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Abstract
In the present study, a multiple-relaxation-time lattice-Boltzmann method is considered to 
investigate double-diffusive natural convection in a cavity with heating and diffusing plate 
inside. The cavity is filled with a porous medium at representative elementary volume scale 
based on the generalized model. The heated plate is placed horizontally at the center of the 
cavity with higher temperature and concentration. The horizontal walls of the cavity are 
assumed to be insulated, no conducting, and impermeable to mass transfer. The vertical 
walls are kept at low temperature and concentration. The combined effects of buoyancy 
ratio N ( −5 ≤ N ≤ 5 ), thermal Rayleigh number Ra

T
 ( 104 ≤ Ra

T
≤ 107 ), Darcy number Da 

( 10−6 ≤ Da ≤ 10−2 ), Lewis number Le ( 1 ≤ Le ≤ 10 ), and porosity of the porous medium 
� ( 0.4 ≤ � ≤ 0.8 ) on double-diffusive natural convection are analyzed numerically. Results 
are presented in terms of streamlines, isotherms, iso-concentrations, and average Nusselt 
and Sherwood numbers. Results show that the flow structure, the shape of isotherms, and 
iso-concentrations are well affected by the control parameters. The heat and mass transfers 
are promoted by the increase of Darcy number. The effect of the Lewis number on heat 
transfer is negligible for low Darcy values, but this effect is promoted by increasing Darcy 
number.
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1 Introduction

The phenomenon of coupled heat and mass transfer by natural or mixed convection in 
porous media is generally referred to as fluid flows generated by buoyancy effects due to 
both temperature and concentration gradients. These two gradients give rise to a non-uni-
form distribution of the mixture density, which causes convective motion under the effect 
of gravity. In the case where the volume forces are of thermal origin, natural convection 
is said to be thermal, it is thermosolutal convection or double-diffusive convection if both 
thermal and solutal effects coexist.

Double-diffusive convection in a cavity filled with a porous medium is of interest to 
several manufacturers and researchers because of its involvement in various physical, tech-
nological, chemical, and microbiological fields. Among the potential applications are the 
extraction of geothermal energy, crystal growth to obtain a single crystal from a molten 
mixture, thermal insulation of buildings, dispersion of pollutants in aquifers and saturated 
soils, micro-combustion, etc. (Bergman et  al. 1986; Carlsson 1985; Coulter and Güçeri 
1987; Kaisare and Vlachos 2012; Markham and Rosenberger 1984; Nishimura et al. 1994). 
Double-diffusive convection in porous media began to attract the attention of researchers 
after Nield (1968) studied the stability of a horizontal porous layer, heated and salted from 
below. Using the linear stability analysis, he determined the values of the critical Rayleigh 
numbers characterizing the onset of stationary convection for different boundary condi-
tions. In a more general study Bennacer et al. (2001) considered a vertical cavity subjected 
to constant temperatures and concentrations on the vertical walls. The volume forces 
inducing the flow are assumed to be cooperative. Scale analysis was used in the limit cases 
of pure thermal (N ≪ 1) and pure solutal (N ≫ 1) in the boundary layer regime. They dem-
onstrated that the anisotropic properties of the porous medium significantly affect the rates 
of heat and mass transfer in the cavity. On their side, Khair and Bejan (1985) considered 
the phenomenon of thermosolutal convection occurring near a vertical plate immersed in 
a porous medium saturated with a fluid. Using a scale analysis, they have identified four 
possible convection regimes according to the values of the buoyancy ratio N and the Lewis 
number Le.

Several computational methods have been used to study double-diffusive convec-
tion in porous media. Conventional techniques like finite element method (FEM) (Nithi-
arasu et  al. 1996, 1997b), finite volume method (FVM) (Mohamad et  al. 2004; Tasmin 
et al. 2021), and finite-difference method (FDM) (Chamkha and Al-Naser 2001) have been 
applied to deal with such problems. The lattice Boltzmann method (LBM) has been used 
extensively as a powerful numerical tool to simulate complex fluid flows and model the 
physics of complex fluids (Benzi et  al. 1992; Chen and Doolen 1998; Gong and Cheng 
2013; Ma et al. 2014; Ma and Chen 2014; Molla et al. 2018). Generally, a distinction is 
made between two classes of LBM models, which are used for the simulation of flows 
in porous media: the representative elementary volume (REV) scale method (Liu et  al. 
2014; Seta et  al. 2006) and the pore-scale method (Kang et  al. 2007; Tang et  al. 2005). 
The representative elementary volume (REV) scale approach is widely adopted to study 
heat and mass transfer because it statistically allows to determine the macroscopic quan-
tities. In fact, in the REV scale LBM, the effect of the porous media has been consid-
ered by adding an extra term to the standard LB equation based on different models: the 
Darcy model, the Brinkman-extended Darcy model, and the Forchheimer-extended Darcy 
model (Kang et al. 2002). It is admitted that the Brinkman–Forchheimer-extended Darcy 
model, which is called the generalized model, overcomes some limitations of the Darcy 
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model, the Brinkman-extended Darcy model, and the Forchheimer-extended Darcy model 
(Guo and Zhao 2002). The Darcy equation including Brinkman and Forchheimer’s terms 
to account for viscous and inertia effects was used in the momentum equation for the first 
time by Chen and Chen (1993) while considering the double-diffusive fingering convection 
in a porous medium. A numerical mixed Galerkin-finite difference method was adopted 
to predict the limits of stabilities delimiting the different flow regimes as a function of the 
thermal and solutal Rayleigh numbers. Karimi-Fard et  al. (1997) conducted a numerical 
analysis of double-diffusive convection in a square cavity filled with a porous medium for 
various pertinent controlling parameters. Non-Darcian effects were analyzed by investigat-
ing the average heat and mass transfer rates. The results of this investigation show that the 
inertial and boundary effects have a significant effect on double-diffusive convection.

Combustion is one of the applications where the phenomenon of double-diffusive con-
vection is ubiquitous. In a combustion environment within an inert porous medium, the 
heat transfer and mixing of the reacting species are intensified, which leads to a combus-
tion mode having different characteristics compared to free premixed combustion, such as 
a considerable reduction in polluting species (Mohamad 2005).

To the best of the authors’ knowledge, no attention has been paid to the problem of 
double-diffusive convection flow in a porous enclosure with an inner heating and diffusing 
thin plate placed inside [case of the low-pressure flat flame (El Bakali et al. 2012; de Fer-
rières et al. 2013)]. Very schematically, it imitates the combustion of an object located in 
the center of a room or in a porous burner (Howell et al. 1996; Mujeebu et al. 2009, 2010; 
Trimis and Durst 1996; Viskanta 2011; Wood and Harris 2008). The release of heat and 
the injection of active gases generate a confined floating plume due to the combined effects 
of thermal and concentration gradients.

The present study focuses on the analysis of double-diffusive convection flow in a 
square enclosure filled with a porous medium with inner heating and diffusing horizon-
tal thin plate centrally located using multiple-relaxation-time (MRT) lattice-Boltzmann 
method (LBM) at the REV scale based on the generalized model. Moreover, the effect of 
a wide range of the pertinent parameters such as thermal Rayleigh number ( RaT ), Lewis 
number ( Le ), Buoyancy ratio ( N ), Darcy number ( Da ) and porosity of the medium ( � ) is 
considered in the present study to investigate the impact of these parameters on heat and 
mass transfer characteristics.

2  Mathematical Model

The studied configuration is a two-dimensional square enclosure [low-pressure burner 
sketched in Fig. 1a (Mercier et al. 2020)] of height and width H , filled with an inert porous 
medium. The latter is provided with a heated plate of length h =

L

2
 , placed horizontally so 

that its center and that of the cavity coincide as shown in Fig. 1b. The plate is maintained at 
a higher temperature Th and concentration C′

h
 . The horizontal walls are assumed insulated, 

non-conducting, and impermeable to mass transfer. The vertical walls are kept at low tem-
perature and concentration ( TL < Th and C′

L
< C′

h
 ). The fluid that saturates the enclosure 

is Newtonian and incompressible. The porous medium is supposed isotropic, homogene-
ous, and in thermodynamic equilibrium with the fluid. The effects of Soret and Dufour 
are neglected in the present study. The thermophysical properties of the fluid are assumed 
constant, except the density variation in the buoyancy force, which obeys the Boussinesq 
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approximation. Therefore, the fluid density varies with temperature and concentration 
according to the linearized state equation (Bejan 2013):

where �0 is the fluid density at the reference temperature T �

= T0 , and concentration 
C�

= C�

0
 , and �T and �C are the thermal and concentration expansion coefficients, respec-

tively. They are expressed as follows (Bejan 2013):

The governing equations, based on the Darcy–Brinkman–Forchheimer extended model, 
can be expressed as follows (Nithiarasu et al. 1997a):

(1)� = �0

(
1 − �T

(
T − T0

)
− �C

(
C�

− C�

0

))

(2)�T = −

1

�0

(
��

�T

)

P,C

�C = −

1

�0

(
��

�C�

)

P,T

(3)∇ ⋅ u = 0

(4)
�u

�t�
+ (u ⋅ ∇)

(
u

�

)
= −

1

�0

∇(�p) + �∇
2u + F

(5)
�T

�t�
+ ∇ ⋅ (uT) = �∇

2T

Fig. 1  a A schematic representation of the low-pressure flat flame growth apparatus (Mercier et al. 2020); b 
schematic of the studied configuration; c schematic view of the two-dimensional nine-velocity  D2Q9 model
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where u = (u, v)T is the velocity vector, p is pressure, T  is the local temperature, C′ is the 
concentration, ν is the fluid kinematic viscosity, � its thermal diffusivity, D is the mass 
diffusivity of the saturated porous medium, � is the porosity, and F is the total body force 
induced by the porous matrix and other external forces, which is given by the following 
expression (Ergun 1952):

where K is the permeability and �u� =
√
u2 + v2 . The buoyancy force G is given by (Liu 

and He 2018):

where g is the gravitational acceleration, T0 =
Th+TL

2
 and C�

0
=

C�

h
+C�

L

2
 are the reference tem-

perature and concentration, respectively, j is the unit vector in the y-direction.
Based on Ergun’s experimental relation (Ergun 1952), the inertial coefficient (Forch-

heimer coefficient) of the porous medium F
�
 can be expressed as (Vafai 1984):

The following dimensionless variables are obtained using appropriate scales of length, 
velocity, temperature, and concentration:

The system is governed by Eqs. (3)–(6) characterized by several dimensionless parameters, 
which are the thermal Rayleigh number RaT , the Prandtl number Pr , the Lewis number Le , 
the buoyancy ratio N , and the Darcy number Da , defined as follows:

The boundary conditions, expressed in terms of dimensionless variables, are such that:

The dimensionless stream function is calculated from the following relations:

(6)�C�

�t�
+ ∇ ⋅

(
uC�

)
= D∇2C�

(7)F = −

��

K
u −

�F
�√
K
�u�u + �G

(8)G = g�T
(
T − T0

)
j + g�C

(
C�

− C�

0

)
j

(9)F
�
=

1.75√
150�3

(10)(X, Y) =
(
x

H
,
y

H

)
, (U,V) =

(
uH

�

,
vH

�

)
, � =

T − T0

Th − TL
and C =

C�

− C
�

0

C�

h
− C�

L

(11)
RaT =

g�T
(
Th − TL

)
H3

��

Pr =
�

�

Le =
�

D

N =

�C

(
C�

h
− C�

L

)

�T

(
Th − TL

) Da =
K

H2

(12)U = V = 0, � = �L = 0,C = CL = 0 at X = 0 and X = 1

(13)U = V = 0,
��

�Y
=

�C

�Y
= 0 at Y = 0 and Y = 1

(14)U = V = 0, � = �h = 1,C = Ch = 1 at the plate
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The average heat and mass fluxes at the vertical walls are represented in dimensionless 
forms by the average Nusselt and Sherwood numbers:

The convergence criterion used to estimate the achievement of the steady-state solution 
was based on the following local criterion:

where n indicates the time level and � represents any of the dimensionless variables � , C , 
U or V .

3  Numerical Method

3.1  MRT‑LB Model for Double‑Diffusive Convection in Porous Media

3.1.1  MRT‑LB Equation for the Flow Field

The  D2Q9 lattice velocity model (Fig. 1c) is used in this study, and the corresponding discrete 
velocity set is given as:

where c = Δx

Δt
= 1 is the lattice speed. Δx and Δt are the lattice spacing and the time step, 

respectively, with Δx = Δt = 1.
Different works using the SRT-LB to deal with porous media flows at REV scale (Gao 

et al. 2014; Guo and Zhao 2002; Spaid and Phelan 1997; Wang et al. 2016) are available in 
the literature. The MRT lattice-Boltzmann model is chosen as the flow (Eq. 4), temperature 
(Eq. 5) and concentration (Eq. 6) fields solvers. The MRT lattice-Boltzmann equation with a 
force term can be expressed as:
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(16)Nu =

1

∫

0

(
��

�X

)
X=0

dY +

1

∫

0

(
��

�X

)
X=1

dY

(17)Sh =

1

∫
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(
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1

2
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)
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where the above quantities are obtained as follows:

In Eq.  (21), 
{
fk(r, t)

||k = 0,… , 8
}
 are the density distribution functions for the discrete 

velocities 
{
ck
||k = 0,… , 8

}
 . 
{
mk

||k = 0,… , 8
}
 and 

{
m

eq

k

|||k = 0,… , 8
}

 are the moments of 
the distribution functions, and the corresponding equilibrium moments. In Eq.  (24), {
Fk
||k = 0,… , 8

}
 are the discrete force terms in the moment space. The matrices I and M 

are, respectively, the unit matrix and the orthogonal transformation matrix that can be con-
structed as (Liu et al. 2014):

In Eq. (26), Sf  is the diagonal relaxation matrix where s0 = s3 = s5 = 0 . as they correspond 
to the conserved moments during the collision phase. For the sake of stability s1 , s2 , s4 and 
s6 are chosen slightly greater than unity. The fluid kinematic viscosity is correlated to the 
relaxation rates s7 and s8 through the Chapman–Enskog expansion analysis (Dahani et al. 
2022; Hasnaoui et al. 2021) as folws:

To ensure that the code works in a near-incompressible regime, the Mach number Ma 
should be less than 0.3. In this work, the Mach number was selected to be 0.1. By fixing the 
thermal Rayleigh number, the Prandtl number, and the Mach number, the viscosity can be cal-
culated by the following expression:

where m is the lattice number.

(21)f (r, t) =
(
f0(r, t), f1(r, t),… , f8(r, t)

)T

(22)m(r, t) = Mf =
(
m0(r, t),m1(r, t),… ,m8(r, t)

)T

(23)meq
(r, t) =

(
m

eq

0
(r, t),m

eq

1
(r, t),… ,m

eq

8
(r, t)

)T

(24)F(r, t) =
(
F0(r, t),F1(r, t),… ,F8(r, t)

)T

(25)M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2
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(26)Sf = diag
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(
1

s7
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3RaT
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For the present MRT lattice-Boltzmann model, the key point is the choice of the appro-
priate equilibrium moments and discrete force term in the moment space. Here, the follow-
ing equilibrium moments meq

k
 are selected (Liu et al. 2014):

The total body force F is obtained by adding a forcing term to the collision step in 
the moment space with the fluid velocity. Thus, the components of the forcing term {
Fk
||k = 0,… , 8

}
 in the moment space are given explicitly as (Liu et al. 2014):

where Fx and Fy are obtained as:

Then, the macroscopic density � and velocity u are given by:

where W is a temporal velocity calculated by the following expression:

The two parameters l0 and l1 in Eq. (33) are given by:

3.1.2  MRT Lattice‑Boltzmann Method for Temperature and Concentration Fields

For double-diffusive convection in porous media, the temperature and concentration fields.
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are governed by Eqs. (5) and (6). These last equations were solved separately by MRT-LB 
equations based on the two-dimensional  D2Q5 model. The MRT-LB equations for the temper-
ature and concentration fields are described by the distribution functions g (for temperature) 
and h (for concentration) expressed by the following equations:

where the above notations denote:

where 
{
gk(r, t)

||k = 0,… , 4
}
 and 

{
hk(r, t)

||k = 0,… , 4
}
 are, respectively, the discrete tem-

perature and concentration distributions functions for the discrete velocities {
ck
||k = 0,… , 4

}
 . The discrete parameters 

{
ngk

|||k = 0,… , 4
}

 , 
{
n
eq

gk

|||k = 0,… , 4
}

 , {
nhk

||k = 0,… , 4
}
 and 

{
n
eq

hk

|||k = 0,… , 4
}

 are the moments and their corresponding equi-
librium moments, respectively, for temperature and concentration distributions functions. 
The matrix N is an orthogonal transformation matrix constructed as follows (Liu et  al. 
2014):

In Eqs. (45) and (46), Sg and Sh are the diagonal relaxation matrix where sg0 = sg3 = sg4 = 1 , 
sh0 = sh3 = sh4 = 1 , sg1 = sg2 =

(
10�

4+a
+ 0.5

)
−1

 and sh1 = sh2 =
(

10D

4+a
+ 0.5

)
−1

 . The con-
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(
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(45)Sg = diag
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)

(46)Sh = diag
(
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)
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stant a was set to −2 in order to have the same sound speed in both  D2Q9 and  D2Q5 
models.

The equilibrium moment vectors neqg  and neq
h

 are chosen as follows:

The macroscopic temperature and concentration can be obtained via the following 
relations:

3.2  Boundary Conditions

The boundary conditions associated with this problem are characterized by the non-slip of 
the fluid particles on the rigid boundaries and the impermeability of the latter. Hence, clas-
sical bounce-back boundary conditions were applied on the walls of the cavity. The func-
tions oriented to the exterior of the cavity are known since they have been determined in 
the streaming step. After the collision, all the functions oriented to the interior of the cavity 
are unknown, they are deduced by using the values of the functions oriented (mirror) to the 
exterior. For the bottom and the top walls, the following conditions were used for tempera-
ture and concentration:

For the left and right walls, the following conditions were used for temperature and 
concentration:

For the top, the bottom, the left and the right sides of the thin plate, the following condi-
tions were used for temperature and concentration:
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3
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3.3  Numerical Validation and Grid Size Effect

The numerical code was validated in the case of natural convection in a cavity with a 
heated plate inside (Saravanan and Sivaraj 2013) and in the case of pure thermal natural 
convection in a porous cavity against numerical (Chen et al. 2009; Molla et al. 2018; Nithi-
arasu et al. 1997a) and experimental (Molla et al. 2018; Sathe et al. 1987) data and in the 
case of double-diffusive convection around a heated cylinder in a closed cavity filled with 
porous media (Xu et  al. 2017). The comparative results are presented in Fig.  2 (natural 
convection in a cavity with a heated plate inside), Tables  1 and 2 (pure thermal natural 
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Fig. 2  Comparison between our results (bottom) and those of Saravanan and Sivaraj (Saravanan and Sivaraj 
2013) (top)
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convection in a porous cavity), Fig. 3 and Table 3 (double-diffusive natural convection in a 
porous medium). The qualitative and quantitative results presented in Fig. 2 show that our 
code reproduces satisfactorily the results reported in Saravanan and Sivaraj (2013) with 
a maximum deviation of 1.6%. The results presented in Tables  1 and 2 show an excel-
lent agreement between the MRT-LBM results, and those reported in Chen et al. (2009), 
Molla et al. (2018), Nithiarasu et al. (1997a) and Sathe et al. (1987). Also, the comparative 
results presented in Fig. 3 in terms of streamlines, isotherms, and iso-concentrations, and 
the quantitative results presented in Table 3 in terms of Nusselt and Sherwood numbers 
show that our code reproduces satisfactorily the results reported in Xu et al. (2017) with a 
maximum deviation of 4.2%.

A uniform grid of 200 × 200 was used in the present study. The choice of this grid was 
based on several preliminary tests performed to assess the sensitivity of the results vis-a-
vis the variations of the mesh. A summary of representative results is presented in terms 
of �max , Nu and Sh for various grids and various Darcy numbers for � = 0.4 in Table 4 for 
RaT = 105 , Le = 2 and N = 5 and in Table 4(a) for RaT = 107 , Le = 10 and N = 1 . The 
analysis of the results presented in Table 4(b) shows that, by refining the retained grid to 

Table 1  Validation in terms of average Nusselt number with previous studies

Da Ra Nithiarasu et al. 
(1997a)

Chen et al. (2009) Molla et al. (2018) MRT LB

� = 0.4 10−2 103 1.01 1.01 1.0197 1.0076

104 1.408 1.362 1.3546 1.3606
105 2.983 2.990 3.0293 2.9969

10−4 105 1.067 1.064 1.0681 1.0659
106 2.55 2.60 2.6263 2.6093
107 7.81 7.86 7.7831 7.8429

� = 0.6 10−2 103 1.015 1.012 1.0240 1.0118
104 1.530 1.500 1.5079 1.4916
105 3.555 3.445 3.4855 3.4529

10−4 105 1.071 1.070 1.0914 1.0695
106 2.725 2.714 2.7418 2.7183
107 8.1836 8.648 8.1243 8.6620

Table 2  Experimental validation in terms of average Nusselt number

Da Ra Pr Experimental (Sathe 
et al. 1987)

Molla et al. 
(2018)

MRT LB

1.048 × 10
−4

1.72 × 10
6 6.30 2.75 2.78 2.7379

2.47 × 10
6 6.11 3.30 3.24 3.2713

3.04 × 10
6 6.07 3.70 3.64 3.6837

3.672 × 10
−4

1.02 × 10
6 6.16 3.35 3.35 3.3335

1.67 × 10
6 6.18 4.07 4.16 4.1298

2.38 × 10
6 6.22 4.69 4.63 4.6410
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Fig. 3  Comparison between our results and those of Xu et al. (2017) for Ra
T
= 10

5 , Le = 2, and Da = 10−3

Table 3  Validation of the numerical code versus published results of Xu et  al. (2017) for Ra
T
= 10

5 and 
Da = 10

−3

N = 5 N = −5

Le = 0.5 Le = 2 Le = 10 Le = 2

Nu Sh Nu Sh Nu Sh Nu Sh

Xu et al. (2017) 6.532 4.439 5.522 7.530 3.929 12.622 4.593 6.776

MRT LB 6.311 4.445 5.332 7.636 4.045 12.645 4.560 6.487

Deviation 3.4% 0.13% 3.4% 1.4% 2.9% 0.18% 0.7% 4.2%
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400 × 400 , the maximum relative difference registered stays below 1.3%. Therefore, the 
grid 200 × 200 was judged enough to conduct the present study.

4  Results and Discussion

The numerical code developed for the present investigation has been used to carry out.
a number of simulations for a wide range of controlling parameters such as buoy-

ancy ratio N , thermal Rayleigh number RaT , Darcy number Da , Lewis number Le , and 
the porosity of the porous medium � , varying, respectively, in the ranges −5 ≤ N ≤ 5 , 
104 ≤ RaT ≤ 107 , 10−6 ≤ Da ≤ 10−2 , 1 ≤ Le ≤ 10 and 0.4 ≤ � ≤ 0.8.

4.1  Effect of Thermal Rayleigh Number

The effect of thermal Rayleigh number on streamlines, isotherms, and iso-concentration 
patterns is shown in Fig. 4 for Le = 2.0 , N = 5.0 , � = 0.4 and Da = 10−4 . It is observed 
that all these distributions are characterized by perfect symmetry with respect to the ver-
tical median of the cavity. This behavior results from the symmetry of the configuration 
and the imposed boundary conditions with respect to this axis. Regarding the overall 

Table 4  Grid sensitivity analysis 
for various Darcy numbers, (a) 
Ra

T
= 10

5, � = 0.4, Le = 2 , and 
N = 5 , (b)  Ra

T
= 10

7, � = 0.4

Le = 10 , and N = 1

Grid size �
max

Nu Sh

(a) Da = 10
−2 100 × 100 5.7910 6.9206 9.4549

150 × 150 5.7888 6.7603 9.2405

200 × 200 5.8003 6.7312 9.2069

300 × 300 5.7857 6.6550 9.1136

400 × 400 5.7723 6.6133 9.0978

(a) Da = 10
−3 100 × 100 4.2589 6.2420 8.7135

150 × 150 4.2710 6.1008 8.5341

200 × 200 4.2759 6.0793 8.5056

300 × 300 4.2733 6.0171 8.4340

400 × 400 4.2694 5.9839 8.4019

(a) Da = 10
−4 100 × 100 1.6077 4.5162 5.6569

150 × 150 1.6243 4.3985 5.5388

200 × 200 1.6272 4.3879 5.5321

300 × 300 1.6313 4.3409 5.4852

400 × 400 1.6315 4.3339 5.4596

(b) Da = 10
−4 100 × 100 9.5747 11.0417 31.4131

200 × 200 9.7174 10.7197 31.1201

400 × 400 9.7835 10.6325 30.9089

(b) Da = 10
−5 100 × 100 3.2643 6.0646 22.0111

200 × 200 3.3252 5.9701 21.4933

400 × 400 3.3438 5.9023 21.2571

(b) Da = 10
−6 100 × 100 0.6041 4.0617 8.5908

200 × 200 0.6398 3.9491 8.6692

400 × 400 0.6409 3.8912 8.7259
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behavior, the streamlines indicate the presence of two symmetrical counter-rotating cells 
both rising at the mid-width of the cavity and falling along the vertical cold walls due to 
the buoyancy effect. The upward movement of the cells is imposed by the buoyancy forces 
resulting from the heating ensured by the heated plate. As a result, the cells cores (i.e., 
positions of �max and �min ) are located above the latter plate. In fact, under the effect of 
thermal buoyancy forces, the hot fluid near the upper face of the plate is driven upwardly 
on either side of the vertical median plane, leading to the generation of a clockwise cell on 
the right side of the cavity and a counterclockwise one on its left side. More specifically, 
for this case corresponding to aiding buoyancy forces and N = 5 , heat and mass transfer 
are mainly dominated by the diffusive effect at RaT = 104 , while convection plays a limited 
role. The increase of thermal Rayleigh number above this value leads to a more important 
increase in the flow intensity above the heated plate taking advantage of its destabilizing 
effect (the heated plate ensuring a heating from below for the upper half of the cavity), 
which results in a remarkable disproportionality in the magnitude and the distribution of 
the flow velocity between the upper and lower halves of the cavity. In parallel, the increase 
of RaT promotes the intensification of both cells by a factor of 36.5 (from �max = 0.1652 to 
�max = 6.034 ) by augmenting RaT from 104 to 106.

Concerning the thermal aspect of the problem, the examination of the isotherms of 
Fig. 4 indicates that the thermal Rayleigh number has a considerable impact on the dis-
tribution of the temperature field. The isotherms are also symmetrical with respect to the 

Fig. 4  Effect of Rayleigh number on streamlines, isotherms, and iso-concentrations for Le = 2.0 , N = 5.0 , 
and Da = 10−4
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vertical median plane of the cavity. At low thermal Rayleigh number ( RaT = 104 ), the iso-
therms are vertical lines slightly deformed near the vertical walls and become more and 
more curved while moving toward the hot plate. Globally, the conductive regime is domi-
nant for this relatively low value of RaT as evidenced by the distribution of the isotherms 
resulting from the imposed thermal conditions. The increase of RaT leads to a progressive 
establishment of vertical thermal boundary layers near the upper parts of the cold walls and 
contributes to the formation of a plume just above the central part of the heated plate when 
the convective effects prevail (case of RaT = 106 ). Thus, the distribution of the isotherms 
is obviously affected by the increase of RaT . Consequently, in the presence of the thermal 
plume above the heated plate, the heat transfer between the fluid and the heated plate is 
enhanced accordingly. However, in the lower half of the cavity (beneath the heated plate), 
conduction stays the dominant mode regardless of the Rayleigh value; it corresponds to a 
case of a region heated from above and cooled laterally.

Figure  4 shows that the iso-concentration distributions exhibit a kind of resemblance 
with the isotherms, and they are also characterized by the appearance of a solutal plume 
above the heated plate for RaT = 106 . Due to the fact that Le > 1 , the thermal diffusive 
effect prevails over the solutal diffusive one, which leads to solutal plume thinner compared 
to the thermal one. In addition, the increase of RaT engenders solutal gradients stronger 
than the thermal ones near the upper parts of the vertical walls and around the heated plate.

4.2  Effect of Darcy Number

The effect of Darcy number Da is exemplified in terms of streamlines, isotherms, and iso-
concentration patterns for Le = 2.0 and � = 0.4 . For RaT = 105 and N = 5.0 , Fig. 5 illus-
trates this effect in the range 10−4 ≤ Da ≤ 10−2 , while for RaT = 107 and N = 1.0, this 
effect is illustrated in Fig. 6 for Da varying in the range 10−6 ≤ Da ≤ 10−4 . It should be 
noted that the decrease in the Darcy number increases the resistance of the porous matrix 
to fluid flow, which leads to an attenuation of the convective transports. Thus, Fig. 5 shows 
that, by decreasing the Darcy number from 10−4 to 10−2 , the flow intensity undergoes an 
intensification by a factor of about 256%. The flow strengthening may be explained by the 
increase in the modified Rayleigh number Ram = RaT × Da . At Da = 10−4 , the reduced 
flow intensity and the low heat transfer between the heated plate and the surrounding fluid 
lead to large thermal plumes above the heated plate, while beneath the latter, the vertical 
thermal gradients decrease downward expressing a dominance of the diffusive regime. The 
interaction between the working fluid and the cold walls is noteworthy, but the thermal 
boundary layers are relatively thick in the areas where the horizontal thermal gradients 
are the most important. The increase in Darcy number is accompanied by an intensifica-
tion of the flow intensity and the formation of sharper thermal and solutal plumes above 
the heated plate. Consequently, heat and mass transfers between the working fluid and the 
active boundaries are accentuated, which leads to a reduction of the thermal and solutal 
boundary layers’ thicknesses near the upper parts of the cold walls. The important dis-
tortions exhibited by the isotherms and iso-concentration in the region located above the 
extremities of the heated plate when Da is increased from 10−4 to 10−2 evidences that the 
increase of the porous matrix permeability enhances strongly the convective transports 
within the cavity. Finally, by increasing Darcy number, the temperature and concentration 
boundary layers around the heated plate become thinner, which results in stronger heat and 
mass transfer abilities.
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By augmenting RaT to 107 and considering the ratio of the solutal and thermal buoy-
ancy forces equal to unity ( N = 1 ), the global behaviors stay similar. The heat and mass 
transfers are, as expected, promoted by this increase in Rayleigh number, and these 
increase all the more as the permeability (Darcy number) rises. In fact, as it can be seen 
in Fig.  6, the flow intensity undergoes an abrupt augmentation of about 1481% when 
Darcy number is incremented from 10−6 to 10−4 . Following the increase in Darcy num-
ber, the intensification of the flow leaving the lower half of the cold/(less concentrated) 
walls leads to an extension of the cold zone /(low concentration zone) created in the 
vicinity of the lower horizontal boundary. For this high value of RaT , the thermal and 
solutal plumes above the heated plate are more marked than those observed for the case 
RaT = 105 and Da = 10−4.

By setting RaT = 107 , N = 1 and increasing the value of the Lewis number to 
Le = 10 , the flow intensity undergoes a noticeable drop at a given Darcy number. As 
a result, the diffusion of heat is faster than that of species leading to thicker thermal 
boundary layers compared to the solutal ones as evidenced by the isotherms and iso-
concentrations in Fig. 7. Moreover, above the heated plate, the solutal plumes are more 
asserted than the thermal ones and beneath its iso-concentrations are denser, improving 
by the way the ability of dimensionless mass transfer. These behaviors are amplified by 
increasing the permeability of the porous matrix through the Darcy number (the poros-
ity being considered constant).

Fig. 5  Effect of Darcy number on streamlines, isotherms, and iso-concentrations for Le = 2.0 , N = 5.0 , and 
Ra

T
= 105
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4.3  Effect of Buoyancy Ratio

The effect of the buoyancy ratio N is illustrated in Fig.  8 for N varying in the range 
−5 ≤ N ≤ 5 to cover the cases of aiding and counteracting buoyancy forces. This effect 
is illustrated in terms of streamlines, isotherms, and iso-concentrations for Le = 2.0 , 
RaT = 105 , Da = 10−3 and � = 0.4 . It should be noted that the buoyancy ratio character-
izes the relative magnitudes of the thermal and solutal buoyancy forces. A negative value 
of N means that buoyancy forces due to heat and mass transfer act in opposite directions, 
which leads to an opposing mode. On the contrary, a positive value of N means that these 
forces are acting in the same direction and the corresponding mode is an aiding one. The 
particular value N = 0 (pure thermal case) corresponds to a situation for which the buoy-
ancy solutal force is canceled. Then, the flow within the cavity is driven solely by the 
imposed thermal conditions. A close inspection of the streamlines in Fig. 8 shows that the 
variation of the parameter N leads to important qualitative and quantitative changes in the 
flow structure, but the symmetry with respect to the vertical mid-plane is preserved. In 
fact, for the negative values of N , the left cell is clockwise rotating while the right one 
is counterclockwise and their cores are located beneath the heated plate. Thus, the direc-
tion of cell rotation is imposed by the solutal force. The increment of N from its lower 
value reduces the intensity of the cells since it leads to a weakening of the solutal buoyancy 
force. For the case of equal but opposite buoyancy forces ( N = −1 ), the flow cell intensities 

Fig. 6  Effect of Darcy number on streamlines, isotherms, and iso-concentrations for Le = 2.0 , N = 1.0 , and 
Ra

T
= 107
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are considerably attenuated due to the strong competition between the solutal and thermal 
buoyancy forces. This competition between the buoyancy forces is not existing for N = 0 , 
allowing the thermal buoyancy force to control the flow. The solutal force plays a support-
ive role for N > 0 , which leads to a better accentuation of the flow intensity by increasing 
N in its positive range. More specifically, for N = 5 , the flow is about 25% more intense 
than that generated for N = −5 and its intensity is multiplied by a factor of 2.5 when the 
value of N goes from 0 to 5. This important intensification results from the aiding effects 
of the thermal and solutal buoyancy forces that act together to promote the fluid circu-
lation. The locations of the extremums values of � are symmetrically situated above the 
heated plate as stated before for N ≥ 0.

Due to the strong coupling between the governing equations, the thermal and solutal 
aspects of the problem are also seen to be very sensitive to the variations of N . Thus, the 
thermal and solutal plumes are located below the heated plate and oriented downward 
for N = −5 , while their locations are above the plate, and they are facing upward for 
N ≥ 0 . In addition, the areas of high thermal and solutal gradients are located near the 
lower parts of the cold walls for dominant solutal forces acting opposite to the thermal 
ones. Globally, the solutal thermal gradients are higher than the thermal ones when the 
solutal forces are dominant. For the case corresponding to equal but opposite thermal 
and solutal buoyancy forces ( N = −1 ), the role played by Le becomes negligible since 
the diffusive regime prevails (the flow intensity being strongly attenuated) as shown by 

Fig. 7  Effect of Darcy number on streamlines, isotherms, and iso-concentrations for Le = 10 , N = 1.0 , and 
Ra

T
= 107
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the distribution of the isotherms and the iso-concentrations. The latter are characterized 
by a quasi-double symmetry: a symmetry with respect to the vertical mid-plane and a 
quasi-symmetry with respect to the heated plate.

Fig. 8  Effect of buoyancy ratio on streamlines, isotherms, and iso-concentrations for Le = 2.0 , Da = 10−3 , 
and Ra

T
= 105
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4.4  Effects of Lewis Number

Streamlines, isotherms, and iso-concentrations are presented in Fig. 9 to illustrate the effect 
of the Lewis number for Da = 10−3 , N = 1.0 , � = 0.4 and RaT = 105 . It can be noticed 
that the symmetry of the solutions with respect to the vertical mid-plane is not affected by 
the increase in the Lewis number. In addition, for Le = 1 , the temperature and concentra-
tion fields are identical because of the equality of the thermal and solutal diffusivities. By 
increasing the Lewis number from 1 to 10, the flow intensity undergoes a decrease of about 
34%, while the distribution of the isotherms is barely affected by this increase. In fact, the 
temperature distribution is rather affected by the changes of velocity and the latter is con-
trolled by the Rayleigh number and the buoyancy ratio that are maintained constant. The 
limited changes observed on the distribution of the isotherms result from the flow intensity 
changes accompanying the increase of Le . Moreover, the increase of Le from 1 to 10 leads 

Fig. 9  Effect of Lewis number on streamlines, isotherms, and iso-concentrations for N = 1.0 , Da = 10−3 , 
and Ra

T
= 105
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to an increase of the solutal Rayleigh number by a factor of 10, which favors the solutal 
plume above the heated plate and makes the iso-concentrations denser around the latter and 
the solutal boundary layers thinner near the upper parts of the cold walls.

4.5  Average Nusselt and Sherwood Numbers

Variations versus the Lewis number Le , of the average Nusselt and Sherwood numbers, 
are presented, respectively, in Fig. 10a, b for � = 0.4 , N = 1 , RaT = 105 and various val-
ues of Da . Regarding the overall behavior, Fig. 10a shows that for a medium with weak 
permeability, the Nusselt number is quasi-insensitive to the variations of Le ; it decreases 
very slightly and linearly toward an asymptotic limit around Nu = 3.9 . Concretely, that 
means that heat transfer is not affected by the diffusive property of the solute in the porous 
medium for the considered value of RaT . For relatively large values of Da (case illustrated 
here with Da = 10−3 and 10−2 ), Nu decreases nonlinearly with the Lewis number. This 
behavior is compatible with the decrease in the flow intensity accompanying the increment 
of Le in Fig. 9. In addition, Fig. 10 shows also an increase of Nu by increasing Da since the 
porous matrix becomes more permeable and allows an intensification of the flow cells due 
to the effective increase in the porous Rayleigh number.

Fig. 10  Variations of the aver-
age Nusselt number (a) and 
Sherwood number (b) versus 
the Lewis number for N = 1 and 
Ra

T
= 105
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The variation of Sherwood number versus Le , exemplified in Fig.  10b is character-
ized by a quasi-linear increase for Da = 10−4 and nonlinear monotonous increase for the 
remaining values of Da . In fact, the increase of Sh accompanying the increment of Le , for a 
given Da , is attributed to the resulting increase in the solutal Rayleigh number. In addition, 
for a given Le , both Nu and Sh are supported by the increase in the Darcy number; behav-
ior is explained by a reduction of the porous matrix resistance to fluid motion (increase of 
the medium permeability, allowing better fluid circulation). For instance, the quantification 
of the increase of Nu/(Sh ) for Le = 5 is about 36% /(94%) when Darcy number goes from 
10−4 to 10−2.

Variations versus the Buoyancy ratio N , of the average Nusselt and Sherwood numbers, 
are illustrated, respectively, in Fig. 11a, b for � = 0.4 , Le = 2 , RaT = 105 and various val-
ues of Da . It can be seen that both Nu and Sh variations versus N are characterized by simi-
lar tendencies. More precisely, for each value of Da , Fig. 11 shows monotonous and similar 
decreases of Nu and Sh when N increases from -5 to -1, followed by monotonous augmen-
tations when N increases in the remaining range. The rates of increase and decrease of Nu 
and Sh depend obviously on Da . The common decrease of these quantities in the range 
−5 ≤ N ≤ −1 is attributed to the reduction of the solutal buoyancy force in favor of an 
increasing competition effect on the part of the thermal one. This competition between the 
latter reaches its limit at N = −1 when they become equally intense with opposite effects. 

Fig. 11  Variations of the aver-
age Nusselt number (a) and 
Sherwood number (b) versus the 
buoyancy ratio for Le = 2 and 
Ra
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Thus, the minimum heat and mass transfer occurring at N = −1 results from the maximum 
antagonist effect of the solutal and thermal buoyancy forces that also considerably slows 
down the flow intensity. The change in trends from N = −1 is a consequence of the cooper-
ating role of the buoyancy forces that leads to an improvement in terms of Nu and Sh with 
faster rates in the remaining range of N.

More details on the effect of Darcy number on Nu and Sh are provided in Fig. 12 for 
N = 1 , RaT = 105 , � = 0.4 and various values of Le . At Da = 10−4 , Fig. 12a shows that Nu 
is almost not affected by the increase of Le (results corroborated by Fig. 10a), while Sh is 
more sensitive to the latter variation; it increases by increasing Le . The increase in Darcy 
number in the range Da ≤ 2 × 10−3 leads to a fast increase in Nu and Sh with Le . Thus, 
for high values of permeability, both heat and mass transfers tend toward constant values 
that depend on Le . Note also that for a given Da , Nu and Sh show opposite tendencies by 
increasing Le.

Further additional information on the combined effect of Rayleigh and Darcy numbers 
on Nu and Sh is presented in Table 5 for various values of the porosity ( 0.4 ≤ � ≤ 0.8 ), 
Le = 2 , RaT ranging from 104 to 106 and N = 5 . For given Rayleigh number and poros-
ity, the Darcy number may be varied through the permeability and its increase (through 
the permeability) has a positive impact on average Nusselt and Sherwood numbers. In 
fact, a more permeable medium allows easier fluid circulation, resulting in a higher flow 

Fig. 12  Variations of the average 
Nusselt number (a) and Sher-
wood number (b) versus Darcy 
number for N = 1 and Ra
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intensity and thereby more important heat and mass transfers. This increase is evidently 
promoted by augmenting RaT . For example, for Ram = RaT × Da = 100 and � = 0.4 , Nu
/(Sh ) undergoes an improvement of about 87.4%/(125%) when RaT rises from 104 to 106.

Regarding the porosity of the porous medium, its effect is also significant. In fact, 
Table 5 shows, for instance, that, for RaT = 106 and Da = 10−3 , Nu/(Sh ) undergoes an 
improvement of about 19.6%/19.10% when the porosity � is augmented from 0.4 to 0.8.

As regards the combined effect of the Lewis and Darcy numbers on Nu and Sh , the 
results presented in Table 6 for � = 0.4 , RaT = 107 , N = 1 and different Da so that the 
modified Rayleigh number Ram = RaT × Da ≤ 103 , illustrate clearly this effect. As it can 
be seen in Table 6, for a fixed modified Rayleigh number Ram , the increase in the value 
of the Lewis number leads to a reduction in the rate of heat transfer and an important 
improvement in the rate of mass transfer. For example, for Ram = 1000 , Nu decreases by 
12.10%, while Sh undergoes an improvement of 80.50% when Le increases from 2 to 10. 

Table 5  Average Nusselt and 
Sherwood numbers for Le = 2 
and N = 5 , and different values 
of Ra

T
 , � , and Da

Ra
T

Da Nu Sh

� = 0.4 10
4

10
−2 4.4232 5.4370

10
−3 4.0306 4.5475

10
−4 3.8270 3.8596

10
5

10
−2 6.7312 9.2069

10
−3 6.0793 8.5056

10
−4 4.3879 5.5321

10
6

10
−3 10.2692 14.3846

10
−4 8.2894 12.2527

10
−5 4.6284 6.1494

� = 0.6 10
4

10
−2 4.6903 5.9605

10
−3 4.0989 4.7454

10
−4 3.8280 3.8628

10
5

10
−2 7.4334 10.1957

10
−3 6.5885 9.3288

10
−4 4.4548 5.7081

10
6

10
−3 11.4397 15.9693

10
−4 8.8787 13.1952

10
−5 4.6655 6.2635

� = 0.8 10
4

10
−2 4.9096 6.3696

10
−3 4.1497 4.8898

10
−4 3.8287 3.8650

10
5

10
−2 7.9701 10.9334

10
−3 6.9556 9.9131

10
−4 4.4972 5.8182

10
6

10
−3 12.2863 17.1333

10
−4 9.2676 13.8274

10
−5 4.6879 6.3149
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In addition, the increase of Le is seen to have no significant effect on Nu for low Darcy 
numbers; behavior compatible with the results is presented in Sect. 4.4.

5  Conclusions

Double-diffusive natural convection in a porous cavity with heating and diffusing plate 
inside has been studied numerically using the multiple-relaxation-time lattice-Boltzmann 
method at the REV scale based on the generalized model. For Pr = 1 , the combined effects 
of buoyancy ratio, N , thermal Rayleigh number, RaT , Darcy number, Da , Lewis number, 
Le , and the porosity � of the porous medium on heat and mass transfers characteristics are 
investigated. The main results of this study are summarized as follows:

• The permeability of the porous medium, characterized by the Darcy number, signifi-
cantly affects the flow and the distribution of isotherms and iso-concentrations in the 
porous cavity.

• Thermal and solutal plumes develop above/(below) the heated plate for N > −1/
(N < −1 ) and become prominent as the Darcy number increases, leading to improved 
heat and mass transfers. This improvement is supported by increasing RaT.

• For high values of the buoyancy ratio, whether positive or negative, double-diffusive 
natural convection is dominated by solutal volume force. At N = −1 , the thermal and 
solutal buoyancy forces act in opposite directions and are equally intense. The resulting 
heat and mass transfers are particularly deteriorated for this particular case.

• The effect of the Lewis number on heat transfer is negligible for low Darcy values but 
leads to substantial variations in terms of Nu and Sh versus Le at relatively large Da.

• The increase of the porosity of the porous medium promotes the fluid flow intensity and 
heat and mass transfers in the cavity.
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Table 6  Average Nusselt 
and Sherwood numbers for 
Ra

T
= 10

7 , � = 0.4 , N = 1 and 
different values of Le and Da

Le Da Nu Sh

2 10
−4 12.1922 17.2377

10
−5 7.0499 10.6790

10
−6 3.9744 4.3325

10 10
−4 10.7197 31.1201

10
−5 5.9701 21.4933

10
−6 3.9491 8.6692
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