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Abstract
Screening tools such as BioScreen, BioChlor, ATRANS, AT123D-AT, ArcNLET, and 
Hydroscape are routinely employed to simulate the three-dimensional transport of reac-
tive contaminants in groundwater. These tools estimate contaminant plume concentrations 
either using exact semi-analytical solutions or the approximate closed-form Domenico ana-
lytical solution. Semi-analytical solutions involve numerical integration procedures that 
can be mathematically challenging and computationally demanding. To overcome this, 
screening tools often use the approximate closed-form Domenico solution. However, the 
approximate Domenico solution introduces significant errors under realistic values of lon-
gitudinal dispersion, especially at plume locations beyond the advective front. Recently, an 
improved closed-form approximation to the three-dimensional reactive transport problem 
was developed using the concept of characteristic residence time. However, this solution 
was only applicable for a rectangular area source subject to a Dirichlet boundary condition. 
This severely restricts the use and applicability of the closed-form approximate solution 
to solve practically relevant simplified groundwater contaminant transport problems. Here, 
we present a library of six exact semi-analytical solutions for point, line, and area sources 
(three source geometries) under Dirichlet and Cauchy boundary conditions (two boundary 
conditions). Additionally, we develop approximate closed-form analytical solutions for all 
six solutions using the characteristic residence time concept. Our approximate solutions 
match well with the exact solutions under a wide range of parameter and domain condi-
tions. We extend our analytical solutions to include the effects of linear equilibrium sorp-
tion, source decay, and pulse source input. Our analytical solution library facilitates the 
application of screening tools for a wide range of practically relevant simplified groundwa-
ter reactive contaminant transport problems.
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1 Introduction

Analytical and semi-analytical solutions are often employed in screening tools for ground-
water contamination studies (Newell et al. 1996; Aziz et al. 2000; Neville 2005; Burnell 
et al. 2012; Rios et al. 2013; Funk et al. 2017). Transport problems solved by analytical and 
semi-analytical solutions typically assume homogeneous porous media aquifer characteris-
tics, steady and uniform flow conditions, simplified first-order decay reaction kinetics, and 
linear equilibrium adsorption (Wexler 1992; Srinivasan et al. 2007; Wang and Wu 2009).

While closed-form analytical solutions enable direct computation of plume solute con-
centrations, semi-analytical solutions require numerical integration procedures to compute 
final plume concentrations (Sangani and Srinivasan 2021). Numerical integration intro-
duces numerical errors and increases computational times, making them cumbersome to 
use in screening tools (Srinivasan et  al. 2007; Sangani and Srinivasan 2021). Addition-
ally, integral evaluations involved in semi-analytical solutions require special techniques 
to obtain desired accuracy (Karanovic et al. 2007; Wang et al. 2011; Burnell et al. 2012).

The closed-form analytical solution for the one-dimensional contaminant transport 
problem with advection and dispersion in a semi-infinite domain was first presented by 
Ogata and Banks (1961). The solution of Ogata and Banks (1961) was applicable for a 
conservative tracer subject to a Dirichlet boundary condition. Bear (1972) extended the 
Ogata and Banks (1961) solution to include the effect of first-order decay. Later, Cleary and 
Ungs (1978) added linear equilibrium sorption to the Bear (1972) solution. van Genuchten 
(1981) presented the analytical solution for the transport problem solved by Cleary and 
Ungs (1978) under the Cauchy boundary condition. Additionally, van Genuchten (1981) 
presented solutions for one-dimensional transport problems involving nonzero initial con-
ditions, exponential source decay, and zero-order production.

Using Laplace transforms, Wilson and Miller (1978) presented a semi-analytical solu-
tion for the two-dimensional transport of a non-conservative contaminant subject to a point 
source Dirichlet boundary condition. Later, (Sagar 1982) derived a semi-analytical solution 
to the three-dimensional transport problem subject to an area source with Dirichlet bound-
ary condition. However, the solution presented by (Sagar 1982) was for a conservative con-
taminant. Using a similar approach, Batu and van Genuchten (1990) developed solutions 
for the transport problem considered by Wilson and Miller (1978) with Cauchy boundary 
conditions. Leij et al. (1991) extended the Sagar (1982) solution to include semi-analytical 
solutions for a non-conservative decaying source under Dirichlet and Cauchy boundary 
conditions. The Leij et al. (1991) solutions also included a zero-order production term.

Wexler (1992) derived semi-analytical solutions to three-dimensional contaminant 
transport problems for point, line, and area sources subject to Dirichlet boundary condi-
tions. Solutions presented by Wexler (1992) included the effects of the plume and source 
decay. Chrysikopoulos (1995); Sim and Chrysikopoulos (1999) presented semi-analytical 
solutions for the three-dimensional contaminant transport of a rectangular area source 
where the flow is parallel to the source plane.

Wang and Wu (2009) compiled a library of solutions for the three-dimensional transport 
of contaminants subject to Dirichlet boundary conditions for point, line, and area sources. 
Wang and Wu (2009) also included solutions where the orientation of the patch source was 
parallel to the flow direction, and the shape of the source was a parallelepiped instead of 
a rectangle. The semi-analytical solutions library compiled by Wang and Wu (2009) can 
be numerically integrated using standard Gauss–Legendre quadrature techniques to obtain 
accurate estimates of plume concentrations (Karanovic et al. 2007).
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Using Green’s function method, Yeh (1981) presented a set of solutions for the fate and 
transport of groundwater contaminants for point, line, and area (rectangle) sources under 
Dirichlet boundary conditions. Yeh (1981) considered contaminants undergoing first-order 
decay and linear equilibrium sorption with the aquifer media. The two- and three-dimen-
sional solutions presented by Yeh (1981) were computationally demanding and prone to 
errors (Burnell et al. 2012).

Ellsworth and Butters (1993) derived solutions for the three-dimensional transport of 
contaminants where the flow direction was not necessarily aligned with the Cartesian coor-
dinate system. Using Bessel and modified Bessel functions, Leij et  al. (1993) presented 
semi-analytical solutions for the three-dimensional transport of reactive contaminants 
subject to non-equilibrium adsorption kinetics. Using Green’s function method, Leij et al. 
(2000) extended the area (rectangular) source transport problem of Yeh (1981) to include 
source characterizations where the rectangular source was parallel to the advective flow 
direction. Additionally, Leij et al. (2000) also included zero-order production terms in the 
transport problem. These additions help in modeling the leaching of non-aqueous phase 
solutes in groundwater.

Integrating semi-analytical solutions such as those derived from Green’s function 
method can result in errors due to slow convergence and the presence of oscillatory 
terms (Burnell et al. 2012). To overcome this, Karanovic et al. (2007); Wang et al. (2011) 
employed the Gauss–Legendre quadrature integration technique. Burnell et  al. (2012) 
applied the Romberg integration technique coupled with variable time stepping and an 
integral partitioning approach to minimize the errors of the semi-analytical solutions. How-
ever, these semi-analytical solutions are computationally demanding compared to closed-
form analytical solutions.

Domenico and Robbins (1985) presented a closed-form approximate analytical solu-
tion (Domenico solution) for the three-dimensional contaminant transport problem con-
sidered by Sagar (1982). This was accomplished by artificially removing the transverse 
dispersion terms from the integration and independently integrating the remaining longitu-
dinal advection–dispersion term (Srinivasan et al. 2007). Later, Domenico (1987) extended 
this approach and developed a closed-form approximate solution for a decaying contami-
nant. Martin-Hayden and Robbins (1997) improved the accuracy of the Domenico (1987) 
approximation near the source by including the expanded form of longitudinal dispersion 
term as given in Ogata and Banks (1961).

Several studies investigated the errors associated with the Domenico approximation. 
While West and Kueper (2004) showed that the errors in the Domenico solution could be 
up to 50% along the plume centerline, Guyonnet and Neville (2004) suggested that the 
errors will be higher away from the plume centerline. Srinivasan et al. (2007) presented a 
mathematical analysis of the errors associated with the Domenico solution. Using model 
sensitivity simulations, Srinivasan et al. (2007) showed that the errors are higher under i) 
large values of longitudinal dispersivity and ii) at plume locations beyond the advective 
front. Similar conclusions were also obtained by West et  al. (2007). Additionally, Srini-
vasan et  al. (2007) mathematically demonstrated that the Domenico solution transforms 
into an exact closed-form analytical solution under zero longitudinal dispersivity.

Sangani and Srinivasan (2021) developed an improved analytical approximation (S &S 
solution) to the Domenico solution by introducing the concept of characteristic residence 
time. They showed that the Domenico approximation fails to include the effect of trans-
port due to longitudinal dispersion, and by explicitly accounting for longitudinal dispersive 
transport in the characteristic residence time representation, the errors in S &S approxima-
tion are significantly reduced, especially at plume locations beyond the advective front. 
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However, the approximate Domenico and S &S solutions are only valid for transport prob-
lems involving a rectangular area source subject to the Dirichlet source boundary condi-
tion. This severely restricts the use and applicability of the closed-form approximate solu-
tions to solve practically relevant simplified groundwater contaminant transport problems.

Exact semi-analytical solutions exist for area source geometry under Dirichlet and 
Cauchy boundary conditions (Table  1). However, solutions with point and line source 
geometries are only available under Dirichlet boundary conditions. Presently, there are 
no exact semi-analytical solutions for point and line sources subject to a Cauchy source 
boundary condition. Closed-form approximate analytical solutions are only available for 
the area source geometry under Dirichlet boundary conditions. The available set of exact 
semi-analytical solutions and approximate closed-form analytical solutions are not com-
plete to model point, line, and area source geometries under both Dirichlet and Cauchy 
boundary conditions.

The objectives of this paper are: 

1 Derive exact semi-analytical solutions for two-dimensional and three-dimensional trans-
port problems with point and line source geometries under the Cauchy boundary condi-
tion.

2 Develop closed-form approximate analytical solutions for two-dimensional and three-
dimensional transport problems with point and line source geometries under Dirichlet 
and Cauchy boundary conditions and area source geometry under the Cauchy boundary 
condition.

3 Extend solutions for exact and approximate solutions that include the effects of linear 
equilibrium sorption and pulse source boundary conditions.

2  Analytical Solutions for Point, Line, and Area Sources

The governing equation describing the fate and transport of a groundwater solute undergo-
ing one-dimensional advection, three-dimensional dispersion, linear equilibrium sorption, 
and first-order decay is given as:

where C is the solute concentration [mg L −1 ], vx is the advection velocity in the x direction 
[m day−1 ], Dx = D∗ + vx�x , Dy = D∗ + vy�y , and Dz = D∗ + vz�z are the dispersion coeffi-
cients [m2 day−1 ] in x, y, and z directions, respectively, D∗ is the molecular diffusion coeffi-
cient [m2 day−1 ], �x , �y , and �z are the dispersivities [m] (caused by mechanical dispersion) 
in x, y, and z directions, respectively, and k is the first-order decay coefficient [day−1].

Typically, D∗ ≪ Dx , Dy , and Dz and is usually neglected. This simplifies the governing 
Eq. 1 to:

The initial condition for a solute-free groundwater aquifer is given as:

(1)
�C

�t
= −vx

�C

�x
+ Dx

�2C

�x2
+ Dy

�2C

�y2
+ Dz

�2C

�z2
− kC

(2)
�C

�t
= −vx

�C

�x
+ vx�x

�2C

�x2
+ vx�y

�2C

�y2
+ vx�z

�2C

�z2
− kC
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The non-source boundary conditions for the semi-infinite groundwater aquifer are given as:

If q is the rate at which a solute mass is injected into the aquifer [g day−1 ], then the equa-
tions for the exponentially decaying flux of point, line, and area sources subject to the 
Cauchy boundary condition are given as:

where Xc , Yc , and Zc are the x, y, and z locations of the source center, Yw and Zw are the 
source widths in the y, and z directions [m], respectively, �(y − Yc) and �(z − Zc) are the 
Dirac-delta functions [m−1 ] whose inverse is used to represent the infinitesimally small 
source widths in the y and z directions, respectively, S is the spatial extent of the source 
zone (see Table 2), and � is the first-order decay coefficient of the source [day−1].

q

YwZw
 has the units of [g m −2 day−1 ] and represents the mass flux per unit area along the x 

direction, normal to the y-z plane. Similarly, 
q

Zw
�(y − Yc) , 

q

Zw
�(z − Zc) , and 

q �(y − Yc)�(z − Zc) represent mass flux per unit area with the units of [g m −2 day−1].
Equation 5 can also be represented as:

(3)C = 0; ∀ 0 < x < ∞, −∞ < y < ∞, −∞ < z < ∞, t = 0

(4)

lim
x→∞

𝜕C

𝜕x
= 0; ∀ −∞ < y < ∞, −∞ < z < ∞, t > 0

lim
y→±∞

𝜕C

𝜕y
= 0; ∀ 0 < x < ∞, −∞ < z < ∞, t > 0

lim
z→±∞

𝜕C

𝜕z
= 0; ∀ 0 < x < ∞, −∞ < y < ∞, t > 0

(5)

vxC − vx𝛼x
𝜕C

𝜕x
=

{
q 𝛿(y − Yc)𝛿(z − Zc) exp

−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0; otherwise

vxC − vx𝛼x
𝜕C

𝜕x
=

{ q

Yw
𝛿(z − Zc) exp

−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0; otherwise

vxC − vx𝛼x
𝜕C

𝜕x
=

{ q

Zw
𝛿(y − Yc) exp

−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0; otherwise

vxC − vx𝛼x
𝜕C

𝜕x
=

{ q

YwZw
exp−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0; otherwise

(6)

vxC − vx𝛼x
𝜕C

𝜕x
=

{
vx

point

C0 𝛿(y − Yc)𝛿(z − Zc) exp
−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0; otherwise

vxC − vx𝛼x
𝜕C

𝜕x
=

{
vx

y−line

C0 𝛿(z − Zc) exp
−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0; otherwise

vxC − vx𝛼x
𝜕C

𝜕x
=

{
vx

z−line

C0 𝛿(y − Yc) exp
−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0; otherwise

vxC − vx𝛼x
𝜕C

𝜕x
=

{
vx

area

C0 exp
−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0; otherwise
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where 
area

C0 =
q

vxYwZw
 , 

y−line

C0 =
q

vxZw
 , 
z−line

C0 =
q

vxYw
 , and 

point

C0 =
q

vx
 . The units of 

area

C0  are [mg 

L −1 ], while the units of 
y−line

C0  and 
z−line

C0  are [mg L −1 m], and the units of 
point

C0  are [mg L −1 m 2].
The equations for the Dirichlet source boundary condition can be obtained from Eq. 6 by 

forcing the dispersion terms of the source flux as 0, i.e., vx�x
�C

�x
= 0 . This is given as:

The generalized exact semi-analytical solutions ( Cexa ) for both the Dirichlet and Cauchy 
boundary conditions are presented in Table 2. These were derived using standard Laplace, 
Fourier, and variable transform techniques (Leij et  al. 1991; Wexler 1992). Wang et  al. 
(2011) showed that three-dimensional solutions can also be obtained by integrating the 
product of one-dimensional advection–dispersion solutions along the x direction ( fx term) 
with the transverse dispersion solutions ( fy and fz terms) along the y and z directions.

Note that the fx(x, �) term in Table 2 represents the advective dispersive transport along the 

x direction and is dimensionless. The 
line

fy (y, �) and 
line

fz (z, �) terms account for transverse disper-
sion of contaminant in a finite-width source dimension along the y and z directions, respec-

tively, and are dimensionless. The transverse dispersion terms 
point

fy (y, �) and 
point

fz (z, �) are used 
when contaminant sources have infinitesimal widths along the y and z directions, respectively, 
and have the units of [m−1].

point

fy (y, �) and 
point

fz (z, �) are given as (Wexler 1992):

line

fy (y, �) and 
line

fz (z, �) are given as (Wexler 1992):

(7)

C =

{
point

C0 𝛿(y − Yc)𝛿(z − Zc) exp
−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0 otherwise

C =

{
y−line

C0 𝛿(z − Zc) exp
−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0 otherwise

C =

{
z−line

C0 𝛿(y − Yc) exp
−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0 otherwise

C =

{
area

C0 exp
−𝜆t ; ∀ (x, y, z) ∈ S and t > 0

0 otherwise

(8)

point

fy (y, �) =
1√

�vx�y�
exp

�
−
(y − Yc)

2

4�yvx�

�

point
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2.1  Exact Semi‑Analytical Solution

2.1.1  Solution for Cauchy Boundary Condition

The fx term for the exponentially decaying Cauchy source boundary condition is given as 
(Leij et al. 1991):

2.1.2  Solution for Dirichlet Boundary Condition

The fx term for the exponentially decaying Dirichlet source boundary condition is given as 
(Wexler 1992):

2.2  Approximate Closed‑Form Solution

The approximate closed-form solution ( Capp ) is obtained by substituting � = T in the fy 
and fz terms of the exact semi-analytical solution. This decouples the transverse disper-
sion terms fy and fz from the variable of integration � . The remaining integral with only 
the fx term can be integrated analytically to yield a closed-form analytical solution. This is 
expressed as:

where �(x, t) is the solution to the one-dimensional advective–dispersive transport along 
the x direction. �(x, t) is dimensionless.

(9)
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T is the characteristic average residence time at a given plume location and represents a 
solute particle’s average time to disperse in the transverse direction (Sangani and Srinivasan 
2021). The improved (S &S) approximation for Tapp is given as (Sangani and Srinivasan 
2021):

where n is the shape or curvature parameter is given as:

where � is the empirical exponent parameter with a value of 0.25 [-]. The accuracy of 
the improved approximation is relatively insensitive to the parameter � within the range 
of 0.2 < 𝛽 < 0.3 (Sangani and Srinivasan 2021). Note that, in the absence of longitudi-
nal dispersion ( �x = 0 ), the approximate solutions will be identical to the exact solutions 
(Srinivasan et al. 2007).

2.2.1  Solution for Cauchy Boundary Condition

When k ≥ � −
vx

4�x
 , the �x term is given as (van Genuchten 1982):

When k = � , the �x term is given as (van Genuchten 1982):
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When k < 𝜆 −
vx

4𝛼x
 , the terms within the square root in Eq. 15 become negative, resulting 

in complex numbers. However, the different complex number terms cancel out (Srinivasan 
and Clement 2008a), yielding a real-valued final solution given as (see supplementary sec-
tion S1):

where �r and �i are the real and imaginary parts of the error function given as:

where i =
√
−1.

2.2.2  Solution for Dirichlet Boundary Condition

When k ≥ � −
vx

4�x
 , the �x term (dimensionless) is given as (Martin-Hayden and Robbins 

1997):
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When k < 𝜆 −
vx

4𝛼x
 , the terms within the square root become negative, resulting in complex 

numbers. However, the different complex number terms cancel out (Srinivasan and Clem-
ent 2008a), yielding a real-valued final solution given as (see supplementary section S2):

where �i and �r are given by Eq. 18.

3  Extended Solutions

3.1  Adsorption

The effect of linear equilibrium sorption on the fate and transport of solutes in groundwater 
can be modeled using retardation factor R [-]. The governing equation (Eq. 2) for the case 
when decay occurs only in the liquid phase can be represented as:

The exact semi-analytical solutions and the approximate closed-form analytical solutions 
in the presence of retardation factor R are computed by dividing the advection velocity vx 
and decay coefficient k by R. The solutions for the point, line, and area source boundaries 
are then computed using the modified vx and k parameters. The source decay parameter � 
remains unaffected in the presence of the retardation factor. If decay occurs in both the liq-
uid and the adsorbed solid phases, only the advection velocity vx is divided by R.
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3.2  Pulse Source Boundary

If the source boundary is a pulse, where the boundary condition is applied only for a finite 
amount of time, the domain ranges for the Dirichlet and Cauchy source boundary condition 
equations (Eqs. 7, 6) are modified as ∀ (x, y, z) ∈ S and 0 < t < tp . Note that tp represents 
the duration of the pulse source input [days].

For the case, when t < tp , the solution for the pulse boundary is the same as before (Sec: 
2). However, when t > tp , the solution for the pulse boundary is modified as follows.

3.2.1  Exact Semi‑Analytical Solution

The general expression for the exact semi-analytical solution for point, line, or area pulse 
source boundary condition is given as:

where fx(x, �) , fz(y, �) , and fz(z, �) are given in Eqs. 10, 11, 8, and 9 for the point, line, and 
area sources (refer to Table 2 for solutions to different sources).

3.2.2  Approximate Closed‑Form Analytical Solution

The general expression for the approximate closed-form analytical solution for point, line, 
or area pulse source boundary condition is given as:

where �x(x, t) , fz(y,T) , and fz(z,T) are given in Eqs. 15, 16, 17, 19, 20, 8, and 9 for the 
point, line, and area sources (refer to Table 2 for solutions to different sources).

3.3  Two‑Dimensional Solutions

Forcing fz(z, �) = 2 will provide solutions to two-dimensional problems in the x-y plane, 
while forcing fy(y, �) = 2 will result in solutions to two-dimensional problems in the x-z 
plane. These solutions represent advection–dispersion–reaction transport. However, forc-
ing fx(x, �) = 2 results in a purely diffusive two-dimensional solution along the y-z plane 
since advection is along the x direction. Two-dimensional purely diffusive transport prob-
lems only have exact semi-analytical solutions. Closed-form approximate solutions are not 
valid for purely diffusive two-dimensional transport problems. This is because the charac-
teristic residence time is not defined as vx → 0.

3.4  One‑Dimensional Solutions

The solutions for one-dimensional problems along the x direction with both advection 
and dispersion are readily obtained by forcing fy(y, �) = 2 and fz(z, �) = 2 . This results in 
an exact closed-form analytical solution given by �(x) . Forcing fx(x, �) = 2 , and making 
either fy(y, �) = 2 or fz(z, �) = 2 will provide closed-form exact analytical solutions along 

(22)Cexa(x, y, z, t, tp) =
C0

8
exp−�t

t

∫
t−tp

fx(x, �) fy(y, �) fz(z, �)d�

(23)Capp(x, y, z, t, tp) =
C0

8
exp−�t [�x(x, t) − �x(x, t − tp)] fy(y,T) fz(z,T)
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the y or z directions, respectively. This corresponds to a purely diffusive one-dimensional 
transport, and its solutions are given in supplementary section S3 (van Genuchten 1981; 
Srinivasan and Clement 2008b).

4  Solution Implementation

The exact semi-analytical and the approximate closed-form analytical solutions for point, 
line, and area sources under Dirichlet and Cauchy boundary conditions were implemented 
in a computer program (v-Screen) using MATLAB, the MathWorks Inc., 2021a. The 
modular computer program has independent functions to calculate Cexa and Capp solutions. 
Cexa was evaluated using the in-built ‘integral’ function in MATLAB, which employs a 
global adaptive quadrature integration technique (Shampine 2008). Since the plume is 
symmetric about the centerline along the y and z directions, only a quarter of the plume 
domain is simulated ( x > Xc , y > Yc , and z > Zc ) to improve computational time. The other 
portions of the plume will simply be a mirror image of these quarter plume. The source 
code for v-Screen can be obtained from this link: https://github.com/ecohydrologylab/
vScreenMatlab/.

While in-built functions were used to evaluate error functions, complementary error 
functions, and complex error functions, the direct application of these in-built functions in 
the solution formulation resulted in underflow and overflow errors. Typically, this occurs 
when computing the product of error function terms (underflow error) with exponential 
terms (overflow error) (van Genuchten 1985; Srinivasan and Clement 2008b). A loga-
rithmic transformation formulation was employed to overcome the underflow and over-
flow errors. In this formulation, the error function and exponential terms were first trans-
formed from the linear space to log space. The multiplication operation in the linear space 
becomes a summation operation in the log space. The sum of the log-transformed terms 
was then inverse-transformed to the linear space to evaluate the product terms (Srinivasan 
and Clement 2008b). This logarithmic transformation method significantly reduced under-
flow and overflow errors.

The exact semi-analytical solutions were validated against an explicit finite difference 
numerical solution ( Cnum ) for the point, line, and area source geometries under Dirichlet 
and Cauchy boundaries (see supplementary section S4 for details of numerical methods). 
Additionally, the approximate S &S solutions were compared against the exact semi-ana-
lytical solutions.

5  Results

Field-scale example problems for point (Yeh 1981), line (Wexler 1992), and area (Domen-
ico and Robbins 1985) sources were considered for these model simulations (see Table 3 
for model parameters). While the original example problems had a Dirichlet boundary con-
dition, a Cauchy boundary condition was added to all three example problems. The Cauchy 
boundary conditions were formulated such that the source flux of the Dirichlet and Cauchy 
boundary conditions is equal in the absence of longitudinal dispersion. Additionally, sen-
sitivity simulations were performed under higher longitudinal dispersivity values ( 10�x ) to 
test the performance of the approximate solutions under critical parameter sensitivity con-
ditions (Srinivasan et al. 2007; Sangani and Srinivasan 2021).
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5.1  Characteristic residence Time

The approximate characteristic residence times for the S &S solutions ( Tapp ) were com-
puted from Eq.  13. The true characteristic residence times for the exact semi-analyti-
cal solutions ( Texa ) were calculated using the inverse method described in Sangani and 
Srinivasan (2021). Texa has three features i) initial linear behavior with slope = v−1

x
 , ii) 

final saturation value of t, and iii) transition behavior between features i) and ii) in the 
region surrounding the advective front (Sangani and Srinivasan 2021).

Model simulations for the point, line, and area sources under both Dirichlet and 
Cauchy boundary conditions show that, along the plume centerline, Tapp captures the 
three different features of Texa well both within and beyond the advective front (Fig. 1). 
Parameter sensitivity simulations for �x show a marginal increase in the errors of Tapp 
closer to the source, as observed in Sangani and Srinivasan (2021). As expected, Tapp 
errors decrease with decreasing �x . These simulations show that the characteristic resi-
dence time approximation derived originally for a rectangular area source under Dir-
ichlet boundary conditions (Sangani and Srinivasan 2021) is valid for point and line 
sources under both Dirichlet and Cauchy boundary conditions and area sources under 
Cauchy boundary conditions.

5.2  Point Source Boundary Condition

Along the plume centerline, the concentrations predicted by the exact semi-analytical 
solution ( Cexa ) reproduce the results of the numerical solution ( Cnum ) under both Dir-
ichlet and Cauchy boundary conditions (Fig.  2 a, d). The S &S approximate solution 
( Capp ) matches well with Cexa , especially at plume regions beyond the advective front 

Table 3  List of parameters used in the model comparison simulations for point (Yeh 1981), line (Wexler 
1992), and area (Domenico and Robbins 1985) source boundary conditions.

Parameter Symbol Unit Point Line Area

Longitudinal dispersivity �x [m] 30 21.34 42.58
Transverse dispersivity in y �y [m] 5 4.2672 8.43
Transverse dispersivity in z �z [m] 5 0 0.00642
Velocity vx [m day−1] 0.125 0.432 0.2151
Simulation time t [day] 240 1826 5110
Source pulse time tp [day] 240 1826 5110
Plume decay coefficient k [day−1] 0 0 0
Source decay coefficient � [day−1] 0 0 0
Dirichlet boundary condition C0 Variable 1 40 850
Cauchy boundary condition vxC0 Variable 0.125 17.28 182.8
Source center x-location Xc [m] 0 0 0
Source center y-location Yc [m] 10 228 0
Source center z-location Zc [m] 1 0 0
Source y-width Yw [m] 0 70 240
Source z-width Zw [m] 0 0 5
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(gray vertical lines). Within the advective front and at plume regions close to the source, 
Capp introduces some errors. These errors are lower under smaller �x and larger under 
higher �x.

Along the y-transect, Cexa reproduces the results of Cnum under both Dirichlet and 
Cauchy boundary conditions (Fig. 2 b, c, e, and f). As expected, the accuracy of Capp is 
higher beyond the advective front, where it matches well with Cexa (Fig. 2 c, and f). How-
ever, under higher �x values, Capp introduces some errors within the advective front at 
plume regions close to the source (Fig. 2 b, and e). This is because the characteristic resi-
dence time formulation in the S &S approximation only accounts for longitudinal disper-
sion effects and ignores transverse dispersion (Sangani and Srinivasan 2021).

The concentration contour plots in the x-y plane show that Capp matches with Cexa 
under Dirichlet and Cauchy source boundary conditions (Fig.  3). Even under critical 
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parameter conditions ( 10�x ), Capp matches well with Cexa over large sections of the plume 
(Fig. 3 b, and d). Similar behavior is also observed in the contour plots in the y-z plane 
(Fig. S1). These simulations validate the single-integral exact semi-analytical solutions 
for point source geometry under both Dirichlet and Cauchy boundary conditions. Addi-
tionally, these simulations demonstrate that the closed-form S &S approximate solu-
tion for the point source geometry matches the exact solution over large sections of the 

101 102 103

x [m]

10-6

10-4

10-2

C
/C

0
Dirichlet source boundary

a exact
numerical
approximate

-40 -20 0 20 40 60
y [m]

10-5

100

C
/C

0

x = 20 [m]
b

-50 0 50 100
y [m]

10-10

x = 200 [m]
c

101 102 103

x [m]

10-8

10-6

10-4

10-2

C
/C

0

Cauchy source boundary
d

-40 -20 0 20 40 60
y [m]

10-5

C
/C

0

x = 20 [m]
e

-50 0 50 100
y [m]

10-10

x = 200 [m]
f

Advective 
 front

Advective 
 front

Fig. 2  Comparison of the plume centerline (y = 10 [m], z = 1 [m]) concentration profiles between the exact 
semi-analytical ( Capp black), numerical ( Cnum circles), and the S &S approximate ( Capp red) solutions for the 
three-dimensional point source example problem with a Dirichlet and d Cauchy boundary conditions. The 
concentration profiles along the y-transects within the advective front (x = 20 [m], and z = 1 [m]) b, and e 
and beyond the advective front (x = 200 [m], z = 1 [m]) c, and f are highlighted. Solid lines and filled cir-
cles represent base case �

x
 , while dashed lines and open circles represent parameter sensitivity simulations 

for 10�
x
 . Gray vertical bars indicate the location of the advective front. Model parameters are taken from 

Yeh (1981) and are summarized in Table 3.

-40

-20

0

20

40

60

Y
 [

m
]

Dirichlet source boundary

1e-4 1e-5

a
exact
numerical
approximate

-40

-20

0

20

40

60

Y
 [

m
]

0 50 100 150 200 250 300 350
x [m]

1e
-4

1e-5

b

Cauchy source boundary

1e-4
1e-5

c

0 50 100 150 200 250 300 350
x [m]

1e-4
1e-5

d

Fig. 3  Comparison of the concentration contours between the exact semi-analytical ( Cexa black dashed 
line), numerical ( Cnum black circles), and the S &S approximate ( Capp red solid line) solutions along the 
x–y plane (z = 1 [m]) for the three-dimensional point source example problem with Dirichlet (a, and b) and 
Cauchy (c, and d) boundary conditions. b and d represent parameter sensitivity simulations for 10�

x
 . Gray 

vertical bars indicate the location of the advective front. Model parameters are taken from Yeh (1981) and 
are summarized in Table 3.



658 J. Sangani et al.

1 3

plume. Under high longitudinal dispersivity values and at plume regions close to the 
source, the S &S approximate solution shows some discrepancies.

5.3  Line Source Boundary Condition

The line source example problem is a two-dimensional contaminant transport problem in 
the x-y plane. Since �z = 0 , the fz term in the solution will equals 2. The plume centerline 
concentrations for the line source example problem show that Cexa reproduces the results 
of Cnum under both Dirichlet and Cauchy boundary conditions (Fig. 4 a and d). Addition-
ally, Capp performs well both within and beyond the advective front. Similar results can be 
observed in the y-transect plots (Fig. 4 b, c, e, and f).

The x-y contour plots for the line source boundary show that Cexa matches Cnum under 
both Dirichlet and Cauchy source boundary conditions (Fig.  5 a, and c). Capp closely 
matches Cexa even under critical parameter ( 10�x ) conditions (Fig. 5 b, and d). As expected, 
at regions close to the source and away from the centerline, Capp introduces some errors. 
Overall, Capp performs reasonably well over large sections of the plume and closely 
matches the exact semi-analytical solution.

5.4  Area Source Boundary Condition

Plume centerline simulations for the rectangular area source example problem show that 
Cexa matches Cnum under both Dirichlet and Cauchy boundaries (Fig.  6 a, and d). While 
the accuracy of Capp for Dirichlet source boundary with an area source has been previ-
ously characterized (Srinivasan et al. 2007; Sangani and Srinivasan 2021), its performance 
for a Cauchy boundary has not been characterized. Along the centerline, Capp also closely 
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matches the exact solution. The y-transect plots show that Capp performs well both within 
(Fig. 6 b, and e) and beyond (Fig. 6 c, and f) the advective front.

Contour plots on the x-y plane for the area source boundary show that Cexa reproduces the 
results of Cnum under both Dirichlet and Cauchy source boundary conditions (Fig. 7 a, and 
c). Similar to the point and line source example problems, errors in Capp marginally increase 
under higher longitudinal dispersivity values ( 10�x ), especially in regions close to the source 
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(Fig. 7 b, and d). Beyond the advective front, the Capp accurately estimates the plume concen-
trations. Similar results are observed for concentration contours along the y-z plane (Fig. S2).

5.5  Extended Solutions: Pulse Source and Decay

Using the principle of linear superposition (Eqs.  22 and 23), plume concentrations were 
obtained for the area source example problem given in Domenico and Robbins (1985) 
(Table 3) with a modified pulse source boundary condition. The pulse time tp was set to 510 
[days]. Model simulations show that the Cexa contours exactly match with Cnum , and Capp 
closely matches Cexa both within and beyond the advective front (Fig. S3).

Model comparison simulations performed so far only included time-invariant source 
boundary conditions (constant source concentration or constant source flux) for a conservative 
source. To validate the Cexa solution and assess the performance of Capp under time-varying 
(exponentially decaying) source boundary conditions and contaminant plume decay, model 
simulations were performed using a field-scale, area-source example problem from Paladino 
et al. (2018). The parameters for this problem are similar to the original Domenico example 
problem (Domenico and Robbins 1985) with the following modifications i) � = 0.008 [day−1 ], 
and ii) k = 0.001 [day−1 ] (Table 3). These simulation results show an exact match between 
Cexa and Cnum , validating the analytical solutions. Capp closely matches Cexa showing that the 
derivations under complex number conditions (Eqs. 2017) are valid under both Dirichlet and 
Cauchy boundary conditions (Fig. S4).
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6  Discussion

6.1  Range of Parameters and Domain Conditions

The simulations performed in Sec. 5 only compared the exact and approximate solutions 
for a limited set of three example problems (Table 3) under parameter sensitivity values 
to longitudinal dispersivity. However, groundwater transport problems have a wide range 
of parameter values (Gelhar et  al. 1992; Schulze-Makuch 2005) and domain conditions 
spanning several orders of magnitude in spatiotemporal scales ranging from laboratory 
experiments to field-scale problems. Previous studies have shown that the longitudinal and 
transverse dispersivity values increase (Gelhar et  al. 1992; Schulze-Makuch 2005) with 
increasing scale (plume lengths). Based on data from 109 studies, the scaling behavior of 
longitudinal dispersivity with plume length (ranging from 1 [m] to 100,000 [m]) has been 
characterized as a power-law relationship (Neuman 1990; Xu and Eckstein 1995; Schulze-
Makuch 2005). Some studies suggest a 1 [km] upper bound for longitudinal dispersivity 
values (Xu and Eckstein, 1995). However, studies with more extensive data sets do not sup-
port an upper bound or asymptotic trend for the variation of longitudinal dispersivity with 
the plume scale (Schulze-Makuch 2005).

Higher longitudinal dispersivity negatively affects the performance of the S &S solu-
tion, especially at plume locations closer to the source and away from the plume centerline. 
To assess the performance of the S &S approximate solution under a range of parameter 
conditions typically encountered in groundwater contamination scenarios, model simula-
tions were performed considering the entire range of parameters and domain conditions 
(Table 4). A random (uniformly distributed) combination of parameters and domain val-
ues were selected from the observed range of values resulting in 10,000 unique transport 
problem simulations for each of the six (three source domains with two boundary condi-
tions) classes of transport problems resulting in a total of 60,000 unique  transport prob-
lem simulations. The maximum value for the plume and source decay coefficient was set 
assuming a half-life of one year (365 [days]). The domain ranges for these 60,000 simu-
lations are 0 < t < 10, 000 [days], 0 < x − Xc < 10, 000 [m], 0 < y − Yc < 5, 000 [m], and 
0 < z − Zc < 500 [m].

Table 4  The observed ranges of 
parameter values for modeling 
three-dimensional contaminant 
transport in groundwater (Gelhar 
et al. 1992).

Parameter Symbol Unit Range

Longitudinal dispersivity �x [m] 0.43–910
Transverse dispersivity in y �y [m] 0.018–52
Transverse dispersivity in z �z [m] 0.0015–0.1
Velocity vx [m day−1] 0.03–29
Simulation time t [day] 1–10,000
Plume decay coefficient k [day−1] 0-0.002
Source decay coefficient � [day−1] 0-0.002
Dirichlet: C C0 [mg L −1] variable

Cauchy: vxC − vx�x
�C

�x
vxC0 [m day−1 mg L −1] variable

Source y-width (y-line/area) Yw [m] 1–1000
Source z-width (z-line/area) Zw [m] 1–100
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The characteristic times predicted by the S &S approximate solutions ( Tapp ) were 
compared with the exact semi-analytical solution ( Texa ) for the 60,000 unique transport 
simulations for plume regions beyond the advective front (Fig. S5). These results show 
that Tapp matches well with Texa for the three (point, line, and area) sources and two 
(Dirichlet and Cauchy) boundary conditions (Fig. S5). Existing screening tools use the 
closed-form Domenico approximation to represent the characteristic time Tdom (Newell 
et al. 1996; Aziz et al. 2000; Neville 2005; Burnell et al. 2012; Rios et al. 2013; Funk 
et  al. 2017). Tdom is given as (Domenico and Robbins 1985; Sangani and Srinivasan 
2021):

Comparing Tdom with Texa for the 60,000 simulations, the improvement in the S &S 
approximation becomes apparent (Fig. S5). Beyond the advective front, Tdom overesti-
mates the characteristic residence time and incorrectly models T to be higher than the 
model simulation time (Srinivasan et al. 2007; Sangani and Srinivasan 2021).

The improvement in T is also reflected in the one-to-one concentration predictions, 
where Capp matches well with the Cexa over 15 orders of magnitude for the 60,000 unique 
simulations (Fig. 8). As expected, due to its poor approximation of T , plume concentra-
tions predicted by the Domenico solution ( Cdom ) perform very poorly (Fig.  8). While 
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Cdom significantly overestimates plume concentrations, Capp only marginally underesti-
mates plume concentrations beyond the advective front.

6.2  Computational Efficiency

Compared to standard numerical solutions, the exact semi-analytical solutions ( Cexa ) pre-
sented in this study are computationally efficient by several orders of magnitude (Table 5). 
The S &S approximate closed-form analytical solutions ( Capp ) have a 5 times computa-
tional advantage over existing exact semi-analytical solutions. When parameter combina-
tions result in complex error function terms, the computational time for Capp increases; 
however, this situation can be improved using efficient algorithms for computing the error 
function terms.

For example, the S &S solutions take 1 sec to compute the plume concentrations at 
1000 locations (typically needed to estimate concentration contours along a given plane) 
when run using a laptop computer (Intel(R) Core i5-8265U CPU@1.6 Hz, 8GB RAM with 
Microsoft Windows 10 operating system). However, single-integral exact solutions take 
5 seconds for the same simulations. When complex error functions have to be evaluated, 
the computing times for the S &S approximate solutions marginally increase, while the 
performance of other solutions remains unchanged. However, this parameter combination 
occurs relatively infrequently (less than 10% of the time) when solving reactive transport 
problems.

6.3  Limitations and Future Directions

The semi-analytical solutions presented here are exact solutions that are accurate for all 
parameter combinations and simulation domain values. However, the closed-form S &S 
solutions are approximate solutions whose accuracy varies with plume location and trans-
port parameter values. While the S &S approximate solution accurately estimates contami-
nant concentrations at plume regions beyond the advective front, it introduces some errors 
at specific plume regions within the advective front. These plume regions are located close 
to the source and away from the plume centerline. The errors tend to be higher at larger 
values of longitudinal dispersivities and are such that plume concentrations are always 
underestimated when compared to exact semi-analytical solutions.

Table 5  Summary of relative computing times of different solutions to estimate plume concentrations. Esti-
mates were made for 10,000 individual computations of concentrations on a laptop computer (Intel(R) Core 
i5-8265U CPU@1.6 Hz, 8GB RAM with Microsoft Windows 10 operating system). The computations for 
the approximate semi-analytical solutions increase under parameter conditions resulting in complex number 
computations of �

x
 (Eqs. 17 and 20).

Solution Relative computing time

k ≥ � −
v
x

4�
x

Approximate < 1

Semi-analytical 5-6
Numerical > 10000
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These errors arise because the characteristic average residence times employed by the 
S &S solutions are based on a centerline approach that ignores the travel time of contami-
nant particles along the transverse directions (Sangani and Srinivasan 2021). This results in 
underestimating the characteristic residence time and the corresponding plume concentra-
tions. Adding a transverse correction to the Tapp formulation can improve the solution accu-
racy for regions within the advective front. However, determining the functional form of 
the transverse correction terms and their associated parameters such that they are generic 
across different source dimensions (point, line, and area) and boundary conditions (Dir-
ichlet, Cauchy) can be challenging.

The solutions presented so far considered only one species of solute. Typically, contam-
inant transport problems involve degradation products that are also harmful, and their fate 
and transport need monitoring (Clement 2001; Quezada et al. 2004; Srinivasan and Clem-
ent 2008a). The present framework can be extended to obtain solutions for multi-species 
coupled reactive transport problems as well. Coupling this with modeling multiple interact-
ing source zones using superposition principles will enable the application of the proposed 
solutions to a broader set of groundwater contaminant transport problems.

7  Summary and Conclusions

This paper presents a library of exact semi-analytical solutions to groundwater trans-
port problems with one-dimensional advection, one-, two-, or three-dimensional disper-
sion, first-order decay reaction, and linear equilibrium sorption under both Dirichlet and 
Cauchy boundary conditions. The transport problem can involve contaminant sources hav-
ing a point, line, or area geometry, with exponentially decaying time-varying source zone 
concentration or source flux. These semi-analytical solutions can be employed to validate 
numerical models. However, semi-analytical solutions require numerical evaluation of a 
definite integral to compute the final plume concentrations. This adversely affects compu-
tational time and makes them cumbersome to use in screening studies.

To improve computational efficiency by eliminating the need for numerical integra-
tion, closed-form approximate analytical solutions (S &S solutions) were derived for all 
the exact semi-analytical solutions using the concept of characteristic average residence 
time. These approximate solutions can accurately predict plume contours over large sec-
tions of the plume under a wide range of parameter conditions, making them ideal for use 
in screening tools. To overcome restrictions on the choice of transport parameters, spe-
cial expressions for computing plume concentrations were derived to handle error function 
terms involving complex numbers.

The exact and approximate analytical solutions are extended to solve transport problems 
with i) linear equilibrium sorption with the option of plume decay happening in both liq-
uid and solid phases, or only in the liquid phase, and ii) pulse source input. These exten-
sions help broaden the application of these solutions to a wide range of practically relevant 
simplified groundwater contaminant transport problems. The solutions developed in this 
paper can be readily implemented in screening tools for the rapid assessment of contami-
nant plume concentrations. Additionally, these computationally efficient solutions facilitate 
screening-level parameter estimation and multi-scenario analysis studies.
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