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Abstract
Experiments, numerical simulations, and analytical models for simple models of porous 
media, such as a single pore and spatially-periodic models, have provided evidence that the 
dynamic, frequency-dependent permeability of porous media, when rescaled by its static 
value, may follow a universal function of the suitably-rescaled frequency, independent of 
the morphology of the pore space. No approach has, however, been developed to prove or 
refute the universality for a general model of a heterogeneous porous medium. We pro-
pose two approaches to analyze the problem. One is based on a dynamic effective-medium 
approximation (EMA) for d-dimensional networks of interconnected pores as the model of 
porous media, characterized by a pore-size or pore-conductance distribution. The EMA is 
accurate when the heterogeneity of the pore space is not very strong. The second approach 
is based on the critical-path analyzis that provides accurate estimates of the permeability 
when the pore space is highly heterogeneous. We show that both approaches predict that 
the rescaled frequency-dependent permeability is a universal function of the rescaled fre-
quency. Thus, the two approaches together strongly support the universality of the rescaled 
dynamic permeability in any porous medium. The implications for the frequency-depend-
ent electrical conductivity, the formation factor, and the diffusion and dispersion coeffi-
cients of porous media are also discussed.

Keywords  Porous medium · Oscillatory flow · Effective-medium approximation · Critical-
path analysis

1  Introduction

In slow flow through a porous medium the dynamic, frequency-dependent permeability is 
defined by generalizing the Darcy’s law to the frequency domain:
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where v and � are, respectively, the fluid’s velocity and viscosity, K(�) is the frequency-
dependent permeability, P is the pressure, and � is the frequency. Dynamics is introduced 
into the system by setting P(�,�) = P(�) exp(−i�t) as the alternating-current (AC) pres-
sure between two opposite faces of a porous medium at time t, i.e., the oscillatory pressure 
drop. Equivalently, one can inject a fluid into the pore space whose speed is an oscillatory 
function of time. The usual static permeability of the pore space is then, K0 = K(� = 0).

The dynamic permeability is a complex function of the frequency. Its real part charac-
terizes the flow generated by the viscous forces, and is a decreasing function of frequency. 
The imaginary part of K(�) characterizes the phase shift caused by fluid inertia, and goes 
through a maximum at a frequency �m at which a transition from the viscous-dominated 
flow to an inertia-dominated regime occurs, and the viscous penetration depth, the region 
in which the viscous effects are concentrated, is on the order of the pore sizes. The rough-
ness of the pore surfaces also affects the dynamics permeability (Cortis et al. 2003).

Oscillatory flow and the resulting dynamic permeability provide an efficient way 
of characterizing the (linear) response of a fluid to an oscillating pressure gradient �P , 
because the frequency-dependent permeability quantifies the resistance to flow for each 
of the modes present in �P , and contains information about the porous medium, or any 
system in which the oscillatory flow is occurring (Johnson et al. 1987; Charlaix et al. 1988; 
Sheng and Zhou 1988; Zhou and Sheng 1989; Chapman and Higdon 1992; Glover et al. 
2020). In addition, the dynamic permeability is used to obtain information on the acoustic 
properties of a porous medium. If the fluid or the medium is elastic, then the dynamics of 
the system is modified profoundly (Auriault et al. 1985; del Rió et al. 1998, 2001; Corvera 
Poiré and Hernández-Machado 2010; Mueller and Sahay 2011).

In addition to being interesting from a scientific view point and the aforementioned 
properties, oscillatory flows in a porous medium have many important applications. For 
example, controlling the flow of immiscible fluids in microscale channels is of fundamen-
tal importance for a wide range of problems in biological and medical sciences, physics, 
engineering, and chemistry (see, for example, Bringer et  al. 2004; Atencia and Beebe 
2005; Squires and Quake 2005; Jo et al. 2009; Vijayakumar et al. 2010; Zhang et al. 2017; 
Lombard et al. 2020). One example is continuous flow of droplets or slug arrays, which 
has received much attention because one has precise control on chemical and biochemi-
cal reactions that can occur there. Each slug behaves as an individual reaction chamber of 
submicron volume, independent of the others (Stone et al. 2004; Joanicot and Ajdari 2005; 
Srisa-Art et al. 2007; Huebner et al. 2008). The problem is that even in slug–based reac-
tions, mixing between reagents is slow and, thus, problematic. One way to overcome this 
is by using oscillatory flow (Glasgow and Aubry 2003; Glasgow et al. 2004; Khoshmanesh 
et al. 2015; Xie et al. 2015).

Numerical simulation of oscillatory flow in porous media has been carried out by sev-
eral groups. Kutay and Aydilek (2007) utilized a lattice-Boltzmann approach to simulate 
oscillatory flow in asphalt and the resulting dynamic permeability. Pazdniakou and Adler 
(2013) utilized the same method to carry out a comprehensive study of the problem. Much 
earlier, Knackstedt et al. (1993) used the lattice-gas method to address the issue of the uni-
versality of the rescaled dynamic permeability (see below). Analytical studies of the prob-
lem have also been undertaken. Derivation of the dynamic permeability of porous media 
based on simple models of pore space, such as cylindrical pores, or pores between two par-
allel flat surfaces (see below) is straighforward. Using a spatially-periodic model of porous 

(1)�(�) = −
K(�)

�
�P(�) ,
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media, Perrot et  al. (2008) analyzed the symmetry of the viscous dynamic permeability 
tensor. Chapman and Higdon (1992) carried out numerical and analytical studies of the 
problem in models of porous media studied by Perrot et al. (2008).

All the numerical simulations, as well as the analytical works, indicate that if the dynamic 
permeability is rescaled by its static value K0 , then it is a universal function of the rescaled fre-
quency �∕�0 , where �0 is a characteristic frequency given by (Johnson et al. 1987)

where F is the porous medium’s formation factor, � is the fluid’s density, � is the porosity, 
and � is the static tortuosity. Therefore,

where, K̃(𝜔̃) = K(𝜔)∕K0 , 𝜔̃ = 𝜔∕𝜔0 , and f (𝜔̃) is the universal function that expresses the 
frequency-dependence of the dynamic permeability. Note that the characteristic frequency 
�0 contains the porosity � , and that Eq. (3) implies that the universality of rescaled perme-
ability holds for any �.

Although, as mentioned earlier, numerical simulation and analytical expression for the 
dynamic permeability of simple models of porous media do support the idea of universal 
rescaled dynamic permeability, to author’s knowledge there has never been any general 
derivation of this most interesting result. The purpose of the present paper is to derive 
Eq. (3) by two distinct approaches. One is based on the effective-medium approximation 
(EMA), while the second approach utilizes what is referred to as the critical-path analysis 
(CPA). The former is accurate when the heterogeneity of the pore space is not very strong 
(see Sahimi 2003 for a comprehensive discussion), whereas the latter provides accurate 
predictions if the heterogeneity of the pore space is strong (Ghanbarian et al. 2016; Hunt 
and Sahimi 2017; Ghanbarian 2020a, b). Thus, the results derived by the two approaches 
essentially cover any type of porous media and, therefore, establish the validity of the 
apparent universality of K̃.

The rest of this paper is organized as follows. The preliminary aspects of the problem at 
the pore scale are described in Sect. 2, followed by the EMA for the macroscopic dynamic 
flow conductance, or the permeability, in Sect. 3. The CPA is described in Sect. 4, while 
the results and significance of the dynamic permeability are discussed further in Sect. 5. 
The last section summarizes the paper.

2 � Pore Conductance and Admittance

Let us assume that a porous medium is represented by a network of interconnected pore 
throats to which we do not attribute any particular shape, but assume only that their length 
is � . Consider the dynamic permeability k(�) for slow flow through a pore represented by 
two flat parallel surfaces separated by a distance a, which is given by

which reduces to a2∕12 in the static limit, as it should, and for a cylindrical pore of radius 
a,

(2)�0 =
�

FK0�
=

��

�K0�
,

(3)K̃ = f (𝜔̃) ,

(4)k(�) = −
1

�2

[
1 −

tan(a�∕2)

a�∕2

]
,
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where � =
√
i�∕� , with � = �∕� being the fluid’s kinematic viscosity, � =

√
i� , and Jm 

being the Bessel function of first kind and order m. Both equations indicate, as already 
mentioned, that k(�) is a complex function of the frequency. To use the language of electri-
cal networks, each pore throat between nodes i and j is characterized by an admittance kij , 
which is the sum of a flow conductance gij—its real part—in parallel with a capacitor - its 
imaginary part—see Fig. 1. Thus, the goal is to determine the effective macroscopic admit-
tance of the entire pore space.

Suppose that Iij = CgΔPij is the fluid current in a pore throat ij, where C is a constant, and 
ΔPij is the pressure drop along the pore. Then, the flux is qij = Iij∕�

d−1 = gijΔPij∕� and, there-
fore, C = �

d−1 , with the pore admittance being simply, kij = �
d−2(gij + i�) = �

d−2(gij + �2) , 
where d is the spatial dimension.

3 � Effective–Medium Approximation

As is well-known, the continuity equation for slow flow of a fluid of density � in a disordered 
porous medium of porosity � is given by

where v is the fluid’s velocity. We assume that the fluid is Newtonian and slightly com-
pressible, so that we can write, � ≈ �0 + c�0(P − P0) , where �0 is the density at some refer-
ence pressure P0 , P is the pressure, and c is a constant. Thus, using Darcy’s law and the 
expression for the density in Eq. (6), we obtain the governing equation for the dynamic 
pressure distribution in the pore space (Barenblatt and Zheltov 1960),

with W = k∕(c��) , where k is the spatially-varying permeability, with � being the fluid’s 
viscosity. Discretizing Eq. (7) by finite difference or finite element, one obtains the follow-
ing master equation for pressure Pi at node i at time t,

(5)k(�) =
i

�

[
1 −

2

�a

J1(�a)

J0(�a)

]
,

(6)�
��

�t
= � ⋅ (��) .

(7)
�P

�t
= � ⋅ (W�P) ,

Fig. 1   Complex hydraulic 
conductance of a pore between 
nodes j and m, with g being the 
real conductivity and iC� repre-
senting the capacitance effect
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which is equivalent to a standard pore network in which the “conductance” is Wij , 
which is related to the local permeabilities at i and j, and {i} denotes the set of the pore 
throats connected to pore body or node j. For example, for a one-dimensional medium, 
Wij = (ki + kj)∕(2c�

2��) . We rescale the pressure by its initial value P0 . Then, Eq. (8) may 
be interpreted probabilistically: Pi is the probability of a fluid molecule being at i at time 
t, given that it was at the origin at time t = 0 . Given this interpretation, Wij is the transition 
rate, i.e., the probability of moving from i to j, and has the units (time)−1 . Equation (8) has 
been solved numerically for a variety of porous and composite materials (see Sahimi 2003 
for a comprehensive review), as well as analytically by various approximations in order to 
determine the macroscopic transition rate We and, therefore, the macroscopic conductivity 
or permeability.

If we take the Fourier transform of Eq. (8), we obtain,

As shown by Sahimi et al. (1983) and Odagaki and Lax (1983), the macroscopic admit-
tance We depends on the frequency . Thus, if we demonstrate that a suitably rescaled We 
follows a universal law for all the rescaled frequencies, then so will also the rescaled 
macroscopic permeability K̃ . Except in one-dimensional media, Eq. (9) cannot be solved 
exactly. Thus, analytical methods have been developed for deriving approximate solution 
of Eq. (9).

One such analytical approximation is the EMA, first derived by Bruggeman (1935) for the 
permittivity of disordered materials, and derived independently by Landauer (1952) for the 
effectve electrical conductivity. Kirkpatrick (1971) extended the EMA to resistor networks 
of coordination number or connectivity Z. The EMA derived by these authors was for the 
static limit, � = 0 , and was derived as follows. One considers a pore conductance in the net-
work, embedded in an “effective medium” in which all the pore conductances are We and is 
constructed such that it mimics, under the assumptions made, the behavior of average sur-
roundings of the particular conductance that one is focused on. To do so, one requires that 
the potential field around the particular conductance to be, on average, equal to the far-field 
homogeneous field of the effective medium. Thus, suppose the pore conducttances are dis-
tributed randomly and independently according to a probability distribution function (PDF) 
f (Wij) . For simplicity, we write, w = Wij . Then, the EMA predicts that

where ⟨⋅⟩ denotes an average over the PDF f(w) of w, so that,

In Landuaer’s formulation of the problem, Z/2 is replaced by d, the spatial dimension of the 
network, and thus,

(8)
�Pi

�t
=

∑
j∈{i}

Wij

[
Pj(t) − Pi(t)

]
,

(9)i𝜔P̂i(𝜔) =
∑
j∈{i}

Wij

[
P̂j(𝜔) − P̂i(𝜔)

]
.

(10)
⟨

w −We

w + (Z∕2 − 1)We

⟩
= 0 ,

(11)∫
w −We

w + (Z∕2 − 1)We

f (w)dw = 0 .
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We now use a dynamic EMA to analyze the macroscopic admittance of the network for 
� ≠ 0 . There are two ways of analyzing the problem.

3.1 � Formulation as an Admittance Network

In the first method w is viewed as the admittance of a pore throat, similar to what has been 
done for the admittance of semi-conducting materials with a similar analysis (Dyre 1993). 
Therefore, we write, We = �

d−2(� + �2) , where � is the macroscopic conductance of the 
porous medium. Then, Eq. (11) becomes

with h(g) being the PDF of the pore conductance g. Note that for � = 0 , i.e., in the static 
limit � = 0 , Eq. (13) reduces to the standard Landauer-Kirkpatrick EMA. Next, we note 
that, g − � =

1

2
[g + (Z − 2)� + Z�2 − Z(� + �2)] . Thus, if we substitute for g − � in Eq. 

(13), and rearrange the equation, we obtain

Moreover, with 𝜎̃ = 𝜎∕𝜎0 and 𝛽2 = 𝛽2∕𝜎0 = i𝜔∕𝜎0 , Eq. (14) is rewritten as

where �0 is the static (flow) conductance at � = 0 . The solution of Eq. (15) yields 
𝜎̃(𝛽2) = 𝜎̃(𝜔̃) , i.e., the frequency-dependent conductance. Note, however, that regardless 
of the functional form of h(x), Eq. (15) indicates already that the rescaled conductance 𝜎̃ 
is a universal function of the rescaled frequency 𝛽2 = 𝛽2∕𝜎0 = i𝜔∕𝜎0 , independent of the 
morphology of the pore space.

Equations (14) or (15) is our working formulation for determining frequency-dependent 
macroscopic flow conductance within the framework of the EMA. Consider, for example, 
the conductance distribution, h(g) = (1 − �)g−� , with 0 ≤ 𝛼 < 1 , which was shown by Hal-
perin et al. (1985) to describe the distribution of the pore flow conductances in a packing of 
overlapping spheres, a reasonable model of consolidated sandstones (Roberts and Schwartz 
1985). Substituting h(g) in Eq. (14) and integrating we obtain

where c = 1

2
[(Z − 2)� + Z�2] , 2F1 is the hypergeometric function, and gmax and gmin are, 

respectively, the maximum and minimum conductances. Equation (16) may be solved 
numerically in order to determine �(�2) = �(i�).

To make the universal function more explicit, we further simplify Eqs. (14), or (14) by 
considering some limiting cases, and making reasonable assumptions that are valid for many 
heterogeneous porous media. Suppose, for example, that the pore conductances g vary rapidly, 

(12)∫
w −We

w + (d − 1)We

f (w)dw = 0 .

(13)∫
2(g − �)

2g + (Z − 2)� + Z�2
h(g)dg = 0 ,

(14)
1

Z(� + �2)
= ∫

1

2g + (Z − 2)� + Z�2
h(g)dg .

(15)
1

Z(𝜎̃ + 𝛽2)
= 𝜎0 ∫

1

2x + (Z − 2)𝛽2 + Z𝛽2
h(x𝜎0)dx ,

(16)

2

Z(� + �2)
=

g1−�
max

c
2F1(1, 1 − �;2 − �; − gmax∕c) −

g1−�
min

c
2F1(1, 1 − �;2 − �; − gmin∕c) ,
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which is normally the case in many heterogeneous porous media. Heterogeneous semi-con-
ducting materials, in which the microscopic conductivity varies over sixteen orders of mag-
nitude (Pazhoohesh et al. 2006), also exhibit such rapid variations (Dyre 1993). Then, for a 
given �(�) one has two regimes: (a) g ≪ (d − 1)𝜎 + d𝛽2 , in which case g can be ignored, and 
(b) g ≫ (d − 1)𝜎 + d𝛽2 , so that the denominator on the right side of Eq. (14) will become 
very large, and the integral vanishes. Thus, only regime (a) is of interest to us. The bound-
ary between the two regimes is set by a particular conductance 2gs = (Z − 2)� + Z�2 , which 
depends on the frequency, so that regime (a) is defined by g ≪ gs.

Therefore, Eq, (14) is simplified to

Consider the static case, � = 0 or � = 0 . Then, gs(� = 0) = g0 =
1

2
(Z − 2)�0 , and Eq. (17) 

becomes

which, when subtracted from Eq. (17), results in

In this limit too we may also consider various distributions h(g) in order to assess the func-
tional form of the universal function of the rescaled frequency for the flow conductance. 
Consider, first, the aforementioned distribution, h(g) = (1 − �)g−� . Substituting h(g) in Eq. 
(19), yields,

which, after substituting for g0 and gs and some algebra, yields

Equation (21) is an algebraic equation for 𝜎̃ , whose solution provides the functional 
dependence of 𝜎̃ on � . Note that Eq. (21) contains only rescaled frequency and some 
numerical constants. Therefore, the solution depends only on 𝜔̃ , independent of h(g).

Next, consider the case in which the pore flow conductances vary rapidly. In this case gs 
and g0 are close to each other, so that we may write,

and, therefore,

(17)
1

Z(� + �2)
=

1

(Z − 2)� + Z�2 ∫
gs

0

h(x)dx .

(18)
1

Z�0
=

1

(Z − 2)�0 ∫
g0

0

h(x)dx ,

(19)
2�2

Z(� + �2)
= ∫

gs

g0

h(x)dx .

(20)
2�2

Z(� + �2)
=
(
g1−�
s

− g1−�
0

)
,

(21)𝜎̃(𝜔̃) =

{(
2

Z𝜎1−𝛼
0

)[
21−𝛼

[(Z − 2)𝜎̃(𝜔̃) − Z𝛽2]1−𝛼 − (Z − 2)1−𝛼

]
− 1

}
(i𝜔∕𝜎0);.

(22)∫
gs

g0

h(x)dx ≈ h(gs)(gs − g0) =
1

2
h(gs)[(Z − 2)�(s) − Z�2 − (Z − 2)�0] ,

(23)�(�) =

[
2i�

Z�0h(gs)

][
2

(Z − 2)�(�2) − Z�2 − (Z − 2)�0

]
− i� ,
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so that in terms of the rescaled conductance and frequency we obtain

Under the assumptions made, Eq. (24) is a quadratic equation for 𝜎̃ whose solution pro-
vides the frequency-dependence of the rescaled flow conductance. Note that Eq. (24) and, 
therefore, the solution for the macroscopic conductance contains nothing but 𝜔̃ and some 
constants.

3.2 � Formulation in Terms of the Green Function

In the second EMA formulation of the problem, we use the Green function formulation and 
perturbation expansion to develop the solution of Eq. (9). This was already done by Sahimi 
et al. (1983) a in the context of diffusion in disordered media. Thus, we only present the 
final equation:

where

Note that in the static limit, � = 0 , Eq. (25) reduces to Eq. (11). Here, G0 is a Green func-
tion that, for a d-dimensional simple-cubic network is given by (Sahimi et al. 1983)

with I0(x) being the modified Bessel function of order zero, and � = i�∕We . The corre-
sponding Green function for the BCC and FCC networks are given by (Sahimi et al. 1983)

for the BCC network and

for the FCC lattice. Equation (25) was also derived by Odagaki and Lax (1981) and Sum-
merfield (1981) for the problem of hopping transport in heterogeneous semiconduc-
tors. In the condensed matter literature, Eq. (25) is referred to as the coherent-potential 
approximation.

If a heterogeneous porous medium is represented by a pore network in which a fraction 
p of the pore throats are open to flow, while the rest are too small to accomodate it, then, 
more explicit expression can be obtained. As discussed above, the problem can be mapped 
onto a conductance network and, thus, one must determine the effective admittance of 

(24)𝜎̃(𝛽2) =

{[
2

Zh(gs)

][
2

(Z − 2)𝜎̃(𝛽2) − Z𝛽2 − (Z − 2)

]
− 1

}
𝛽2 .

(25)∫
∞

0

f (w)

1 − �(w −We)∕We

dw = 1 ,

(26)� = −
2

Z
+

2i�

ZWe

G0 .

(27)G0 = −
1

2 ∫
∞

0

exp[−
1

2
(Zx + �)]I2

0
(x)dx ,

(28)G0 = −
1

(2�)3 ∫
�

−� ∫
�

−� ∫
�

−�

1

8 + � − 8 cos x cos y cos z
dxdydz ,

(29)

G0 = −
1

(2�)3 ∫
�

−� ∫
�

−� ∫
�

−�

1

12 + � − 4(cos x cos y + cos x cos z + cos y cos z)
dxdydz ,
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the network. Using the coherent-potential approximation, or the EMA, Odagaki and Lax 
(1983) derived the following equations for W̃e(𝜔) in the low-frequency limit:

for 2D networks, and

for 3D networks. Here, W0 = W̃e(𝜔 = 0) , c is a constant of order unity, pc is the percolation 
threshold of the network that the coherent-potential apprpoximation or the EMA predicts, 
pc = 2∕Z , and Iw is the Watson integral (Hughes 1995), which represent the limit � = 0 of 
the Green function G0 . The numerical values of Iw for the three main 3D latticess, namely, 
the simple-cubic, and body-centered and face-centered cubic networks, are given by

where Γ(x) is the gamma function. Extension of these approaximations to higher-order 
EMA that is more accurate than Eqs. (30) and (31) was described by Sahimi (1984) and 
Sahimi and Tsotsis (1997). Note that both Eqs. (30) and (31), which provide explicit 
expressions for the real and imaginary parts of the effective admittance or the effective 
frequency-dependent flow conductance of the network, indicate that the imaginary part 
increases with � in the low-frequency regime, which is in agreement with the aforemen-
tioned numerical simulations. In addition, they both indicate that the rescaled complex 
conductance W̃e∕W0 depends mainly on �∕W0.

4 � The Critical‑Path Analysis

The CPA was first proposed by Ambegaokar et al. (1971) in order to estimate hopping con-
ductivity of extremely disordered semiconductors, and was proven rigorously later on by 
Ty̆c and Halperin (1989); see Hunt and Sahimi (2017) for a comnprehensive review. The 
CPA is based on the following concept. Consider, first, the static case, i.e., the limit � = 0 , 
and suppose as before that the porous medium is represented by a pore network in which 
the pore flow conductances follow a PDF h(g). We remove all the pore conductances from 
the network and, then, begin to fill up the network again by replacing the conductances, in 
their original locations, in the order of decreasing pore conductance by starting from the 
largest conductance. Clearly, at the beginning there is no sample-spanning cluster of pore 
flow conductances, but as percolation theory (Stauffer and Aharony 1994; Sahimi 1994) 
has taught us, after we reinstate a sufficiently large fraction of the pores’ conductances, a 
sample-spanning cluster is formed, and the macroscopic conductivity and, thus, the perme-
ability of the network rises from zero. The first pore conductance that completes the forma-
tion of the sample-spanning cluster is referred to as the critical conductance gc , while the 

(30)W̃e(𝜔) = W0 +
𝜋c(1 − p)

(Z − 2)(p − pc)
𝜔 −

2c(1 − p)

Z(Z − 2)(p − pc)
(𝜔 ln𝜔)i

(31)W̃e = W0 +
𝜋c(1 − p)

2
√
2Z2(Z − 2)1∕2(p − pc)

3∕2
𝜔3∕2 +

2Iw(1 − p)

Z(Z − 2)(p − pc)
𝜔i

(32)

Iw =

⎧⎪⎪⎨⎪⎪⎩

√
6

96�3
Γ(1∕24)Γ(5∕24)Γ(7∕24)Γ(11∕24) ≃ 0.50546 simple-cubic network

1

4�3
Γ(1∕4)4 ≃ 1.3932 body-centered cubic network

3

214∕3�4
Γ(1∕3)6 ≃ 0.4482 face-centered cubic network
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just formed cluster is called the critical cluster. Therefore, pc , the bond percolation thresh-
old of the pore network, is related to gc by

We point out that for a d−dimensional pore network of average connectivity Z, the relation 
pc ≈ d∕[Z(d − 1)] provides very accurate estimates of pc , so that for a given h(g) one can 
estimate the critical conductance gc.

If h(g) is very broad, varying over rders of magnitude, then, all the pore conductances that 
were reinstated before gc are much larger than gc , and are effectively in series with it, since it 
is gc that controls the flow, as all the fluids passing through the pores with conductances much 
larger gc must eventually pass through gc and, therefore, the resistance of the larger conductors 
can be neglected. On the other hand, all the pore conductances that are reinstated with values 
smaller than gc , i.e., after formation of the sample-spanning cluster, will be much smaller than 
gc . After the remaining pore conductances are reinstated, we recognize that since they all are 
much smaller than gc , they are essentially in parallel with gc and play no significant role in the 
flow process and, hence, they can also be neglected. Therefore, the macroscopic conductivity 
is essentially gc.

Numerical simulation of Berman et al. (1986) confirmed the accuracy of the CPA. Katz 
and Thompson (1986) applied the CPA to estimate the static permeability of porous media, 
followed by others (Le Doussal 1989; Friedman and Seaton 1998; Skaggs 2011; Ghanbarian 
et al. 2016; Ghanbarian 2020a, b). Sahimi (1993) used the CPA to estimate the effective per-
meability of porous media during the flow of power-law fluids.

The same arguments are applicable to the frequency-dependent permeability or flow con-
ductance. Since the critical cluster, made of the pores with admittances, w = g + s = g + i� 
is a linear or quasi-linear chain in which the admittances are in series, the macroscopic admit-
tance of the network, according to the CPA, is given by

which is obtained by substituting d = 1 in Eq. (12). In practice, the upper limit of the inte-
gral in Eq. (34) is, of course, cut off at some conductance gmax . It is known (Sahimi et al. 
1983) that the dynamic EMA is exact for d = 1 and, thus, if the critical cluster is also one 
dimnsional or quasi-one dimensional, it is not surprising that the two approximations 
become identical. It is also worth noting, as pointed out earlier, that the EMA is accurate 
when the heterogeneity of the pore space is mild, whereas the CPA provides accurate esti-
mates of the transport properties when the heterogeneity is very strong. Despite this, the 
two approximations coincide in the particular problem and limits that we consider.

We note that Eq. (34) can be rewritten in terms of the rescaled flow conductance 𝜎̃ = 𝜎∕𝜎0 
and frequency s̃ = i𝜔∕𝜎0:

Equation (35) indicates that the CPA also predicts that the rescaled macroscopic flow con-
ductance 𝜎̃ is a universal function of 𝛽2 = i𝜔∕𝜎0 . Thus, one may use Eq. (34) or (35) to 
examine the type of predictions that the CPA provides for the dynamic flow conductance 
and, hence, for the frequency-dependent permeability. As a simple example, suppose that 

(33)pc = ∫
∞

gc

h(g)dg .

(34)
1

� + i�
= ∫

∞

gc

h(g)

g + i�
dg ,

(35)
1

𝜎̃ + 𝛽2
= 𝜎0 ∫

h(x𝜎0)

x + 𝛽2
dx .
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the pore flow conductances are distributed uniformly in gc ≤ g ≤ gmax , with gc ≪ gmax . 
Therefore, h(g) = (gmax − gc)

−1 , which after substituting in Eq. (35) yields,

with g̃max = gmax∕𝜎0 , and similarly for g̃c . If we use the identities, 
ln(1 + ix) =

1

2
ln(1 + x2) + i arctan(x) , and arctan(x) − arctan(y) = arctan[(x − y)∕(1 + xy)] , 

we finally obtain

We may refine the prediction of the CPA, Eq. (34), by the following analysis (Sahimi 
2022).. Let us view of flow of a liquid through a porous medium as a “two-phase flow” 
problem in which the second phase is air. Let Pcij be the capillary pressure associated 
with bond ij of the pore network. We define the minimum spanning tree (MST) (Dobrin 
and Duxbury 2001) as a cluster that visits every node in the network such that the total 
“energy,” E =

∑
ij Pcij , is minimum, with the constraint that visit to any node cannot create 

a closed loop. To construct the tree, one begins at a node i and selects a bond b connected 
to i with the lowest Pcij . Then, among all the unvisited bonds connected to b, the one with 
the lowest Pcij is selected, and so on. But, this is also the physical basis for the bond inva-
sion percolation clusters (BIPCs) (Sahimi et al. 1998), if invasion is from a single node, 
i.e., if we inject the fluid into the pore space from a single node. The MST, or the BIPC, is 
a fractal object with (Sahimi et al. 1998; Knackstedt et al. 2000), Df ≃ 1.22 and 1.37 in two 
and three dimensions, respectively.

The analysis implies that, instead of substituting d = 1 in Eq. (12) to obtain Eq. (34), 
we should replace d with the aforementioned Df  of the BIPC. Thus, in that case, we obtain

instead of Eq. (34). The rest of the analysis of Eq. (38) is the same as before.
The structure of the BIPC is universal, because only the order of Pcij matters, not 

their numerical values or their statistical distribution. Therefore, the universality of the 
rescaled frequency-dependent permeability is due to the universality of the structure of the 
BIPC. This also explains why the EMA provides accurate predictions for K̃ : the cluster 
through which flow occurs is a low-dimensional, quasi-one-dimensional cluster, even in 
three dimensions, and it is well-known that the EMA is very accurate for low-dimensional 
systems.

5 � Discussion

The universality of K(�) may seem to be a bit disappointing, because it implies that experi-
mental data for it may not provide any additional information about the microstructure of 
the porous medium for which the data were collected. Frequency-dependent permeability 
is, however, still useful for understanding flow in porous media. One reason is that the 

(36)
1

𝜎̃ + 𝛽2
=

1

g̃max − g̃c
ln

(
g̃max + 𝛽2

g̃c + 𝛽2

)
,

(37)
1

𝜎̃ + 𝛽2
=

1

2

⎛⎜⎜⎝
g̃2
max

− 𝛽2
2

g̃c
2 − 𝛽2

2

⎞⎟⎟⎠
+ i arctan

�
𝜔∕gmax − 𝜔∕gc

1 + 𝜔2∕gmaxgc

�
.

(38)
1

Df (� + i�)
= ∫

1

g + (Df − 1)� + Df (i�)
h(g)dg ,
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characteristic frequency �c is typically large, whereas K0 is the permeability at low (strictly 
speaking, zero) frequencies. It is due to such a contrast between the two rescaling variables 
that the universality is produced, and it is useful because there is always uncertainty in the 
precision of the instruments and experimental data. In particular, if the fluid is Newtonian, 
the real part of K(�)∕K0 is a monotonically decreasing function of �∕�c , so that if we take 
two distinct porous media (say, with different porosities) and force the rescaled permeabil-
ity curves coincide in the very low and very high frequencies, it will produce universality 
for intermediate frequencies.

In addition, the frequency-dependent permeability represents a response function 
that relates, in the frequency domain, the imposed pressure gradient to the fluid velocity. 
According to Eqs. (16), (21), and (24)–(26), the relation is simple, and any value of K(�) 
in the frequency domain provides insight into how the flow system in the pore space would 
respond in the time domain to every frequency imposed by the frequency-dependent pres-
sure gradient, without any need for actually solving the governing flow equations for every 
frequency mode.

Although not studied in this paper, the frequency-dependent permeability of a Newto-
nian fluid in an elastic (deformable) tube (Torres Rojas et al. 2017), or that of viscoelastic 
fluids in rigid porous media (Lombard et  al. 2020), provides even more insight into the 
behavior of the system. For example, Torres Rojas et al. (2017) showed that the interplay 
between the viscosity of the fluid, the elasticity of the wall, and the characteristic length 
scale of a confining medium gives rise to many interesting phenomena, including reso-
nances, implying that the flow amplitude of a fluid system in a zero–mean flow may be 
optimized at certain frequencies. The resonances are relevant when the confining medium 
is small and its Young’s modulus is also low, which is typical of elastomeric materials in 
microfluidic systems. But, for a specific tube radius, Young’s modulus, and fluid viscosity 
less than a critical value, the resonances disappear. An even richer behavior was reported 
by Lombard et al. (2020) for the dynamic permeability in two-phase flow of a viscoelastic 
fluid.

The formulation developed here was based on a flow conductance network. Clearly, a 
similar formulation that completely parallels what was described above can also be devel-
oped for the electrical conductivity of saturated porous media in an oscillatory potential 
field. As a result, we predict that the rescaled frequency-dependent electrical conductivity 
(for experimental data see, Lerot and Revil, 2009; Woodrull et al. 2014; Revil et al. 2013, 
2015) of porous media should be a universal function of the suitably-rescaled frequency. 
Given that the formation factor is essentially the inverse of the conductivity, and that gas 
diffusivity of porous media is also closely related to the electrical conductivity through the 
Einstein relation, our formulation of the problem enables us to study the same quantities 
under oscillatory conditions, and to establish that they too are universal functions of the 
rescaled frequency. We will soon report on these issues.

Finally, we believe that frequency-dependent dispersion coefficients (Valdés-Parada 
and Alvarez-Ramirez 2011), i.e., the dispersion coefficients in oscillatory flows in porous 
media, should exhibit universal scaling, if the coefficients are rescaled by their static val-
ues, or another suitably-selected parameter. This will be demonstrated in a future paper.
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6 � Summary

Experimental data and numerical simulation of flow of a Newtonian fluid in a porous 
medium, subject to a pulsatile pressure gradient, had indicated that the frequency-depend-
ent permeability of the medium, when rescaled with its static value, is a universal or quasi-
universal function of the frequency, if it is rescaled with a characteristic frequency. Ana-
lytical models of flow in such simple geometries as cylindrical pores had also supported 
the same. No derivation of this important result for a general model of porous media had, 
however, been presented before. Using two approximate theories, one very accurate for 
porous media with mild heterogeneties, and a second one that is accurate for highly hetero-
geneous porous media, we demonstrated that the rescaled effective frequency-dependent 
flow conductance and, therefore, permeability of the porous media do indeed follow uni-
versal dependence on a rescaled frequency. We also discussed the relevance of this result 
to gaining more insights into the dynamics of flow in porous media that are subject to an 
oscillatory pressure gradient.
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