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Abstract
Equipped sandwich beams (ESBs) are one of the highly demanded structures by the differ-
ent industries due to their high stiffness to weight ratio. In the present study, the vibrational 
behavior of a novel ESB is evaluated, analytically. The whole ESB is composed of three 
layers including functionally graded porous core (FGPC) and two same agglomerated car-
bon nanofiller reinforced composite (ACNFRC) face sheets. Both nanocomposite layers are 
constituted from poly(methyl methacrylate) (PMMA) as matrix and CNFs which serve as 
reinforcing phase. In addition, the effect of agglomeration is considered in nanocompos-
ites, and its tremendous influence on the normalized frequency is depicted in figure and 
table formats. For the sake of layers properties estimation, power-law and Eshelby–Mori–
Tanaka’s (EMT)’s approach are hired for, respectively, FGPC and ACNFRCs. Besides this, 
Hamilton’s principle in conjunction with multi-displacement fields and Fourier series ana-
lytical method are cooperated tightly to derive motion equations and solve them mathemat-
ically. The evaluation of the impacts of various variables as, different displacement fields, 
thermal environment, CNFs agglomeration, and Vlasov’s substrate parameters can be con-
sidered as the novelties of this paper. It is revealed that in the context of agglomeration, a 
higher number of clusters with a lower volume fraction of CNFs inside them can provide 
higher magnitudes of normalized frequency and consequently rigidity. This work can be 
assumed as a reference for further future examinations in such a broad context.
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1 Introduction

Equipped sandwich structures address at least three-layered structures including a central 
layer integrated with top and bottom equipped face sheets. Highly progressive demands 
of different industries for the low weight to strength ratio structures utilization inspired 
scientists to survey the structures with the capability to satisfy the needs of low weight 
and high strength requests (Akbaş et al. 2021; Amir et al. 2019a; Civalek et al. 2021; Ge 
et al. 2021; Le et al. 2021). Therefore, in the passages of years, equipped porous types of 
sandwich structures’ analysis became an interesting field of scholars’ research. Moreover, 
such structures’ crucial role in various aspects of manufacturing (costs, stability, durabil-
ity, etc.) placed them in the central point of scholars’ attention more than before. One of 
the pioneering studies in this context is done by Khatua and Cheung (1973). Their study 
was about the mechanical behavior of multilayered sandwich beams and plates. Afterward, 
Maheri and Adams (1994) went further in this context and conducted a study regarding a 
special type of vibration of the sandwich beams including the honeycomb layer. What’s 
more, considering a porous plate that was saturated, as a model, its lateral vibrational 
behavior is analyzed by Leclaire et al. (2001). Takahashi and Tanaka (2002) had an investi-
gation about the vibration of imperfect plates. Moreover, Duc et al. (2017) hired first-order 
shear deformation plate theory (FSDT) von Karman’s assumption, Airy stress functions, 
Galerkin method, and fourth-order Runge–Kutta method, to study the vibration of sand-
wich composite cylindrical shells with honeycomb core layer. Then, Amir et al. (2020c) 
examined the buckling behaviors of sandwich plates. For adding more accuracy, the flexo-
electric effect is assumed to exist on both face sheets by them. As another attempt, they 
captured the flexoelectric impact on the vibrational analysis of sandwich plates (Amir et al. 
2020c). Furthermore, Babaei et  al. (2019) examined thermal buckling and post-buckling 
responses of geometrically imperfect functionally graded (FG) porous beams based on the 
physical neutral plane. Fu et al. (2021a) studied the dynamic instability of porous FG coni-
cal shells. Their model was exposed to parametric excitation in a thermal environment. 
Furthermore, they succeed to capture the boundary condition effect on the stability of FG 
sandwich conical shells (2021b). Soleymani-Javid et al. (2021) conducted a study regard-
ing the vibrational characteristics of sandwich plates. In their honeycomb-based model, 
various boundary conditions and flexoelectricity effect are taken into account. In another 
study, Fu et al. (2021c) examined the dynamic instability of laminated FG carbon nano-
tubes (CNTs) reinforced conical shells. They considered their model rested on the elas-
tic foundations. Also, Kumar and Renji (2019) had a study on the sandwich panels which 
were composed of honeycomb and composite layers. Their model was subjected to a dif-
fuse acoustic field in a reverberation chamber. Earlier, Sobhy (2020) utilized the differ-
ential quadrature method (DQM) for bending analysis of the FG curved sandwich beam. 
What’s more, in addition to the aforementioned attempts regarding sandwich structures, 
much hardworking is done exclusively, to introduce different types of composite beams, 
plates, and shells as an unavoidable part of sandwich structures that carry the massive vol-
ume fraction of whole sandwich structures’ stiffness. As an instance, Amir et al. (2019a) 
conducted an analytical study on the vibrational behavior of a sandwich FG porous plate. 
They used quasi-3D tangential deformation plate hypothesis as displacement field, and 
also, to integrity, they assumed their model in a hygrothermal surrounding and under the 
force of Lorentz. Also, Fu et  al. (2021d) proposed a theoretical model for the eccentri-
cally stiffened composite sandwich cylindrical shell under external mean fluid. Further-
more, Arshid et al. (2020a) handled a study regarding the dynamic and static behavior of 
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annular FG graphene nanoplatelets (FG-GNPs) reinforced nanocomposite including pores. 
They considered modified strain gradient theory (MSGT) to take small dimension impacts 
into account. As another work, Foroutan et  al. (2021) examined nonlinear buckling and 
vibrations of imperfect FG carbon nanofillers (FG-CNFs) reinforced composite cylindrical 
shells in a hygrothermal environment. In another work, Arshid et  al. (2021a) prepared a 
thermal buckling investigation on the annular/circular microplates. Their model was made 
of FG graphene nanoplatelets  (GNPs) reinforced porous nanocomposite. Further studies 
are conducted by other scholars in such a broad context (Amir et al. 2020a; Mousavi et al. 
2021). Putting such aforementioned simple type of composites aside, nowadays, advanced 
composite structures are more under evaluation due to their refined mechanical proper-
ties. As an example, Moradi-Dastjerdi et al. (2020a) analyzed the buckling behavior of a 
sandwich plate made of CNTs reinforced porous core patched to two piezoelectric face 
sheets. They took advantage of the third-order shear deformation plate theory (TSDPT) 
and Eshelby–Mori–Tanaka’s (EMT)’s approach to handle the motion equations. The most 
important novelty in their work backs to their CNT agglomeration effects consideration. In 
addition, Dabbagh et al. (2020a) had an attempt to capture the impacts of CNTs agglomera-
tion on the stability of the nanocomposite beams using refined higher-order beam theories. 
As another instance, Kamarian et al. (2015) by evaluating CNFs agglomeration impact on 
the vibrations of a sandwich beam proved that in the most agglomeration states of nano-
composite sandwich beams, the mechanical characteristics become improved due to the 
presence of agglomerations. Besides strength, another important characteristic of sandwich 
structures that leads such structures toward popularity is their low weight. So, many schol-
ars move their investigations toward porous layers composed of high-strength materials as 
functionally graded materials (FGMs). Among them, Fu et al. (2020) investigated thermoa-
coustic variations of a FG cylindrical shell containing pores. Moreover, Van et al. (2020) 
investigated nonlinear transient behavior of porous FGM plates. Their model was under 
hygrothermal and mechanical loads affection. Some other applications of nano- and macro-
scaled beams can be found in the literature (Avcar 2019; Zenkour and Radwan 2021, 2020; 
Lazreg and Avcar 2021a, 2021b; Daikh and Zenkour 2019; Jalaei and Civalek 2019; Zenk-
our 2008, 2018, 2020; Demir and Civalek2017; Barati and Zenkour 2017).

Keeping mentioned papers in mind, the authors decided to examine the vibrational 
responses of an equipped sandwich beam (ESB) including FG porous core (FGPC) 
patched to the two same agglomerated CNFs reinforced composites (ACNFRCs) at the 
top and bottom. So, in the present study, the vibrational behavior of a novel equipped 
sandwich beams is evaluated. The sandwich structure is placed on the Vlasov’s sub-
strate and also, under the thermal environment affection. By Hamilton’s principle, 
Navier’s solution technique, and CNFs’ agglomeration effect consideration, govern-
ing equations are gained and solved analytically. Finally, response variations against 
various parameters’ changes are depicted in the results portion. Based on the present 
study results, designing and producing different equipments become possible, and also, 
a higher ratio of stiffness to weight is accessible more than before. Furthermore, con-
sidering CNFs’ agglomeration effect on the vibrational behavior of such a model is one 
of the novelties of this study.

Furthermore, our two-parameter Vlasov’s foundation model included the advan-
tages of the Winkler foundation model and the Pasternak foundation model, and two 
independent elastic constants are used to represent the characteristics of the given elas-
tic substrate.



160 M. Khorasani et al.

1 3

2  ESB Analytical Modeling

2.1  Geometrical Information

An ESB with length a and total thickness h is considered as a model to evaluate its vibra-
tional responses due to the different variables’ variations. As it is displayed in Fig. 1, the 
ESB is composed of three layers; FGPC and two identical ACNFRC face sheets. The thick-
ness of the FGPC, top ACNFRC, and bottom ACNFRC is demonstrated by the signs hc, ht, 
and hb, respectively, and their summation denotes ESB total elevation (h). The Cartesian 
coordinate system (x, y, z) is attached to the imaginary mid-plane of ESB where x and z 
axes are along with the model’s length and thickness directions, one after another. Further-
more, the whole structure is placed on the Vlasov’s substrate as an elastic foundation, and 
also, it is under thermal environment affection.

2.2  General Equations

For the sake of integrity, various displacement field theories are used in this work. So, 
the ESB’s general displacement field can be defined as (Arshid and Amir 2021; Khorasani 
et al. 2021):

where u and w denote longitudinal and transverse movement components of mid-surface. 
The term u1 is the beam rotation representative. Furthermore, subscript comma (,) is the 
derivative sign, and f(z) is the considered shape function which denotes the transverse 
shear stress distribution along the z-direction (Sayyad and Ghugal 2019). By the means of 

(1)
U(x, z, t) =u(x, t) − zw,x(x, t) + f (z)u1(x, t),

V(x, z, t) =0,

W(x, z, t) =w(x, t)

Fig. 1  Configuration of the ESB model
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shape function, sufficient flexibility becomes available to switch among different types of 
displacement fields as is mentioned in Table 1 (Şimşek and Reddy 2013).

Where SSDT, HSDT, and ESDT refer to the sinusoidal, hyperbolic, and exponential 
shear deformation theories. Also, to address the Timoshenko beam model, the displace-
ment component along x-direction should be considered as (x, z, t) = u(x, t) + zu1(x, t) . In 
the case of Timoshenko beam model utilization, a shear correction factor equals to 5/6 is 
considered.

The strain tensor of under evaluation model can be obtained as (Arshid et al. 2021b):

In which, superscript c, t, and b address the words core, top, and bottom layer.
Stress–strain equations for each of the three layers are identical, whereas the properties 

vary layer to layer. Stress field can be presented as (Arshid et al. 2020b; Khorasani et al. 
2020):

where S and θ serve as an elastic constant and thermal expansion coefficient, respectively.
Besides this, ΔT is the temperature difference and can be specified as ΔT = T(z) − Tref .
In which Tref denotes the reference temperature which is equal to ambient temperature 

(293) and T(z) represents temperature variation across the ESB’s height and, in the linear 
format, it can be addressed as (Tang and Ding 2019):

In which, Tb is the ESB’s bottom surface temperature, and also, it is considered as the 
reference temperature in the current study. Moreover, ΔTtb stands for the temperature dif-
ference between ESB’s top and bottom surfaces (i.e., ΔTtb = Tt—Tb).

2.3  ACNFRC Face Sheets’ Properties.

Generally, the philosophy of CNFs’ utilization in a polymeric matrix is to improve the 
mechanical properties of the structure. As the elasticity modulus of the reinforcing phase 
is much more than the matrix, a polymeric matrix that is reinforced by CNFs has improved 
mechanical properties in comparison with the pure matrix.

(2)
[
�xx
�xz

]c,t,b
=

[
U, x

U, z +W, x

]

(3)
[
�xx
�xz

]c,t,b
=

[
S11 0

0 S55

]c,t,b[
�xx − � ΔT

�xz

]c,t,b
,

(4)T(z) = Tb + ΔTtb

(
0.5 +

z

h

)

Table 1  The various shape 
functions corresponding to the 
different displacement fields 
(Şimşek and Reddy 2013) 

f (z) Displacement field
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)
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z

h

)
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(
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z exp

(
−2

(
z

h

)2
)
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Despite the mentioned high stiffness, CNFs’ high level of aspect ratio results in their 
low level of bending strength. As a consequence, CNFs pose a great tendency to be bun-
dled together and form some CNFs concentrated spherical inclusions named clusters. 
The mentioned effect serves as an agglomeration effect which plays a constructive role 
in the composite layers’ mechanical properties refinement. On the other hands, CNFs 
can also be distributed in the matrix without being concentrated in clusters. Therefore, 
there are two different types of CNFs’ in the polymeric matrix. By definition, μ and η 
specify the CNFs concentrated region volume fraction and the sprinkled CNFs inside 
the clusters volume fraction as (Dabbagh et al. 2020a):

In which, V is a sign to illustrate the representative volume element (RVE), VClus-

ter addresses the net volume of CNFs concentrated regions inside the borders of RVE, 
Vr

Cluster denotes the total volume of CNFs inside the clusters, and the term Vr implies the 
net volume of CNFs inside the RVE. It should be noticed that the magnitude of μ in the 
maximum case is equal to η. To provide a clear physical imagination for the abovemen-
tioned parameters, it is worthwhile mentioning that:

• μ equal to zero specifies non-agglomerated layer which means there is no concentra-
tion of CNFs in the CNFRCs. On the other hands, when its value is equal to one, the 
whole composite layer serves as a big agglomerated region.

• Considering the abovementioned methodology limitation ( � ≥ � ), η equal to zero 
implies there is no CNF inside the clusters, so basically there is no cluster. While 
η equal to one denotes all CNFs are accumulated inside the clusters and ACNFRCs 
contain no CNF out of the clusters.

• In a specific case, when μ = η = 1, there is fully CNFs agglomerated composite.

For the sake of ACNFRCs’ mechanical properties capturing, the Eshelby–Mori–Tan-
aka technique (EMTT) is hired (Shi et al. 2004). Based on the EMTT, the bulk modu-
lus (K) and the shear modulus (G) inside and outside of the clusters can be defined as 
(Moradi-Dastjerdi et al. 2020b; Shi et al. 2004):

where subscripts p, r, and the term fr address the polymeric matrix, CNFs reinforcing 
phase, and the total volume fraction of CNFs inside the composite. The evaluation of the 
vibrational response of the current ESB due to the various types of CNFs distribution 

(5)
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V
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t,b
r
�
/
3(� − f t,b
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through the polymeric matrix is accessible by the means of following CNFs volume frac-
tion equations as (Amir et al. 2019b):

In Fig. 2, the variation of CNFs volume fraction versus composite layer thickness is dis-
played for different types of CNFs distribution.

What’s more, the terms αr, βr, ηr, and δr can be written as follows (Moradi-Dastjerdi et al. 
2020a):

(10)f t,b
r

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

f ∗ U
4

ht, b

���z ∓
hc+ht, b

2

��� f ∗ FG − X

2(1 −
2

ht, b
)
���z ∓

hc+ht, b

2

��� f ∗ FG − O

(1 −
2

ht, b
)(z ∓

hc+ht, b

2
) f ∗ FG − A

(1 +
2

ht, b
)(z ∓

hc+ht, b

2
) f ∗ FG − V

(11)�r =
(3(Kp + Gp) + kr − lr)

/
3(Gp + kr)

,

(12)�r = 0.2

[
4Gp + 2kr + lr

3(Gp + kr)
+

4Gp

Gp + pr
+

2
{
Gp(3Kp + Gp) + Gp(3Kp + 7Gp)

}
Gp(3Kp + Gp) + mr(3Kp + 7Gp)

]
,

Fig. 2  The variation of CNFs volume fraction versus thickness of composite face sheets for different types 
of CNFs distribution
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At the current equations kr, lr, mr, pr, and nr address the CNFs’ elastic Hill’s constants 
which are varied for various types of CNFs concerning their chiral index magnitude. In the 
current study mentioned constants related to single-walled carbon nanofillers (SWCNFs) with 
a chirality index equal to 10 are used (Fantuzzi et al. 2017).

So, the thickness-dependent bulk modulus and the shear modulus of the ACNFRCs are 
obtained by the means of EMTT as (Dabbagh et al. 2020b):

In which subscript n denotes nano ACNFRCs and:

And

Finally, the elastic modulus (E), Poisson’s ratio (ν) density (ρ) and thermal expansion coef-
ficient (θ) of the nano ACNFRCs can be simulated as (Kamarian et al. 2016; Moradi-Dastjerdi 
et al. 2020a):
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The elastic constants for top and bottom face sheets are identical in the formulation as 
(Zhang et al. 2021):

2.4  FGPC Properties

As mentioned before, the ESB’s core is an imperfect layer that is made of FGMs. So, the 
top and bottom surfaces of the FGPC are assumed to be pure ceramic and pure metal. To 
add more elaboration in this context, three different types of imperfection dispersions are 
taken into account and their impact on the mechanical behavior of the whole sandwich 
model is compared to each other. Based on the rule of the mixture in its imperfection-
dependent format, the FGPC’s mechanical properties in the case of uniform porosity dis-
persion can be defined by the following formulation (Kumar et al. 2021):

where R is the sign to address different mechanical properties as E, ν, ρ, and θ. Also, sub-
scripts c and m are used to distinguish ceramic properties and metallic properties. Further-
more, e denotes porosity index, and Vc stands for ceramic volume fraction which can be 
presented as (Dastjerdi et al. 2020):

In which, n is the power-law index, gradient index, or material property exponent. Based 
on the aforementioned equation, the ceramic and metal volume fractions variation versus 
core thickness is plotted in Fig. 3 for various material property exponents.

As it is visible in Fig. 3, the power-law index enhancement results in ceramic volume 
fraction increasing at a lower rate across the first half-thickness of the core (Akgöz and 
Civalek 2014).

The core mechanical properties in the case of X type dispersion of porosities can be pre-
sented as (Fan et al. 2021):

And finally, dispersing porosities within the FGPC based on the O pattern result in the 
following model for FGPC’s mechanical properties capturing as (Thanh et al. 2019):
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Also, it seems to be mandatory to mention that setting e equal to zero in each type 
of pores dispersion causes having perfect FGC instead of the FGPC.

To provide a more comprehensive physical mental background about FGPC and 
based on Eqs. (24, 26 and 27), the FGPC’s elastic moduli variation against its thick-
ness is plotted as it is visible in Fig. 4. As curves say, passing from the core bottom 
surface to the top surface, the FGPC’s elastic modulus for all types of porosity dis-
persion increases, by and large. Such behavior is due to the high elastic modulus of 
ceramic over metal. Another noticeable point is that in this figure, there are three 
important points; i.e., z = 0,

h

2
and h . As it is obvious, at the top and bottom surface 

of FGPC, the elastic modulus related to the curves perfect FGC and O-FGPC has the 
same values. Also, there is a similar attitude regarding U-FGPC and X-FGPC. On the 
other hands, within the specific region of the core thickness, the value of the X-FGPC’s 
elastic moduli becomes higher than that of O-FGPC’s which is due to the type of pores 
dispersion in this region. Using the abovementioned properties, the elastic modulus of 
the FGPC can be formulated as:

(28)
[
S11(z)

S55(z)

] c

=

[
E(z)(1 − �2(z))−1

0.5E(z)(1 + �(z))−1

] c

Fig. 3  The variation of ceramic and metal volume fractions versus core thickness for different power-law 
indexes
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3  Governing Equations

Hamilton’s principle that serves as an energy-based technique is implemented to extract 
the governing equations of motion as (Arshid et al. 2020c):

where Ψ, Ξ, and Γ give a hint to the kinetic energy, externally applied work, and the strain 
energy, correspondingly.

The kinetic energy of the whole ESB can be derived as (Arshid and Khorshidvand 
2018):

The second term of Hamilton’s principle is the external work that is originated from 
the externally applied force due to the thermal environment affection. The thermal force 
in response to the addressed thermal surrounding is simulated as (Arshid et al. 2021c):

(29)� ∫
t2

t1

{Ψ + Ξ − Γ}dt = 0

(30)Ψ = 0.5∫
x

+h∕2

∫
−h∕2

� c,t,b(z)
[(
U, t

)2
+

(
W, t

)2]
dzdx

Fig. 4  The FGPC’s elastic moduli variation against its thickness for different types of pores dispersion



168 M. Khorasani et al.

1 3

The thermal external work can be simulated as (Arshid et al. 2019b):

Passing from the kinetic energy and the external work, the third part of Hamilton’s 
principle equation addresses the strain energy of the ESB that becomes divided into two 
branches; classic strain energy of the beam and strain energy of the Vlasov’s substrate.

The classical strain energy of the ESB will be derived using the following equation 
as (Amir et al. 2020b):

About foundation, it is better to mention a short background regarding Vlasov’s foun-
dation model and its properties, firstly. At the first time, Vlasov, to consider the vertical 
shearing parameter, based on the variational approach and also continuum principles 
progressed a bi-parameter novel foundation model that becomes famous as Vlasov’s 
foundation. His model is assumed to be elastic, homogeneous, and isotropic. Further-
more, silica aerogel is assumed to play the role of constituting substrate material for 
under examination ESB. Based on Vlasov’s foundation model and by considering a Car-
tesian coordinate system attached to the top surface of the substrate, the strain energy of 
substrate can be addressed as (Ghorbanpour Arani and Zamani 2019):

In which H implies the foundation thickness and superscript f addresses Vlasov’s 
foundation. Moreover, the related stress and strains can be defined by defining a new 
displacement field for the substrate as (Navarro et al. 2013):

It should be noticed that the displacement in the x-direction is considered zero based 
on this assumption that its value is relatively negligible in comparison with vertical dis-
placement. Also, λ is correlated with the shape function of the substrate with boundary 
conditions as:

Accordingly, the foundation’s stress and strain fields are presented as (Ghorbanpour 
Arani and Zamani 2018):

(31)FT
x
=

+h∕2

∫
−h∕2

S
c,t,b

11
�c,t,bΔTdz,

(32)Ξ = 0.5∫x

FT
x
(w,x)

2dx

(33)Γ1 = 0.5∫
x

+h∕2

∫
−h∕2

[
�xx�x + �xz�xz

] c,t,b
dzdx

(34)Γ2 = 0.5∫
+∞

−∞ ∫
0

−H

[
�xx�xx + �zz�zz + �xz�xz

]f
dzdx,

(35)
U(x, z, t) =0,

W(x, z, t) =w(x, t)�(z)

(36)�(0) = 1, �(−H) = 0
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In which S serves as the foundation elastic coefficient and can be defined as:

Inserting Eq. (37) into Eq. (34) and its rewriting led the foundation strain energy formu-
lation to the final format as:

This equation, by minimizing respect to w, is capable to transform to the differential 
type equation through mathematical considerations as (Navarro et al. 2013):

In which, L1 and L2 are the foundation parameters and address, respectively, the shear 
parameter of foundation and the compression parameter of foundation.

In which the shape function is presented as follows (Vallabhan et al. 1991):

where Σ is the parameter correlated with the deformation of the core.
Finally, the net ESB’s strain energy is catchable using the summation principle as:

Substituting Eqs. (30, 32, 43) into Eq. (29) and applying some mathematical manipula-
tions as, districting integrals with respect to z and integrating by part, equations of motion 
can be obtained in the stress resultants terms as:

(37)
⎡⎢⎢⎣

�xx
�zz
�xz

⎤⎥⎥⎦

f

=

⎡⎢⎢⎣

U, x

W , z

U, z +W , x

⎤⎥⎥⎦
,

⎡⎢⎢⎣

�xx
�xz
�zz

⎤⎥⎥⎦

f

=

⎡⎢⎢⎣

S11 0 S13
0 S22 0

S31 0 S33

⎤⎥⎥⎦

f ⎡⎢⎢⎣

�xx
�xz
�zz

⎤⎥⎥⎦

f

(38)

S
f

11
=S

f

33
=

(1 − �f )Ef

(1 + �f )(1 − 2�f )
,

S
f

13
=S

f

31
=

Ef �f

(1 + �f )(1 − 2�f )
,

S
f

22
=

Ef

2(1 + �f )

(39)Γ2 = 0.5∫
+∞

−∞ ∫
0

−H

[
S
f

33
(w�,z)

2 + S
f

22
(�w,x)

2
]
dzdx

(40)−L1
�2w

�x2
+ L2w = 0

(41)
L1 =S

f

22 ∫
0

−H

�2dz,

L2 =S
f

33 ∫
0

−H

(�,z)
2dz

(42)�(z) =
sinh

[
Σ
(
1 −

z

H

)]

sinh [Σ]
,

(
Σ

H

)2

=
S
f

22

S
f

33

∫ +∞

−∞
(w,x)

2dx

∫ +∞

−∞
w2dx

(43)Γ = Γ1 + Γ2

�u ∶
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In which:

By inserting some mathematical manipulation, the stress resultants can be defined as:

In which:

Also, coefficients related to the kinematic terms can be defined as:

(44)−
�

�x
Nxx0 − J0

�2u

�t2
− J1

�3w

�t2�x
− J4

�2u1

�t2
= 0,

�u1 ∶

(45)−
�

�x
Nxx4 + Nxz5 − J4

�2u

�t2
+ J14

�3w

�t2�x
− J44

�2u1

�t2
= 0,

�w ∶

(46)

−
�2

�x2
Nxx1 − J1

�3u

�t2�x
+ J2

�4w

�t2�x2
− J14

�3u1

�t2�x
− J0

�2w

�t2
− L1

�2w

�x2
+ L2w − FT

x

�2w

�x2
= 0

(47)

[
Nxx0, Nxx1, Nxx4

]
=∫

h

2

−
h

2

�xx
[
1, z, f (z)

]
dz,

[
Nxz5

]
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h

2

−
h

2

�xz
�

�z
f (z)dz

(48)
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�u

�x
− S111

�2w

�x2
+ S114

�u1

�x
,
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�u

�x
− S112

�2w

�x2
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�u1

�x
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Nxx4 =S114
�u

�x
− S1114

�2w

�x2
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�u1

�x
,

Nxz5 =S5555u1
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[
S110, S111, S112, S114

]
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h

2

−
h

2

S11
[
1, z, z2, f (z)

]
dz,

[
S1114, S1144

]
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h

2

−
h

2

S11
[
zf (z), f (z)2

]
dz,

[
S5555

]
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h

2

−
h

2

S55

[
�f (z)

�z

]2
dz
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4  Analytical Solution Procedure

Based on Navier’s solution technique, the governing equations are solved analytically. 
Regarding this technique, the geometrical boundary conditions for the simply supported 
type of beam become satisfied using the following expressions for displacement compo-
nents as (Arshid et al. 2019c):

where U, U1, and W serve as unknown coefficients. Also, � =
m�

a
 and m denotes the mode 

number along ESB’s length. For the sake of simplicity, the final formulation is capable to 
have a compact and matrixial expression as (Thai et al. 2015):

In the final formulation, A, B, and Λ address stiffness matrix, mass matrix, and displace-
ment vector, correspondingly. The matrix A and B can be presented in detail as:

where

(50)

J0 =

−0.5hc

∫
−0.5hc−hb

� b(z)dz +

+0.5hc

∫
−0.5hc

� c(z)dz +

+0.5hc+ht

∫
+0.5hc

� t(z)dz,

J1 =

−0.5hc

∫
−0.5hc−hb

z� b(z)dz +

+0.5hc

∫
−0.5hc

z� c(z)dz +

+0.5hc+ht

∫
+0.5hc

z� t(z)dz,

J2 =

−0.5hc

∫
−0.5hc−hb

z2� b(z)dz +

+0.5hc

∫
−0.5hc

z2� c(z)dz +

+0.5hc+ht

∫
+0.5hc

z2� t(z)dz,

J4 =

−0.5hc

∫
−0.5hc−hb

f (z)� b(z)dz +

+0.5hc

∫
−0.5hc

f (z)� c(z)dz +

+0.5hc+ht

∫
+0.5hc

f (z)� t(z)dz,

J14 =

−0.5hc

∫
−0.5hc−hb

zf (z)� b(z)dz +

+0.5hc

∫
−0.5hc

zf (z)� c(z)dz +

+0.5hc+ht

∫
+0.5hc

zf (z)� t(z)dz,

J44 =

−0.5hc

∫
−0.5hc−hb

f (z)2� b(z)dz +

+0.5hc

∫
−0.5hc

f (z)2� c(z)dz +

+0.5hc+ht

∫
+0.5hc

f (z)2� t(z)dz

(51)
⎡⎢⎢⎣

u(x, t)

u1(x, t)

w(x, t)

⎤
⎥⎥⎦
=

∞�
m=1

⎡⎢⎢⎣

U cos (� x)

U1 cos (�x)

W sin (� x)

⎤
⎥⎥⎦
ei� t

(52)
[
A − B�2

]
3∗3

[Λ]3∗1 = 0

(53)A =

⎡⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎥⎦
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⎡⎢⎢⎣

B11 B12 B13

B21 B22 B23

B31 B32 B33

⎤⎥⎥⎦
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5  Numerical Results and Discussion

Passing from the abovementioned sections and formulations, in the current section, the 
vibrational responses of the ESB to the different variables’ variations are presented to 
accounts for their impacts on the current model’s vibrational behaviors. As mentioned pre-
viously, ESB is constituted from an FGPC and two ACNFRCs as face sheets. The thick-
ness of the core, the thickness of each one of the face sheets, and the length of the model 
assumed to be 5 mm, 0.5 mm, and 20 mm, respectively. What’s more and for the sake of 
integrity, the effect of FGPC’s different materials’ utilization is considered in the current 
study. The properties of all used materials are collected and displayed in Table 2 (Sharma 
et al. 2018) and Table 3 (Moradi-Dastjerdi et al. 2020a).

Moreover, about Vlasov’s foundation, getting a glimpse of Eqs. (40–42), it can be con-
cluded that deformation (w), through foundation’s parameters, depends on the Σ. Also, the 
magnitude of Σ is dependent on the w. So, as presented graphically by Fig. 5, an iterative 
technique is required to find the exact value of Σ.

Base on Fig. 5, at the first stage, Σ assumed to be equal to 2. Then, using Eqs. (40–41), 
foundation’s parameters become determined. Then, governing equations are solved, and w 
is evaluated mathematically. Using obtained w, the new magnitude of Σ becomes extracted. 
There are two possibilities in this stage;

(54)

[
A11, A12, A13

]
=�2

[
S110, S114, −�S111

]
,[

A21, A22, A23

]
=
[
�2S114, �

2S1144 + S5555, −�
3S1114

]
,[

A31, A32, A33

]
=
[
−�3S111, −�

3S1114, �
4S112 + �2L1 + L2 + �2FT

x

]
,[

B11, B12, B13

]
=
[
−J0, −J4, �J1

]
,[

B21, B22, B23

]
=
[
−J4, −J44, �J14

]
,[

B31, B32, B33

]
=
[
�J1, �J14, −�

2J2 − J0
]

Table 2  ESB’s core constituents’ 
properties (Sharma et al. 2018)

Material ρ (Kg/m3) ν E (GPa) θ  (10–6/K)

Al2O3 3800 0.3 380 8.3
ZrO2 3000 0.3 151 10
Si3N4 2370 0.24 322.27 5.87
Ti-6Al-4 V 4429 0.298 105.7 10.3
Al 2707 0.3 70 24
SUS304 8166 0.317 207.78 12.33

Table 3  ESB’s face sheets 
constituents’ properties (Moradi-
Dastjerdi et al. 2020a)

Material ρ (Kg/m3) E (GPa) θ  (10–6/K) K (GPa) G (GPa)

PMMA 1150 2.5 45 2.6 0.93
CNF 1400 5646.6 3.45 – –



173Vibration of FG Porous Three‑Layered Beams Equipped by…

1 3

• ||Σi − Σi−1
|| < 𝜀 . So, the new magnitude of Σ is reliable and based on this value substrate’s 

parameter becomes obtained and used in the solution of the governing equations.
• ||Σi − Σi−1

|| > 𝜀 . So, using the new magnitude of Σ the closed-loop circuit continues till the 
first condition become satisfied.

Furthermore, other mechanical and geometrical properties of the used Vlasov’s model are 
specified in Table 4 (Lei et al. 2013).

For the sake of the results’ reliability demonstration, Tables 5 and 6 are presented to com-
pare the non-dimensional frequencies of the current model with their counterparts at the previ-
ously published works by Pagani et al. (2013) and Ghorbanpour Arani et al. (2018) according 
to various beam theories and mode numbers. For this reason, a beam with thickness h = 0.2 m, 
length a = 2 m, elastic modulus E = 75GPa, density ρ = 2700 kg/m3 and Poisson’s ratio v = 0.33 
is considered.

As it is visible in the valid table, a good and close agreement among results elicited 
from the current formulation and those in the literature, guarantees the reliability of pre-
sented study exclusive results, truly. Also, the tiny differences among results can be due 
to the different software utilizations for the results obtaining. Furthermore, the way of 
code writing can be addressed as another reason for such a difference. From now on, the 

Fig. 5  The iterative technique procedure to determine the exact value of γ 

Table 4  Mechanical and 
geometrical properties of 
Vlasov’s foundation (Lei et al. 
2013)

Material E (Pa) ν ρ (Kg/m3) H (mm)

Silica aerogel 0.9638�3.378 0.3236�−0.107 300 < ρ < 1000 30
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main topic of discussion is about exclusive results of the under examination ESB which 
are obtained by considering presented assumptions in Table 7 as:

Table 8 illustrates the impacts of the power-law index and used materials in the FGPC 
on the vibrational behavior of ESB. This table states that the power-law index enhance-
ment results in normalized frequency reduction which leads to a lower level of rigid-
ity as an important physical and mechanical property. Furthermore, having a constant 

Table 5  Validating the non-
dimensional frequencies 
( � =

�a2

h

√
�∕E ) of the current 

model with Pagani et al. (2013) 
based on the classic theory (CT) 
and FSDT for different mode 
numbers

Mode No Pagani et al. (2013) Present

CT 1 2.885 3.007
2 11.979 11.883

FSDT 1 2.885 2.971
2 11.974 11.370

Table 6  Non-dimensional natural frequency ( � =
�a2

h

√
�∕E ) comparison between the current model 

results and those of Ghorbanpour Arani et al. (2018) based on the SSDT and different mode numbers

Mode No Ghorbanpour Arani et al. (2018) Present

SSDT 1 2.963 2.964
2 11.273 11.277

Table 7  The basic assumptions for the current paper exclusive results obtaining

FGPC’s Material ACNFRC’s Material hc (mm) ht =  hb (mm) a (mm)

Ti-6Al-4 V &  Al2O3 CNFs & PMMA 5 0.5 20
Ω μ η f * n
�a

√
�m∕Em

0.5 0.5 0.5 2
e Tb (K) m
0.25 293 1

Table 8  ESB’s vibrational responses due to the various FGPC materials and different power-law exponents

n Al Ti-6Al-4 V SUS304

Al2O3 ZrO2 Si3N4 Al2O3 ZrO2 Si3N4 Al2O3 ZrO2 Si3N4

0.5 6.1469 4.7542 6.6593 5.8610 4.5595 6.2244 5.4502 4.3374 5.6425
1 5.6339 4.5366 5.8764 5.2009 4.2486 5.3194 4.7375 4.0164 4.7673
2 4.9831 4.3001 5.0370 4.5118 3.9684 4.5153 4.1579 3.7872 4.1438
6 4.0176 4.0070 4.0110 3.6939 3.6807 3.6901 3.6085 3.5928 3.6069
7 3.9116 3.9781 3.9098 3.6146 3.6551 3.6156 3.5610 3.5771 3.5627
10 3.6992 3.9220 3.7121 3.4604 3.6067 3.4734 3.4715 3.5482 3.4801
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power-law index, each ceramic cooperation with Al for FGPC formation addresses ESB 
more stiffness in comparison with that ceramic cooperation with other metals.

Figure  6 contains curvatures correlated with the vibrational responses to the various 
mode numbers and length to thickness ratio of the ESB. The curvatures imply a tremen-
dous effect of the mode number enhancement which results in normalized frequency push-
ing up. As another output of this figure and from a physical point of view, it should be 
noted that by keeping ESB’s total thickness constant and increasing its length continuously, 
the stiffness of the whole sandwich model decreases dramatically which causes the nor-
malized frequency to fall as well. In accordance with provide a more touchable physical 
mindset, a ruler with different lengths can be assumed; it is obvious that the taller ruler is 
less stiff.

As mentioned before, Vlasov’s foundation assumed as the elastic substrate in this paper. 
The effects of the foundation thickness and its elasticity moduli on the vibrational behavior 
of the current model are investigated in Fig. 7. As curvatures show, elasticity moduli and 
thickness of the Vlasov’s substrate have an inverse impact on the normalized frequency 
and stiffness of the model; where the elasticity moduli enhancement and thickness reduc-
tion lead the whole structure to the more rigid and stiffer condition. Also, it is noticeable to 
mention that such a mentioned impact is more significant at the lower magnitudes of young 
modulus.

The influence and importance of the ACNFRC face sheets’ agglomeration degree on 
the frequential responses of the ESB are put under evaluation in Fig. 8. By the means 
of this figure, it is evident that the clusters’ volume fraction (μ) elevation causes higher 

Fig. 6  Normalized frequency of the ESB versus length to thickness ratio at different mode numbers
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Fig. 7  The effects of the foundation thickness and its elasticity moduli on the vibrational behavior of the 
ESB

Fig. 8  The influence of the ACNFRC face sheets’ agglomeration degree on the frequential responses of the 
ESB
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magnitudes of the normalized frequency and stiffness as follows. This result stresses the 
constructive effect of the agglomeration presence within the ACNFRC top and bottom 
face sheet. On the other hands, it is proved that as the CNFs’ volume fraction inside the 
clusters (η) becomes increased, the rigidity and stiffness of the model tend to decrease.

The current model is subjected to the thermal environment affection in which, the 
temperature varies linearly across the model’s thickness. The bottom surface’s tempera-
ture and ambient temperature are assumed to be equal to 300 K and 293 K, and also, the 
temperature variation across the z-direction is assumed to be linear. On the mentioned 
basis, Fig. 9 is concentrated on the vibrational behavior of the ESB model under vari-
ations of the temperature difference between the top and bottom surfaces and also, dif-
ferent face sheets’ thickness. Using Fig. 9, it is demonstrated that as the top and bottom 
surfaces’ temperature difference increases, the internal energy of the system enhances 
which, at the nano-scale, leads to the atomic bonding breakage. Furthermore, CNFs in 
nano-scale reinforce the material by the means of different mechanisms as bridging. By 
this mechanism, CNF forms a bridge between two granular materials. Increasing the 
temperature causes such a hardening mechanism to weaken and finally results in rigid-
ity and stiffness loss. However, face sheets’ thickness enhancement leads to the whole 
structure’s thickness growth and finally, normalized frequency and stiffness growth as 
well. To originate an appropriate physical point of view, rulers with different thick-
nesses can be imagined. Which one is harder to bend?

Fig. 9  Thermal environment effect on the normalized frequency of the sandwich model against ACNFRC 
face sheets’ thickness variations
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Considering the uniform distribution of CNFs within the ACNFRCs, Fig.  10 stands 
to discuss the probability of ESB’s mechanical behavior improvement by the means of 
appropriate.

FGPC’s material and CNFs volume fraction (f *) of the ACNFRCs. As it is displayed 
in this figure, higher values of f * cause normalized frequency enhancement and, conse-
quently, a higher level of rigidity of the sandwich model. In fact, by increasing the rein-
forcement phase the ability of the structure for carrying higher values of load enhances 
due to the high young modulus of CNFs. Secondly, based on Fig. 10, it is revealed that 
in an identical situation, the composition of Al, Ti-6Al-4 V, and SUS304 with Al2O3 as the 
FGPC’s ingredients provides stiffer ESB, respectively.

Figure 11 is responsible to demonstrate ESB’s vibrational behavior due to the mate-
rial property exponent variations for the different displacement fields at the fourth mode. 
From a technical and analytical point of view, material property exponent increasing 
causes ceramic volume fraction reduction. As the ceramic young modulus is more than 
metal’s young modulus considerably, it is rational that a stiffness reduction occurs by 
the ceramic volume fraction falling. Furthermore, as another result, it is proved that 
FSDT, HSDT, SSDT, and ESDT estimate the highest normalized frequency and rigid-
ity for the sandwich prototype, one after another (Mohammadimehr et  al. 2019). The 
difference between the results based on the FSDT and the results based on the other 
theories backs to the different types of shear deformation consideration in different the-
ories. Therefore, by the means of FSDT, the effect of shear deformation is considered 
as a first-order/linear function of z. On the other hands, by the means of higher-order 

Fig. 10  Normalized frequency of the current ESB model versus CNFs volume fraction for different FGPC’s 
materials
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theories, shear deformation impact is based on the nonlinear function of z. Such a non-
linearity results in more complex equations and finally, a higher level of results’ accu-
racy (Arshid et al. 2019a).

The influence of the different types of CNFs distribution within the ACNFRCs on 
the ESB’s stiffness at the fourth mode is investigated in Fig. 12. It is also important to 
mention that for CNFs distribution within the top and bottom ACNFRC, the symmetry 
principle is respected. (i.e., whole under evaluation model is symmetrical to the mid-
plane, even in CNFs distribution). According to the curvatures in this figure, the CNFs 
V-A pattern application provides the highest rigidity and consequently normalized fre-
quency for the sandwich model. As the composite layers become thicker, the effect of 
CNF’s distribution types on the normalized frequency becomes more considerable. That 
is why the difference among gained curves is more touchable in higher values of face 
sheets’ thickness.

Figure  13 at the m = 4 displays normalized frequency versus porosity-dependent 
parameters to survey their effects on the ESB’s stiffness. Regarding Fig. 13, it can be 
observed that porosity index elevation results in density, normalized frequency, and 
stiffness reduction. Such an impact seems to be rational by imagining Cheetos or other 
porous materials in our surroundings. Furthermore, as curves say, the O type of pores 
dispersion addresses a higher level of rigidity in comparison with X type and uniform 
type of pores dispersions. Such behavior is due to the impact of different types of poros-
ity dispersion on the mechanical properties of the model. The frequency magnitude is 
proportional to the second root of the stiffness (Young’s modulus (E)) to density ratio. 

Fig. 11  The fourth mode normalized frequency against power-law exponent considering different displace-
ment fields
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Fig. 12  The effect of the various CNFs distribution pattern within the ACNFRC face sheets on the vibra-
tional behavior of the sandwich beam

Fig. 13  Normalized frequency versus porosity-dependent parameters at the fourth mode
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The mentioned ratio for O, X, and uniform type of pores dispersion captures the high-
est value, respectively. Also, by increasing the porosity index value, mentioned ratio’s 
variation rate is more for uniform dispersion of pores, and consequently, the rate of the 
normalized frequency decreasing for the mentioned case is higher than two other types 
of pores’ dispersion.

A three-dimensional diagram is presented by Fig.  14 to examine agglomerating and 
CNFs volume fraction effects on the normalized frequency of the ESB, simultaneously. 
To address the values more easily, Fig. 14 is presented as a bulk figure, but it should be 
noticed that the normalized frequency values are the surface values of the presented bulk 
figure. As it is obvious, both parameters’ elevations have a constructive influence on the 
sandwich structures and lead it to a more rigid configuration.

6  Conclusion

In this paper, the authors proposed a challenge regarding the vibrational behavior of an 
equipped sandwich beam including two ACNFRC face sheets and an FGPC on Vlasov’s 
model substrate and also, under a thermal environment. The most considerable novelty 
of this work is the agglomeration impact application in the composite face sheets in such 
structures. In a conclusion, the clusters’ presence in the composite face sheets plays a cru-
cial constructive role in such sandwich structures’ stiffness and rigidity. Furthermore, it is 

Fig. 14  The 3D diagram of the normalized frequency versus the CNFs volume fraction and agglomeration 
degree
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proved that the CNFs V-A pattern application and porosities O pattern application provide 
the highest stiffness and consequently normalized frequency for the sandwich model over 
other types of CNFs’ distribution and porosities dispersion. Also, it is concluded the Vlas-
ov’s substrate elasticity moduli and thickness enhancement have constructive and destruc-
tive impacts on the stiffness and normalized frequency of the aforementioned model, 
respectively. As another conclusion, it is worthwhile mentioning that Al & Si3N4 as the 
core material constituting and Timoshenko model of the beam predict higher stiffness of 
the whole structure in comparison with other materials and beam’s theories. Furthermore, 
it is concluded that the sandwich model thickness and CNFs volume fraction have an iden-
tical impact on the normalized frequency and stiffness of the model (i.e., their enhance-
ment in value results in stiffness enhancement and vice versa). To put it all in a nutshell, 
this paper seems to be helpful for future investigations in such a broad context.
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