Nielsen and Chuang (2000)), and solving linear sets of equations 
over 2n-dimensional vector spaces in time polynomial in n. Note that the original variant 
assumed that one has a sparse well-conditioned matrix, which is what one typically has 
in solving the discretized equations of flow, transport, deformation, and wave propagation 
(see above). In applying the ML algorithms, the matrix may not necessarily turn out to be 
sparse. But that assumption has been relaxed in several newer quantum computing algo-
rithms (Wossnig et  al. (2018)). Several quantum algorithms, which can be used as sub-
routines when linear algebra techniques, are employed in quantum machine learning are 
described by Biamonte et al. (2018).

As the review by Tahmasebi et  al. (2020) discussed, classical deep neural networks 
(DNN) have been shown to be highly accurate ML tools. Thus, they have inspired the 
development of deep quantum learning algoroithms. In particular, quantum annealers 
described earlier are well-suited for constructing deep quantum learning networks (see, for 
example, Adachi and Henderson (2015)). The starting point is the Boltzmann machine, 
which is the simplest DNN that can be quantized. Its classical version consists of bits with 
tunable interactions that are adjusted so that the machine can be trained, and the thermal 
statistics of the bits, which are described by the Boltzmann–Gibbs distribution, reproduce 
the statistics of the data. To quantize the Boltzmann machine, one takes an approach simi-
lar to quantum annealing, namely, one remodels the neural network as a set of interacting 
quantum spins, corresponding to a tunable Ising model, described earlier. The input neu-
rons are then initialized in the Boltzmann machine and are kept as a fixed state. The system 
is then thermalized, and the output qubits represent the solution to the problem in hand.

A great advantage of deep quantum learning is that it does not need a large QC. In par-
ticular, quantum annealers, described earlier, are well suited for the application of quantum 
deep learning, and are much easier to construct and scale up than a general-purpose QC, 
which may explain why they have been commercialized, a well-known example of which is 
the aforementioned DWave quantum annealer.
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Training of fully connected Boltzmann machine is highly intensive computationally, 
but because thermalization of a system by quantum algorithms is quadratically faster than 
their classical counterpart (Temme et al. 2011; Yung and Aspuru-Guzik 2012) Chowdhury 
and Somma (2017), it has become completely practical. Given that the neuron activation 
pattern in the Boltzmann machine is stochastic, one bottleneck of training the Boltzmann 
machine by the classical algorithms is the need for sampling the data repeatedly in order 
to find success probabilities, which is time consuming. But quantum algorithms sample 
the data very efficiently, since quantum coherence reduces quadratically the number of the 
samples needed.3 Moreover, quantum algorithms require quadratically fewer accesses to 
the training data than classical methods, implying that they train a DNN using a large data 
set, but reading only a very small fraction of all the training vectors.

3.6  Pattern Recognition and Analysis of Big Data

Over the past decade significant breakthroughs have been achieved in exploring the so-
called big data in geoscience, recognition of complex patterns, and predicting intricate var-
iables. In particular, big scientific datasets are providing new solutions to many problems 
as the paradigm shifts from being model-driven to data-driven approaches using ML algo-
rithms. One may define big data based on two distinct perspectives: (i) datasets that can-
not be acquired, managed, or processed on common computers within an acceptable time 
(Mayer-Schonberger and Cukier 2013), and (ii) datasets that are characterized based on the 
so-called 4V, namely volume, variety, veracity, and velocity (Douglas 2012), an example of 
which is Digital Earth (De Longueville et al. 2010)

The question of how to exploit big data in geoscience is gaining increasing attention and 
importance. For example, in addition to the fact that, at least over the next two decades we 
should still be modeling oil, gas and shale reservoirs to which quantom computing algo-
rithms are completely relevant, as we move away from fossil energy and turning to batter-
ies, we need more cobalt. Therefore, the question is, how can we use big data to discover 
the next major mineral deposits of cobalt? As the environment, both soil and the atmos-
phere, become more polluted, can we use big data from geochemical analysis to discover 
the polluting factors of groundwater aquifers? As addressing the problem of climate change 
becomes extremely urgent, can we use past big data from landslides or fires to identify a 
climate change signal. If we can, can they be used to predict future events?

It should be clear that quantum computing algorithms can contribute much to the pro-
cessing of big data in various ways: (i) If the data are to be analyzed by the traditional 
statistical methods, then, since such analyses involve considerable matrix and vector opera-
tions, such algorithms will speed up the computations (see above). (ii) More recently, how-
ever, the ML algorithms have been used for analyzing big data, pattern recognition, etc., 
which involve dimensionality reduction, clustering, and classification. In particular, several 
ML algorithms have been used that include deep learning approaches that create and sift 
through data-driven features; incremental learning algorithms in associative memory archi-
tectures that adapt seamlessly to future datasets and sources; faceted learning that learns 

3 Recall that in quantum mechanics, particles, such as electrons, are described by a wave function. As long 
as there exists a definite phase relation between different states, the system is said to be coherent. Such a 
phase relationship is necessary to carry out quantum computing on quantum information encoded in quan-
tum states, with coherence preserved under the laws of quantum physics.
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the hierarchical structure of a data set, and multitask learning that learns a number of pre-
dictive functions in parallel.

Given the discussions in the last section regarding quantum computing approaches that 
accelerate the ML algorithms, it is clear that if the analysis of big data is to be carried 
out by a ML algorithm, then quantum computing will accelerate the computations very 
significantly.

3.7  Image Processing

Accounting for the morphology of geomedia that are highly heterogeneous over multiple 
length scale is a difficult problem. Although two- or three-dimensional images of porous 
formations may be obtained and analyzed, they either may not capture the smallest features 
of the geomedia, or they may be too small to provide an accurate representation of the 
system, or both. There may also be artifacts in the images that distort them and must be 
removed before the images are analyzed. Thus, digital image processing that increases the 
resolution of the images, and addresses other problems that distort their contents is often 
necessary. The development of the science of image processing began in the 1960s and 
continues to date.

Vlasov (1997) was perhaps the first who used a quantum computational algorithm for 
recognizing orthogonal images. Later on, Venegas-Andraca and Bose (2003) developed 
what they called the qubit lattice, which was the first general quantum algorithm for stor-
ing, processing and retrieving images. Latorre (2005) developed quantum algorithms for 
image compressions and entanglement, while Venegas-Andraca and Ball (2010) demon-
strated that maximally entangled qubits can be used to reconstruct images without using 
any additional information (see also above regarding reconstruction). Thus, the science of 
quantum image processing (QIMP) has undergone considerable developments (see Yan 
et al. (2016), for a review) to the extent that the QIMP algorithms have been developed for 
feature extraction (Zhang et al. 2015), segmentation (Caraiman and Manta 2014), image 
comparison (Yan et al. 2013), filtering (Caraiman and Manta 2013), classification (Ruan 
et al. 2016), and stabilization (Yan et al. 2016) of images.

Clearly, all such advances can be used for processing and, therefore, analyzing images 
of geomedia, which are computationally very intensive when done by the classical meth-
ods. There is also another approach to enhancing images of geomedia that can benefit from 
quantum algorithms. Kamrava et al. (2019) proposed a novel hybrid algorithm by which 
a stochastic reconstruction method (see Sect.  3.1) is used to generate a large number of 
plausible images of a porous formation, using very few input images at very low cost, and 
then train a deep learning convolutional network by the stochastic realizations. Therefore, 
it is clear that the application of quantum algorithms to the ML and DNN computations 
that were already described may be combined with the method proposed by Kamrava et al. 
(2019) in order to speed up the image processing considerably.

4  Hurdles to Practical Use of Quantum Computing in Geoscience

While development of many quantum computation algorithms for solving problems that 
have direct applications to geoscience is truly exciting, there are still significant hurdles to 
their practical implementations, some of which are as follows.
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4.1  Quantum Decoherence and Noiseless Computations

As is well known and understood, quantum mechanics describes particles by wave function 
in order to represent their quantum state. If there is a definite phase relation between dif-
ferent states, then the system is coherent, which is also necessary for carrying out quantum 
computing. Although the laws of quantum mechanics preserve coherence, the condition for 
it is that the system should remain isolated. But, a system in complete isolation is imprac-
tical since, for example, one would like to carry out some measurements. Thus, if a QC 
is not in total isolation, its coherence is shared with the surrounding environment, which 
interacts with the qbits and, as a result, cohence may be lost over time, a process referred to 
as quantum decoherence, which is manifested by the presence of noise.

The practical implication of quantum decoherence for quantum computing is enor-
mous, since a key question is whether in practice QCs can carry out long computations 
without noise rendering the results useless. According to the quantum threshold theorem, 
or quantum fault-tolerance theorem, a QC with a physical error rate less than a certain 
threshold can, through the application of quantum error correction schemes, suppress the 
logical error rate to arbitrarily small levels. Thus, at least theoretically, QCs can be made 
fault-tolerant.

But, although a fault-tolerant QC is still far into the future, noisy intermediate-scale 
quantum (NISQ) devices are available whose capabilities have been demonstrated for var-
ious problems, such as electronic structure calculations (O’Malley et  al. 2016; Kandala 
et al. 2017), simulations of spectral functions (Chiesa et al. 2019; Francis et al. 2020), and 
out-of-equilibrium dynamical systems (Lamm and Lawrence (2018); Smith et al. (2019)). 
Richter and Pal (2021) demonstrated that NISQ devices can be simulated problems in 
hydrodynamics, the most important problem in geoscience when simulating fluid flow and 
transport processes.

(ii) Another difficulty is constructing a QC with a very large number of qubits, which 
are necessary for certain types of problems dealing with complex processes in complex 
media. The largest number of qubits in a QC that the authors are aware of has 256 qubits 
in a special QC, dubbed QuEra (see https://www.quera.com/), designed for solving certain 
problems, and announced in November 2021. The designers expect to build another QC 
with 1000 qubits within the next two years. This is still far from what is needed to address 
the type of complex problems considered in this perspective. But progress is being made 
steadily.

(iii) Solving different problems by QCs may require the atoms that made the qubits 
to be placed in different configurations. The implication is that certain classes of prob-
lems require their own specific design of certain types of QCs. Of course, if such QCs 
are designed, the speed-up in the computations will also be very large. This has also been 
the case with classical computers. For example, special-purpose computers were built for 
the aforementioned Ising model (Taiji et al. 1988; Talapov et al. 1993) and for computing 
conductivity of heterogeneous materials (Normand and Herrmann 1995) with considerable 
speed-ups.
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5  Summary

Characterization and modeling of geomedia, computing their effective flow, transport, 
elastic, and other properties, and simulating various phenomena that occur there consti-
tute some of the most intensive calculations in science and engineering. Although the 
speed of the classical computers has increased tremendously, and many efficient com-
putational algorithms have also helped increassing the speed of large-scale calculations, 
there are still many problems in geoscience that are difficult to simulate with the clas-
sical computers, as they take very long times. On the other hand, over the past twenty-
five years, development of quantum computers has made great progress, and powerful 
quantum computations algorithms have been proposed for simulating many important 
and computationally difficult problems, with potentially large speed-ups over the most 
efficient classical algorithms, if implemented in a QC.

This perspective described such algorithms and discussed their potential applications 
to problems to geomedia. Figure 1 summarizes such potential applications, which range 
anywhere from reconstruction and modeling of such media, to simulating fluid flow by 
the Navier-Stokes equations or by lattice Boltzmann method, numerical solution of the 
advection-diffusion equation, pattern recognition in big data and their analysis, machine 
learning methods, and image processing.

Although a fault-tolerant QC is still far into the future, noisy intermediate-scale QCs 
are already available whose capabilities have been demonstrated for various problems. 
They include the aforementioned DWave, with the University of Southern California 

Fig. 1  Summary of potential applications of quantum computational algorithms to problems in geoscience
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being the first academic institution operating one since 2016 (see, for example, Liu et al. 
2020), Honeywell’s QC, and IBM’s Big Blue machine with one hundred qubits.

It may turn out that, even if QCs become fully practical for complex problems, not all 
the problems associated with geomedia and geoscience can benefit from such comput-
ers. But, given that many quantum computational algorithms have already been devel-
oped, it might be the time for geoscientists, including those who work in the areas of 
characterization and modeling of porous media and fluid flow and transport therein, to 
begin thinking, planning, and eventually executing research problems using quantum 
computers over the next 5–10 years.

Funding The authors have not disclosed any funding.

Declarations 

 Conflict of Interest The authors declare no conflict of interests with anyone or any organization.

References

Adachi, S.H., Henderson, M.P.: Application of quantum annealing to training of deep neural networks; 
https://arxiv.org/abs/arXiv:1510.06356 (2015)

Almuer, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90, 261 
(2013)

Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, 
F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Duns-
worth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, 
S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., 
Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kos-
tritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrś, S., McClean, J.R., McEwen, 
M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., 
Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., 
Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, 
B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a 
programmable superconducting processor. Nature 574, 505 (2019)

Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43, 163 (1915)
Benioff, P.: The computer as a physical system: a microscopic quantum mechanical hamiltonian model of 

computers as represented by turing machines. J. Stat. Phys. 22, 563 (1980)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. 

arXiv: 1611. 09347 v2 [quant-ph] (10 May 2018)
Blunt, M.J.: Multiphase flow in permeable media: a pore-scale perspective. Cambridge University Press, 

Cambridge (2017)
Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. http://arXiv.

org/quant-ph/0005055 (2000)
Bretscher, H.M., Andrich, P., Telang, P., Singh, A., Harnagea, L., Sood, A.K., Rao, A.: Ultrafast melting and 

recovery of collective order in the excitonic insulator Ta2NiSe5. Nat. Commun. 12, 1699 (2021)
Brooke, J., Bitko, D., Rosenbaum, T.F., Aeppli, G.: Quantum annealing of a disordered magnet. Science 

284, 779 (1999)
Budinski, L.: Quantum algorithm for the advection-diffusion equation simulated with the lattice Boltzmann 

method. Quantum Inf. Process. 20, 57 (2021)
Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171 (1948)
Capek, P.: On the importance of simulated annealing algorithms for stochastic reconstruction constrained by 

low-order microstructural descriptors. Transp. Porous Media 125, 59 (2018)
Caraiman, S., Manta, V.: Quantum image filtering in the frequency domain. Adv. Elect. Comput. Eng. 13, 

77 (2013)

http://arxiv.org/abs/1611.09347v2


385The Potential of Quantum Computing for Geoscience  

1 3

Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46 
(2014)

Chai, Z., Zhao, T.S.: Lattice Boltzmann model for the convection-diffusion equation. Phys. Rev. E 87, 
063309 (2013)

Chiesa, A., Tacchino, F., Grossi, M., Santini, P., Tavernelli, I., Gerace, D., Carretta, S.: Quantum hardware 
simulating four-dimensional inelastic neutron scattering. Nat. Phys. 15, 455 (2019)

Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)
Childs, A.M., Liu, J.-P., Ostrander, A.: High-precision quantum algorithms for partial differential equations. 

Quantum 5, 574 (2021)
Chowdhury, A.N., Somma, R.D.: Quantum algorithms for Gibbs sampling and hitting-time estimation. 

Quant. Inf. Comp. 17, 0041 (2017)
Cohen, E., Dolev, S., Rosenblit, M.: All-optical design for inherently energy-conserving reversible gates and 

circuits. Nat. Commun. 7, 11424 (2016)
Das, A., Chakrabarti, B.K.: Quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 

1061 (2008)
De Longueville, B., Annoni, A., Schade, S., et al.: Digital earth’s nervous system for crisis events: real-time 

sensor web enablement of volunteered geographic information. Int. J. Digit. Earth 3, 242 (2010)
Douglas, L.: The importance of big data: a definition. Gartner (2012). https://www.gartner.com/

doc/2057415
Finnila, A.B., Gomez, M.A., Sebenik, C., Stenson, C., Doll, J.D.: Quantum annealing: a new method for 

minimizing multidimensional functions. Chem. Phys. Lett. 219, 343 (1994)
Feynmann, R.P.: Quantum mechanical computers, Opt. News 11(2), 11 (1985).
Francis, A., Freericks, J.K., Kemper, A.F.: Quantum computation of magnon spectra. Phys. Rev. B 101, 

014411 (2020)
Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. 

Lett. 56, 1505 (1986)
Gaitan, F.: Finding flows of a Navier-Stokes fluid through quantum computing. npj Quantum Inf. 6, 61 

(2020)
Gaitan, F.: Finding solutions of the Navier-Stokes equations through quantum computing - recent pro-

gress, a generalization, and next steps forward. Adv. Quantum Technol. paper 2100055 (2021)
Grover, L.K.: A fast quantum mechanical algorithm for database search. Proceedings of the 28th annual 

ACM symposium on Theory of Computing (1996), p. 212 https://doi.org/10.1145/237814.237866
Guttag, J.V.: Introduction to computation and programming using Python: with application to under-

standing data. MIT Press, Cambridge (2016)
Hardy, J., de Pazzis, O., Pomeau, Y.: Molecular dynamics of a classical lattice gas: transport properties 

and time correlation functions. Phys. Rev. A 13, 1949 (1976)
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 

103, 150502 (2009)
Heim, B., Rønnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin 

glasses. Science 348, 215 (2015)
Heinrich, S.: The quantum query complexity of elliptic PDE. J. Complex. 22, 220 (2006)
Kacewicz, B.: Almost optimal solution of initial-value problems by randomized and quantum algo-

rithms. J. Complex. 22, 676 (2006)
Kamrava, S., Tahmasebi, P., Sahimi, M.: Enhancing images of shale formations by a hybrid stochastic 

and deep learning algorithm. Neural Netw. 118, 310 (2019)
Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-

efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 
242 (2017)

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671 (1983)
Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52, 1191 (1997)
Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 

(1998)
Lamm, H., Lawrence, S.: Simulation of nonequilibrium dynamics on a quantum computer. Phys. Rev. 

Lett. 121, 170501 (2018)
Latorre, J.I.: Image compression and entanglement (2005). arXiv: quant- ph/ 05100 31
Liu, J., Mohan, A., Kalia, R.K., Nakano, A., Nomura, K.-I., Vashishta, P., Yao, K.-T.: Boltzmann machine 

modeling of layered MoS
2
 synthesis on a quantum annealer. Comput. Mater. Sci. 173, 109429 (2020)

Long, J.C.S., Karasaki, K., Davey, A., Peterson, I., Landsfeld, M., Kemeny, J., Martel, S.: Inverse approach 
to the construction of fracture hydrology models conditioned by geophysical data: an example from the 
validation exercises at the stripa mine. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28, 121 (1991)

http://arxiv.org/abs/quant-ph/0510031


386 M. Sahimi, P. Tahmasebi 

1 3

Matthews, D.: Supercharge your data wrangling with a graphics card. Nature 562, 151 (2018)
Mayer-Schonberger, V., Cukier, K.: Big Data: A Revolution that will Transform How We Live, Work 

and Think. Houghton Mifflin Harcourt Publishing Company, New York, (2013)
Mezzacapo, A., Sanz, M., Lamata, L., Egusquiza, I.L., Succi, S., Solano, E.: Quantum simulator for 

transport phenomena in fluid flows. Sci. Rep. 5, 13153 (2015)
Mosser, L., Dubrule, O., Blunt, M.J.: Stochastic seismic waveform inversion using generative adversarial 

networks as a geological prior. Math. Geosci. 52, 53 (2020)
Nielsen, M., Chuang, I.: Quantum Comput. Quantum Inf. Cambridge University Press, Cambridge (2000)
Normand, J.-M., Herrmann, H.J.: Precise determination of the conductivity exponent of 3d percolation 

using “percola’’. Int. J. Mod. Phys. C 6, 813 (1995)
O’Malley, D.: An approach to quantum-computational hydrologic inverse analysis. Sci. Rep. 8, 6919 (2018)
O’Malley, P.J.J., Babbush, R., Kivlichan, I.D., Romero, J., McClean, J.R., Barends, R., Kelly, J., 

Roushan, P., Tranter, A., Ding, N., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., 
Fowler, A.G., Jeffrey, E., Megrant, A., Mutus, J.Y., Neill, C., Quintana, C., Sank, D., Vainsencher, 
A., Wenner, J., White, T.C., Coveney, P.V., Love, P.J., Neven, H., Aspuru-Guzik, A., Martinis, 
J.M.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016)

Oz, F., Vuppala, R.K.S.S., Kara, K., Gaitan, F.: Solving Burgers’ equation with quantum computing. 
Quantum Inf. Process. 21, 30 (2022)

Ray, N., Banerjee, T., Nadiga, B., Karra, S.: Towards solving the Navier-Stokes equation on quantum 
computers. https:// arXiv. org/ abs/ 1904. 09033 (2019)

Ray, P., Chakrabarti, B.K., Chakrabarti, K.: Sherrington-Kirkpatrick model in a transverse field: absence of 
replica symmetry breaking due to quantum fluctuations. Phys. Rev. B 39, 11828 (1989)

Richter, J., Pal, A.: Simulating hydrodynamics on noisy intermediate-scale quantum devices with random 
circuits. Phys. Rev. Lett. 126, 230501 (2021)

Ruan, Y., Chen, H., Tan, J.: Quantum computation for large-scale image classification. Quantum Inform. 
Process. 15, 4049 (2016)

Sahimi, M.: Flow through porous media and fractured rock, 2nd edn. Wiley, Weinheim (2011)
Sahimi, M., Tahmasebi, P.: Reconstruction of heterogeneous materials and media: basic principles, compu-

tational algorithms, and applications. Phys. Rep. 939, 1 (2021)
Shakeel, A.: Efficient and scalable quantum walk algorithms via the quantum Fourier transform. Quantum 

Inf. Process. 19, (2020); https://dl.acm.org/doi/abs/10.1007/s11128-020-02834-y
Sasaki, M., Carlini, A.: Quantum learning and universal quantum matching machine. Phys. Rev. A 66, 

022303 (2002)
Schuld, M., Sinayskiy, I., Petruccione, F. An introduction to quantum machine learning. arXiv: 1409. 3097v1 

[quant-ph] (2014)
Shi, B., Guo, Z.: Lattice Boltzmann model for nonlinear convection-diffusion equations. Phys. Rev. E 79, 

016701 (2009)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum com-

puter. SIAM J. Comput. 26, 1484 (1997)
Smith, A., Kim, M.S., Pollmann, F., Knolle, J.: Simulating quantum many-body dynamics on a current digi-

tal quantum computer. npj Quantum Inf. 5, 106 (2019)
Steijl, R.: Quantum algorithms for fluid simulations. IntechOpen (2019). https:// doi. org/ 10. 5772/ Intec hopen. 

86685
Steijl, R., Barakos, G.N.: Parallel evaluation of quantum algorithms for computational fluid dynamics. Com-

put. Fluids 173, 22 (2018)
Tahmasebi, P., Kamrava, S., Bai, T., Sahimi, M.: Machine learning in geo- and environmental sciences: 

from small to large scale. Adv. Water Resour. 142, 103619 (2020)
Tahmasebi, P., Sahimi, M.: Cross-correlation function for accurate reconstruction of heterogeneous media. 

Phys. Rev. Lett. 110, 078002 (2013)
Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling. I: Graph theory and pattern 

adjustment. Water Resour. Res. 52, 2015WR017806 (2016a)
Tahmasebi, P., Sahimi, M.: Enhancing multiple-point geostatistical modeling. II: Iterative simulation and 

multiple distance functions. Water Resour. Res. 52, 2015WR017807 (2016b)
Taiji, M., Ito, N., Suzuki, M.: Special purpose computer system for Ising models. Rev. Sci. Instrum. 59, 

2483 (1988)
Talapov, A.L., Andreichenko, V.B., Dotsenko, V.S., Shchur, L.N.: Special-purpose computers for the ran-

dom Ising model. In: Landau, D.P., Mon, K.K., Schüttler, H.B. (eds), Computer Simulation Studies 
in Condensed-Matter Physics IV, Springer Proceedings in Physics, 72 (Springer, Berlin, 1993), p. 79

Temme, K., Osborne, T.J., Vollbrecht, K.G., Poulin, D., Verstraete, F.: Quantum metropolis sampling. 
Nature 471, 87 (2011)

https://arXiv.org/abs/1904.09033
http://arxiv.org/abs/1409.3097v1
https://doi.org/10.5772/Intechopen.86685
https://doi.org/10.5772/Intechopen.86685


387The Potential of Quantum Computing for Geoscience  

1 3

Vaez Allaei, S.M., Sahimi, M.: Computing transport properties of heterogeneous media by an optimization 
method. Int. J. Mod. Phys. C 16, 1 (2005)

Venegas-Andraca, S.E., Ball, J.: Processing images in entangled quantum systems. Quantum Inf. Process. 
9, 1 (2010)

Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: New trends in artificial 
intelligence. Proceedings of the 2003 IJCAI International Conference on Artificial Intelligence (2003), 
p. 1563

Vlasov, A.Y.: Quantum computations and images recognition. arXiv: quant- ph/ 97030 10 (1997)
Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning. https://arxiv.org/abs/1412.3489 (2014)
Wossnig, L., Zhao, Z., Prakash, A.: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 

120, 050502 (2018)
Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. 

Process. 15, 1 (2016)
Yan, F., Iliyasu, A., Le, P., Sun, B., Dong, F., Hirota, K.: A parallel comparison of multiple pairs of images 

on quantum computers. Int. J. Innov. Comput. Appl. 5, 199 (2013)
Yan, F., Iliyasu, A., Yang, H., Hirota, K.: Strategy for quantum image stabilization. Sci. China Inform. Sci. 

59, 052102 (2016)
Yeong, C.L.Y., Torquato, S.: Reconstructing random media. Phys. Rev. E 57, 495 (1998)
Yepez, J.: Lattice-gas quantum computation. Int. J. Mod. Phys. C 9, 1587 (1998)
Yepez, J.: Quantum lattice-gas model for computational fluid dynamics. Phys. Rev. E 63, 046702 (2001)
Yung, M.-H., Aspuru-Guzik, A.: A quantum-quantum metropolis algorithm. Proc. Natl. Acad. Sci. USA 

109, 754 (2012)
Zhang, Y., Lu, K., Xu, K., Gao, Y., Wilson, R.: Local feature point extraction for quantum images. Quantum 

Inf. Process. 14, 1573 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is 
solely governed by the terms of such publishing agreement and applicable law.

http://arxiv.org/abs/quant-ph/9703010

	The Potential of Quantum Computing for Geoscience
	Abstract
	1 Introduction
	2 Quantum Computers
	2.1 Quantum Logic Gates

	3 Potential Applications to Geoscience
	3.1 Reconstruction of Porous Media as an Optimization Problem: Quantum Annealer
	3.2 Simulating Fluid Flow
	3.2.1 Direct Quantum-Computation Algorithms
	3.2.2 Solution as an Optimization Problem

	3.3 Burgers’ Equation
	3.4 Mass Transport and Groundwater Contamination
	3.5 Machine Learning
	3.6 Pattern Recognition and Analysis of Big Data
	3.7 Image Processing

	4 Hurdles to Practical Use of Quantum Computing in Geoscience
	4.1 Quantum Decoherence and Noiseless Computations

	5 Summary
	References




