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Abstract
Estimating flow and transport properties of porous media that undergo deformation as a 
result of applying an external pressure or force is important to a wide variety of processes, 
ranging from injecting a fracking liquid into shale formations, to CO

2
 sequestration in 

spent oil reservoirs. We propose a novel model for estimating the effective flow and trans-
port properties of such porous media. Assuming that the solid matrix of a porous medium 
undergoes elastic deformation, and given its initial porosity before deformation, as well 
as the Young’s modulus of its grains, the model uses an extension of the Hertz–Mindlin 
theory of contact between grains to compute the new PSD that results from applying an 
external pressure P to the medium, and utilizes the updated PSD in the effective-medium 
approximation (EMA) to estimate the effective flow and transport properties at pressure P. 
In the present part of this series, we use the theory to predict the effective permeability as 
a function of the applied pressure. Comparison between the predictions and experimental 
data for twenty-four types of sandstones indicates excellent agreement between the two.

Keywords  Porous media · Hydrostatic pressure · Deformation · Hertz–Mindlin theory · 
Effective-medium approximation

1  Introduction

The focus of this paper is on the effect of deformation of porous media on their flow and 
transport properties, a problem that is encountered in a wide variety of contexts, and is of 
fundamental interest to geologists, reservoir engineers, and groundwater scientists. Exam-
ples include deformation of consolidating clays (Brown and Brindley 1980), geological 
formations deep underground where the pressure is large (Iliev et al. 2008; Fagbemi et al. 
2018), geothermal, coal-bed methane, oil and gas reservoirs, as well as unconventional 
energy resources, such as shale formations. For example, to extract hot water from geo-
thermal reservoirs at economically attractive rates, their porosity and permeability must be 
such that the volume flow rate of water is on the order of tens of m 3/hr or larger (Heiland 

 *	 Samuel Richesson 
	 moe@usc.edu

1	 Mork Family Department of Chemical Engineering and Materials Science, University of Southern 
California, Los Angeles, CA 90089‑1211, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11242-021-01633-y&domain=pdf


578	 S. Richesson, M. Sahimi 

1 3

2003). Often though, such reservoirs have low permeability and, therefore, they need stim-
ulation by, for example, hydraulic fracturing in order to produce hot water economically.

Aside from laboratory experiments on the effect of deformation on the effective per-
meability (Zoback and Byerlee 1975), one also needs a predictive model that can provide 
accurate estimates for the pressure- or stress-dependence of the effective flow and transport 
properties. Although the problem has been studied experimentally by numerous groups 
(see, for example, Zhu and Wong 1997; Keaney et al. 1998; Ruisten et al. 1999; Ngwenya 
et al. 2003; Fossein et al. 2007; Baud et al. 2012; Ballas et al. 2015; Liu et al. 2018; Meng 
et al. 2019; Yang and Hu 2020), an accurate model for predicting the pressure-dependence 
of flow and transport properties of deforming porous media is still lacking.

A related phenomenon is deformation of shale formations (Ibanez and Kronenberg 
1993) under compression and varying confining pressure. When shale gas accumulates in 
rock, the pressure rises significantly as a result of the action of high-pressure gas, coupled 
with ground stress in the seam, implying that the surrounding rock is always under high 
confining stress. Due to their low porosity and permeability, shale formations will not pro-
duce, unless they are subject to hydraulic fracturing that generates a fracture network, with 
the induced fractures intersecting the natural ones (Osborn et al. 2011). After producing for 
a while, gas production decreases, leading to repeated fracturing. At the end, the pressures 
of the shale gas and the fracturing fluid both decrease, as the high-pressure fracturing fluid 
is discharged. Therefore, during the entire process, shale formations are subject to cyclic 
loading and water pressure, hence giving rise to stress–permeability coupling (Jiang et al. 
2018).

Deformation of coal-bed methane reservoirs represents another example in which the 
permeability of the formations varies under uniaxial or triaxial stress. Several groups have 
developed theoretical models for the effect of an external load on the porosity and perme-
ability of coals (see, for example, Liu and Harpalani 2013; Wu et al. 2018; Mathias et al. 
2019). The cleats in coal formations contribute most to their permeability. Reducing the 
pore pressure increases the effective stress, leading to a reduction in the apertures of the 
coal cleats and, hence, a reduction in the porosity and permeability.

Deformation of solid materials is not, however, confined to rock, as there is a wide class 
of deformable porous materials whose flow and transport properties, when they are subject 
to an external load, vary with the magnitude of the load - pressure or stress. They range 
anywhere from polymers and hydrogels (Iritani et  al. 2006; Karada 2010; Sweijen et  al. 
2017), the “cake” that is built up on the external surface of filters (Sahimi and Imdakm 
1991; Imdakm and Sahimi 1987, 1991), and printing papers (Ghassemzadeh et al. 2001; 
Ghassemzadeh and Sahimi 2004; Masoudi and Pillai 2010), to diapers (Savoji and Pourja-
vadi 2006; Salimi et al. 2010), and foams (Koehler et al. 2000; Pitois et al. 2009). Another 
important example of much current interest is deformation and swelling of geological for-
mations, such as oil and gas reservoirs that no longer produce, as a result of injecting CO2 
into their pore space. As recent molecular dynamics simulations indicated (Rahromosta-
qim and Sahimi 2018, 2019), in the presence of brine, CO2 causes swelling of pure and 
mixed clays that may eventually lead to earthquakes (Maxwell et al. 2008; Tafti et al. 2013; 
Rother et al. 2013; Lee et al. 2016).

The physical properties of porous media depend strongly on their morphology, namely, 
their pore shape, pore-size distribution (PSD), and pore connectivity. Deformation changes 
the morphology and, therefore, the macroscopic properties. Therefore, a main goal of stud-
ying deformation of porous media is predicting such properties as a function of the driving 
force for deformation, such as an external pressure or stress. In particular, one is inter-
ested in understanding the relation between the effective flow and transport properties of 
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deforming porous media, which is typically smaller than the initial properties before defor-
mation, and the external pressure; see for example, the aforementioned references, as well 
as Khoei and Mohammadnejad (2011), Bhandari et al. (2015), and Pesavento et al. (2017).

The foundation for modeling of flow and transport in deforming porous medium is pro-
vided by the momentum balance and the equations that govern elastic deformation of sol-
ids, together with mass balance and appropriate constitutive and state equations. In a mac-
roscopic approach to the problem, one averages the microscopic conservation laws over a 
suitable volume of a porous formation and supplements the theory with empirical or semi-
empirical constitutive relations for flow, transport and mechanical properties. Biot (1941, 
1956) pioneered this approach, which has also been extended in order to study the same 
phenomena involving nonlinear material behavior (see, for example, Zienkiewicz and Shi-
omi 1994; Zienkiewicz et al. 1990; Schrefler et al. 1998; Li et al. 2004; Zhang et al. 2009), 
as well as when the pore space is only partially saturated by a fluid in the presence of a 
second fluid (see, for example, Khoei and Mohammadnejad 2011; Pesavento et al. 2017).

Another macroscopic approach is the so-called mixture theory (see, for example, Atkin 
and Craine 1976a, b; Bowen 1982; Murad and Cushman 1996; Huyghe and Janssen 1997; 
Cowin and Cardoso 2012; Huyghe et al. 2017), which was derived by averaging the micro-
scopic equations of mass, momentum and energy over a suitable length scale. The entropy 
inequality that describes the direction of dissipation of energy due to deformation was not, 
however, invoked for deriving the macroscale equations. As a result, the relationships that 
link macroscopic thermodynamic variables to the properties of porous media could not 
be derived directly. Hassanizadeh and Gray (1979a, b, 1990) combined the two aforemen-
tioned macroscopic approaches together with the entropy inequality in order to derive a 
generalization of Darcy’s law for the flow field in a deformable porous medium (see also 
Weinstein et al. 2008; Zhu et al. 2010).

Since flow and transport in heterogeneous porous media are controlled by their mor-
phology, a few computational approaches have also been developed that carry out numeri-
cal simulations, either in the image of porous media, or in a model of them (see, for exam-
ple, Zhu and Wong 1999; Boutt and McPherson 2002; Arns et  al. 2001, 2002; Dautriat 
et  al. 2009; Thovert and Adler 2011; Jasinski et  al. 2015; Bakhshian and Sahimi 2016; 
Bakhshian et al. 2018; Fagbemi et al. 2018; Aljasmi and Sahimi 2020) in order to simulate 
the changes in the morphology of porous media as they undergo deformation.

The goal of our study is developing a relatively simple, and to our knowledge, new, 
theoretical model for predicting the effective flow and transport properties of porous media 
that deform under an external hydrostatic pressure P. The model that we develop combines 
a theory of deformation of contacting grains under an external force with the effective-
medium approximation (EMA) in order to predict the effective flow and transport proper-
ties as a function of P. Bruggeman (1935) was the first to develop an EMA for estimating 
the macroscopic properties of heterogeneous media. The same formulation was developed 
independently by Landauer (1952) for computing electrical conductivity of composite sol-
ids. The EMA was used by Koplik et al. (1984) to predict the effective permeability and 
conductivity of a porous medium.

In addition, other theories have been suggested for predicting the permeability. For 
example, Wadsworth et al. (2016) proposed a universal scaling of the permeability, which 
is based on the power laws of percolation theory. But all the past works, including those 
that utilized the EMA, were for predicting physical properties of rigid heterogeneous media 
(for comprehensive reviews see Sahimi 2003, 2011). What we present is, however, the 
application of a novel combination of the EMA and a theory of deformation for comput-
ing the macroscopic permeability and electrical conductivity of porous media that undergo 
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deformation, when a hydrostatic pressure P is applied to them. In the present paper, Part 
I of a series, we develop the essential theory and utilize it to predict the effective perme-
ability. In subsequent parts, the theory will be utilized for predicting the effective electrical 
conductivity of fluid-saturated porous media and other properties.

The organization of this paper is as follows. In Sect.2, we derive the new theoretical 
model for estimating the change in the size of the pores when the pressure P is applied to 
a porous medium. The theory is then used in Sect. 3 to determine the evolution of the PSD 
during deformation. Section 4 describes the EMA for estimating the effective permeability. 
The proposed theory involves the elastic modulus of the grains or the solid matrix, and, 
therefore, Sect. 5 describes the various approaches for estimating the modulus. The compu-
tational procedure is described in Sect. 6, while Sect. 7 presents the theoretical predictions 
for the permeability of a wide variety of sandstones and compares them with experimental 
data. Section  8 discusses a few aspects of the model, while the paper is summarized in 
Sect. 9.

2 � Theory of Elastic Deformation of Porous Media Under an Applied 
Force

As mentioned in the Introduction, we employ the EMA to predict the effective permeabil-
ity of porous media that deform as a result of applying an external pressure or stress. The 
EMA is a sort of mean-field approximation (MFA) that replaces a heterogeneous porous 
medium by an effective one in which all the pores have the same effective size re . The solu-
tion of the flow and transport problem in the uniform system is straightforward. Then, one 
pore in the effective medium is selected at random and its radius in the original disordered 
medium is restored, with the rest of the pores still having the same size re . This generates 
a perturbation in the solution of the uniform system, whose magnitude is the difference 
between the solution for the uniform medium and one that is uniform everywhere, but in 
one pore. The perturbation is calculated, and since the single pore is selected at random and 
its size follows a PSD, in order to be able to still represent the disordered medium with one 
with an effective pore radius re and an effective flow or transport property, one insists that 
the average of the perturbation, when the averaging is taken over the PSD, should be zero. 
In effect, only the interaction of a single pore with the rest of the effective medium is taken 
into account, and the influence of the remaining part of the disordered porous medium is 
represented by the far-field external pressure gradient. Extensions of the EMA that account 
for interactions of a pore with those that are farther than the nearest-neighbor ones were 
also developed (Sahimi et al. 1983, 1984), but we ignore them in this work.

We assume that the deformation is elastic. At very high pressures, the inelastic effects 
may become important, but the range of pressure over which the experimental data that 
we use with the theoretical predictions is in the range of elastic deformation. Thus, in 
the spirit of the EMA, and for the sake of developing a tractable theoretical approach 
that is consistent with the mean-field nature of the EMA, we consider the interaction 
between two grains, the minimum number of grains in a MFA, subject to an external 
force F or the corresponding hydrostatic pressure P applied to the medium, and deter-
mine the deformation that it causes in the pore between the two grains that changes its 
size. The effect of the deformation of the rest of a porous medium is represented by the 
far-field applied pressure P or force. The pressure P changes the PSD of the pore space 
that, in turn, influences its effective flow and transport properties, and in particular its 
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effective permeability Ke . Since one important input to the EMA is the PSD of the pore 
space, the first step toward the goal of predicting the dependence of Ke on the external 
pressure P is to determine the changes in the PSD as P is gradually increased.

To determine the interaction between two neighboring grains and the deforma-
tion of the pore space between them, we derive a theory of deformation of contacting 
grains, first studied by Hertz (1882) who assumed no friction between the grains. Good-
man (1962) studied the same problem, but with friction between the two grains, while 
(Mindlin 1949) considered the case in which tangential forces and twisting were cou-
pled at the contact point between two grains. The derivation that we present is similar to 
the analysis of Timonshenko and Goodier (1970), but we present the complete details, 
simplify the analysis, and our final results were not actually presented by them.

We consider a typical, or average, grain size Rg , and normalize all the length scale 
with respect to it. Consider, then, Fig. 1a that shows two grains, 1 and 2, which, in the 
absence of any applied external pressure, are in contact at point C along the Z axis. 
We assume that the grains’ surfaces at the point of contact have radii of curvature R1 
and R2 . If the grains are roughly spherical, then, R1 and R2 also represent roughly their 
radii. Consider the plane tangent at C, and two points A and B that are on the front 
sections of the surfaces 1 and 2 at a small distance x from the Z axis. The distances 
z1 and z2 of A and B from the tangent plane satisfy the relations, (R1 − z1)

2 + x2 = R2
1
 , 

and (R2 − z2)
2 + x2 = R2

2
 . Assuming that z1 and z2 are small enough that z2

1
 and z2

2
 can be 

ignored, we obtain, z1 = x2∕(2R1) and z2 = x2∕(2R2) . Therefore, the distance D = z1 + z2 
between A and B is given by

An external force F is applied to the porous medium to press the grains together, which 
causes local deformation near C over a small, roughly circular (spherical) surface, which 
we refer to as the contact surface (CS). If the deformation is small, we may assume that 
both R1 and R2 are much larger than the radius of the CS. Suppose that uA and uB are, 
respectively, the displacements of A and B due to the local deformation along the Z axis. 
Then, if the tangent plane at C is held fixed, the local compression causes any two points 
on the surface of the two grains, which are far from C, to move toward each other by an 
amount u, implying that the distance between A and B decreases by u − (uA + uB) and, 
therefore, the effective pore radius between the two grains also decreases by u/2. Thus, if 
the compression caused by applying the force F brings A and B into the CS, we must have,

(1)D =

(
R1 + R2

2R1R2

)
x2 .

Fig. 1   a Configuration of two 
grains and the pore between 
them for estimating the new pore 
radius. b The loaded zone for 
computing the pressure distribu-
tion, with point A being on the 
contact surface
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if we use Eq. (1). Thus,

Therefore, we must determine uA and uB in order to compute u, i.e., the decrease in the 
distance between non-contacting surfaces of two grains, which leads directly to the change 
in the size of the pore between them and, hence, the change in the PSD of the deforming 
porous medium can be determined.

Consider a small element of the loaded zone, shown by the shaded area in Fig. 1b 
that is bounded between radii s and s + ds and angle d� where, as shown in Fig. 1a, A is 
a point on the CS. If p is the local pressure in the CS, then, the displacement uA is given 
by (Timoshenko and Goodier 1970),

which follows directly from the theory of displacement of a spherical grain, where E1 and 
�1 are, respectively, the elastic (Young’s) modulus and Poisson’s ratio of the grain. A simi-
lar equation also holds for uB:

Note that the two equations for uA and uB are subject to the condition that both A and B are 
on the CS. Therefore, by substituting the expressions for uA and uB in Eq. (3), we obtain

It remains to calculate p, the local pressure distribution over the CS. If a hemisphere of 
radius Rc is constructed on the CS, then building on the Hertz–Mindlin work, we argue 
that the pressure distribution is represented by the hemisphere’s ordinates. This implies 
that the pressure p0 at the center of the CS, i.e., the maximum pressure in the CS, is simply 
proportional to Rc and is given by, p0 = aRc , where a is a scale factor. As shown in Fig. 1b, 
the local pressure p varies over a chord mn, shown by the dashed semicircle. Therefore, 
∫ pds = p0S∕Rc , with S being the area of the semicircle. Since

then, substituting for ∫ p ds and S in Eq. (6), yields

Carrying out the integration, we obtain

(2)u − (uA + uB) = �x2 , with � =
R1 + R2

2R1R2

,

(3)u = uA + uB + �x2 .

(4)uA =

(
1 − �2

1

�E1

)

∫ ∫ p dsd� ,

(5)uB =

(
1 − �2

2

�E2

)

∫ ∫ p dsd� .

(6)
1

�

(
1 − �2

1

E1

+
1 − �2

2

E2

)

∫ ∫ p dsd� = u − �x2 .

(7)S =
1

2
�(R2

c
− x2 sin2 �) ,

(8)
(
p0

Rc

)(
1 − �2

1

E1

+
1 − �2

2

E2

)

∫
�∕2

0

(R2
c
− x2 sin2 �)d� = u − �x2 .
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Equation (9) is an identity in terms of x that must be valid for any of its values. This would 
be possible if

To relate p0 to the applied force F, we note that the sum of the pressures in the con-
tact area multiplied by its surface should be equal to F. Thus, (p0∕Rc)(

2

3
�R3

c
) = F , or, 

p0 = 3F∕(2�R2
c
) , which, after substituting in Eq. (10) and solving for Rc , yields,

If we substitute Eq. (12) and the result for p0 in Eq. (11), we find that

Assuming that the two grains are composed of the same materials, we have, �1 = �2 = � 
and E1 = E2 = Ee . We also assume that the two grains have roughly the same radii of cur-
vature, R1 ≈ R2 = R . With the assumption of local isotropy, the local force is isotropic and 
homothetic, i.e., it is a monotonic transformation of F. Thus, F and the hydrostatic pressure 
P are related by, F =

√
2 R2

g
P =

√
2P , with the second equation being due to normaliza-

tion of lengths by Rg (i.e., Rg → Rg∕Rg = 1 ), where 
√
2 is due to the geometrical consid-

erations, as shown by Deresiewicz (1958). Under these conditions, Eqs. (12) and (13) are 
simplified to

Thus, writing u and R in un-normalized units, Eqs. (14) and (15) become,

(9)
(
�p0

4Rc

)
(2R2

c
− x2)

(
1 − �2

1

E1

+
1 − �2

2

E2

)
= u − �x2 .

(10)Rc =
(�p0
4�

)(1 − �2
1

E1

+
1 − �2

2

E2

)
,

(11)u =
(
1

2
�p0Rc

)(1 − �2
1

E1

+
1 − �2

2

E2

)
.

(12)Rc =

[
3F

8�

(
1 − �2

1

E1

+
1 − �2

2

E2

)]1∕3

.

(13)u =
1

2

[
3F

(
1 − �2

1

E1

+
1 − �2

2

E2

)(
R1 + R2

2R1R2

)1∕2
]2∕3

.

(14)Rc = (R)1∕3

�
3
√
2P(1 − �2)

4Ee

�1∕3

,

(15)u =
(
1

R

)1∕3
[
3P(1 − �2)

Ee

]2∕3
.

(16)Rc = Rg

�
R

Rg

�1∕3
�
3
√
2P(1 − �2)

4Ee

�1∕3

,
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Note that, Rg ≈ R , if the grains are roughly spherical, which we assume to be the case or, at 
the minimum, we can define a radius for an equivalent spherical particle.

3 � Evolution of the Pore‑Size Distribution Under an External 
Hydrostatic Pressure

Within the framework of a MFA in which the interactions of two neighboring grains with 
other grains farther away are ignored, the pore between the two grains does not also inter-
act with the pores farther away. Thus, as pointed out earlier, to a first-order approximation, 
the effective radius of a pore under an external hydrostatic pressure P decreases by u/2, 
where u is given by Eq. (17). In other words, the initial PSD distribution f0(r0) before any 
pressure is applied is transformed to a new PSD fP(rP) at pressure P where, rP = r0 − u∕2 . 
If f0(r0) is given, either analytically or numerically, then, since, fP(rP) = f0(r0 − u∕2) , one 
either has an analytical expression for fP(rP) , or constructs it numerically for any pressure 
P.

4 � The EMA for the Effective Permeability

A porous medium consists of pore throats connected together at the pore bodies. The effec-
tive sizes of both the pore throats and pore bodies are distributed according to statistical 
distributions ft(rt) and fb(rb) . It is, however, not straightforward to measure fb(rb) , which 
is why it is usually not available. Thus, since the macroscopic permeability is controlled by 
the pore throats, for convenience we refer to the pore throats as pores, and their distribu-
tion f(r) as the PSD. As described in Sect. 2, in the EMA a heterogeneous pore space is 
represented by a uniform medium with the size of all the pores being re . We assume that 
the pores are cylindrical. Then, for slow flow the flow conductance Kf  is given by, Kf ∝ r4 
(other pore shapes may also be considered). Note that it is possible to consider other pore 
shapes. The EMA predicts that the macroscopic permeability Ke is given by (Doyen 1988; 
David et al. 1990)

with � being the porosity, � is the flow tortuosity for which various theories, as well as 
empirical and semi-empirical relations have been developed (for a review see Ghanbarian-
Alavijeh et  al. 2013), Cs is a geometrical factor with Cs = 8 for cylindrical pores in 
Hagen–Poiseuille (slow or laminar) flow, and rb is the size of the pore bodies. Since the 
distribution fb(rb) of the size of the pore bodies is typically not available, David et  al. 
(1990) suggested that one should use, ⟨r2

b
⟩ ≃ ⟨r2⟩ = ∫ rM

rm
r2f (r)dr , with rm and rM being, 

respectively, the minimum and maximum pore radii; we do the same in this paper. r4
e
 is 

computed by the EMA:

(17)u = Rg

(
Rg

R

)1∕3[
3P(1 − �2)

Ee

]2∕3
.

(18)Ke =
�

Cs�

r4
e

⟨r2
b
⟩
,
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Here, D is the Euclidean dimensionality of the porous medium ( D = 3 in our calculations). 
If the porosity of the porous medium is low enough that the pore space is near its critical 
porosity �c or the percolation threshold, i.e., the porosity at which the sample-spanning 
cluster of the pores is barely connected, and the macroscopic permeability and electrical 
conductivity vanish for � ≤ �c , then, as first derived by Kirkpatrick (1971), one may use 
Z/2 in Eq. (19), instead of D, where Z is the mean connectivity of the pore space.

Mukhopadhyay and Sahimi (2000) derived an EMA for predicting the direction-depend-
ent macroscopic permeabilities of anisotropic porous media; Stroud (1975) presented a 
continuum EMA for anisotropic media in which the local conductivity or permeability was 
a tensor; Ghanbarian et al. (2016) utilized Eq. (19) to predict the relative permeability of 
water in soil in the presence of air; Ghanbarian and Javadpour (2017) invoked Eq. (19) to 
estimate the gas permeability in shales, while saturation-dependent electrical conductiv-
ity of partially saturated packings of spherical particles was computed by Ghanbarian and 
Sahimi (2017) using Eq. (19).

5 � Estimating the Parameters of the Model

Let us first point out that the model presented in Sect. 4 is a MFA. Therefore, similar to 
any MFA, the fluctuations in the local properties are ignored, allowing one to analyze the 
behavior of the system based on only two grains, the minimum number for a meaningful 
analysis. Similar to all the MFAs, the approach has its limitations and strengths, which 
we will discuss in Sect.  8. For now, it suffices to mention that since this is a two-grain 
MFA and, as a result, only an average grain size is required. We will return to this point in 
Sect. 8.

5.1 � The Poisson’s Ratio and the Pore‑Size Distribution

According to Eqs. (17) and (19), the parameters of the model are the Young’s modulus 
Ee , the Poisson’s ratio � , and the PSD f(r). If experimental data are available for the three 
parameters, they can be used directly in the theory. Unfortunately, for the sandstones that 
we analyze, the information is not available. Thus, we need to make judicious choice of 
the parameters. Our preliminary computations indicated that while the predictions of the 
model are sensitive to the value of the Young’s modulus, they only change mildly when � 
and the PSD are varied, which we now demonstrate.

Consider, first, the sensitivity of the predictions to the PSD. To study this, we used the 
following theoretical PSD distribution,

where r0 is a parameter related to the average pore size ra through, ra = (r0 − rm)
√
�∕2 + rm . 

We fixed the minimum pore size rm at 0.18 � m, the lowest pore sizes that we could iden-
tify in the published PSDs for sandstones, and varied r0 over two orders of magnitude. 
Figure 2a presents the type of the PSD that Eq. (20) generates. The distribution generated 

(19)∫
rM

rm

r4
e
− r4

r4 + (D − 1)r4
e

f (r)dr = 0 ,

(20)f (r) =

[
r − rm

(r0 − rm)
2

]
exp

[
−
1

2

(
r − rm

r0 − rm

)2
]
,
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by the lowest r0 in Fig. 2 has striking similarities with what was reported by Fredrich et al. 
(1993) for a Fontainebleau sandstone, while those generated by other values of r0 are quali-
tatively similar to those reported by others for other types of sandstone. We then computed 
the effective permeability for one of the sandstones that we analyze later in this paper, 
namely, the Tensleep sandstone (see Sect.  7), fixing all the parameters, but varying the 
PSD.

Figure 3 presents the results, where the permeability is normalized by its value before 
deformation (see also Sect.  7). The results do not indicate great sensitivity to the PSD. 
Calculations for all the sandstones that we analyzed (see Sect. 7) indicated the same trends. 
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Thus, in the absence of any experimental data for the PSDs of the sandstones that we ana-
lyzer below, we used in all the cases described below the distribution presented in Fig. 2b 
as the initial PSD, f0(r0) , which was reported by Lindquist et al. (2000) for a Fontainebleau 
sandstone, and is similar to those for many other sandstones reported by others (see, for 
example, Cheung et al. 2012 for Bleurswiller and Boise sandstones). Note that the distribu-
tion is also similar to what Eq. (20) generates, and that the pore sizes vary over about two 
orders of magnitude, a relatively broad range.

Next, we studied the sensitivity of the predictions to the value of the Poisson’s ratio, 
� . Once again, all the parameters but � were fixed, and the model was used to predict the 
dependence on the applied pressure of the permeability of the sandstone of Fig. 3. Figure 4 
presents the results. The Poisson’s ratio was varied by a factor of 4, and yet the predictions 
vary by at most 2 percent. Calculations with all the other sandstones that we analyze below 
(see Sect. 7) indicated the same trends. Thus, we fixed the Poisson’s ratio at � ≈ 0.3 , which 
is in the middle of the range for sandstones.

5.2 � The Young’s Modulus of the Grains

Let us first emphasize that the Young’s modulus Ee in Eq. (17) is not that of the porous 
medium as a whole, which depends on its porosity and for which an EMA has been devel-
oped (Makse et al. 2001), but rather it is that of the grains, or the solid matrix of the porous 
medium in the MFA, which should either be measured, estimated theoretically, or is treated 
as an adjustable parameter. The grains are, however, hardly pure materials; they usually 
represent composites of several components. If the composition of the solid matrix or 
grains is known, then there are at least two theoretical approaches that can be used to esti-
mate Ee.

One method of estimating the elastic moduli of the solid matrix is through rigor-
ous upper and lower bounds. Over the years, relatively tight bounds have been derived 
that provide reasonable estimates of the elastic moduli of solid composites. These 
are described in detail by Torquato (2002) and Sahimi (2003), to whom the inter-
ested reader is referred. The second approach is based on the so-called self-consistent 
approximation (SCA) for the effective elastic moduli of a composite material, first 

Fig. 4   Effect of the Poisson’s 
ratio � on the predicted perme-
abilities
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developed by Budiansky (1965), Hill (1965), and Wu (1966), and developed further by 
Berryman (1980), which is the analog of the EMA for the elastic moduli. For example, 
if we assume that the solid matrix is composed of two components, say quartz and clay 
as in many sandstones, such that the spatial distribution of clay (component 1) with 
volume fraction �1 is represented by identical spheres dispersed in the background 
matrix made of quartz—component 2 with volume fraction �2—then, according to the 
SCA the effective bulk modulus Be and shear modulus �e of the matrix are the solution 
of the following nonlinear coupled equations:

and

where Ce = (9Be + 8�e)∕(6Be + 12�e) . The case in which component 1 is spatially dis-
tributed in the background matrix as elliptical particles has also been studied (Berrymnan 
1980). Equation (21) and (22) are accurate, provided that 𝜙1 ≪ 𝜙2.

Suppose, for example, that the matrix consists of clay with a volume fraction of 
�1 = 0.22 , for which �1 = 6.85 GPa and B1 = 21 GPa, and quartz with volume frac-
tion of �2 = 0.78 with B2 = 138 GPa and �2 = 44 GPa. Then, Eqs. (21) and (22) 
yield, �e ≈ 30.5 GPa and Be ≈ 33.5 GPa. Thus, since the Poisson’s ratio is given 
by, � = (DBe − 2�e)∕[D(D − 1)Be + 2�e] , with D = 3 being the dimensionality 
of the space, we obtain, � ≈ 0.15 . The effective Young’s modulus is then given by, 
Ee = 2�e(1 + �) ≈ 70 GPA. On the other hand, suppose that a sandstone is composed 
of about 24 percent quartz (component 1), the same as Fahler 154 and close to the 
Boise sandstone, both analyzed in Sect. 7, while the rest is made of clay (or any other 
compound much softer than quartz) as component 2. Then, Eqs. (21) and (22) predict 
that, Be ≈ 28.7 and �e ≈ 10.3 , both in GPa, so that � ≈ 0.28 and Ee ≈ 26 GPa, much 
smaller than that of pure quartz, Ee ≈ 106 GPa. These are, of course, approximations, 
but they do indicate that the Young’s modulus of the grains depends strongly on their 
compositions.

The information on the exact composition of the solid matrix of the deforming sand-
stones that we analyze in the present paper is not available. Therefore, in the absence 
of such information that we could have used in, for example, Eqs. (21) and (22) to 
estimate Ee for each deforming porous medium that we analyze, we utilize a single 
experimental data point for the permeability at a given pressure P in order to calibrate 
the model and estimate Ee . We typically took the point in the middle of the pressure 
range for each set of the data. The estimate is then utilized for predicting Ke(P) at all 
other pressures.

It is, of course, well-known that the elastic moduli of composite materials, including 
porous media’s solid matrix, are functions of the applied pressure P. Consider, how-
ever, the elastic moduli of quartz, which is typically a main component of sandstones. 
Its elastic moduli do depend on P (Kondo et  al. 1981; Wang et  al. 2015), but only at 
pressures much higher than those considered in the experiments described below. Thus, 
ignoring the pressure-dependence of Ee is justified. For the predictions that we present 
below, we used a data point at a pressure in the middle of the range of the pressures at 
which Ke had been measured.

(21)�1

Be − B1

4�e∕3 + B1

+ �2

Be − B2

4�e∕3 + B2

= 0 ,

(22)�1

�e − �1

Ce�e + �1

+ �2

�e − �2

Ce�e + �2

= 0 ,
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6 � Computational Procedure

Having developed the necessary theoretical tools for predicting the effective permeability 
of deforming porous media, the computational procedure is as follows. 

	 (i)	 We begin with an initial PSD f0(r0) of the porous medium to be deformed and esti-
mate its initial permeability using Eqs. (18) and (19).

	 (ii)	  For an applied hydrostatic pressure P, we construct the PSD fP(rP) corresponding 
to P by selecting the pore sizes from f0(r0) , calculating their updated values using 
Eq. (17) and rP = r0 − u∕2 , and repeating it for a large number of pore sizes selected 
from f0(r0) , in order to construct a representative fP(rP).

	 (iii)	 The resulting fP(rP) is then utilized to first update the value of ⟨r2
b
(P)⟩ = ⟨r2

P
⟩ and 

then is used together with fP(rP) in Eqs. (18) and (19) to compute Ke(P) at the given 
pressure P.

As pointed out earlier, if the PSD f0(r0) can be expressed by an analytical expression, such 
as Eq. (20), then, so can also fP(rP) for any P in which case the computations are very fast.

7 � Results and Comparison with Experimental Data

Let us first emphasize again that Eqs. (16)–(19) are not exact, but represent only MFAs 
to the problem, which we now utilize to predict the pressure-dependence of the effective 
permeability Ke(P) of a large number of sandstones, and to compare the predictions with 
the experimental data. Almost all the experimental data are given by Yale (1984), although 
as noted below, some of them were not his measurements, but he had included them in his 
Doctoral Thesis for comparison and completeness. Yale (1984) did not provide the sand-
stones’ initial PSD and, therefore, as mentioned earlier, we used in all the cases described 
below the PSD presented in Fig.  2b as the initial PSD, f0(r0) , which was reported by 
Lindquist et  al. (2000). The qualitative aspects of the PSD that we utilize are similar to 
those for many sandstones, namely, that the distribution is skewed; it has a maximum close 
to the smallest pores, and that it also has a relatively long tail. Clearly, any PSD can be 
used in the theoretical formulation that we have developed.

Let us also emphasize that since the PSD and the Poisson’s ratio are fixed in all the 
cases, only the initial porosity of each sample and the fitted value of the Young’s modulus 
are used as the parameters of the model. Despite this, as the comparison between the pre-
dictions and the experimental data indicates, the theory provides accurate predictions for 
almost all the cases. In the discussions that follows all the percentages and fractions that 
are mentioned are volumetric.

7.1 � Fontainebleau Sandstone

Before presenting the predictions for the sandstones that Yale (1984) experimented on, 
we present the results for a Fontainebleau sandstone, since its PSD was reported by 
Lindquist et  al. (2000), while the data for its pressure-dependent Ke(P) were reported 
by Song and Renner (2008). The initial porosity of the samples was between 0.025 
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and 0.09 (several samples were experimented on). We found the best estimate for the 
Young’s modulus of the sandstone that provides accurate predictions for the permeabil-
ity to be, Ee ≈ 30 GPa. Figure 5 compares the predictions with the experimental data.

One may reasonably argue that the predictions are not as accurate as one would 
expect, since the “universal” PSD that we used for all the cases was taken from the data 
for this Fontainebleau sandstone. Indeed, in this case the model is actually the least 
successful (see below), since normalized permeability is under- or over-predicted for 
small or large P, with the overall slope being about half of the experimental data. If, as a 
reviewer pointed out, we simply model Ke(P)∕Ke(0) = 1 , we will have an error of about 
15 percent over the wide range of pressures used in the experiments, which should be 
compared with the maximum error of about 4.4 percent, produced by the model, which 
is definitely an improvement but, perhaps, one might expect a better performance by the 
model.

It is, however, noteworthy to point out that the data are considerably scattered. More-
over, the normalized permeability at a pressure of about 180 MPa (the second data point 
from the left) is larger than 1, hence, indicating that, during the experiments, something 
might have happened to the sample that the theory cannot account for. Note also that 
the data vary in a narrow range of (0.85,1) and, therefore, the apparent disagreement 
between the predictions and the data is a bit superficial. In fact, as mentioned earlier, the 
maximum error of the predictions is only 4.4 percent, while the average error is only 2 
percent.

Let us also point out that Fredrich et  al. (1993) also reported experimental data 
for the PSD and pressure-dependence of the permeability of a Fontainebleau sand-
stone. Their PSD has striking similarity with the distribution that Eq. (20) produces 
for r0 = 1 . However, their data for Ke(P) have some peculiar features. In particular (see 
their Fig. 4), Ke(P) sharply drops when what is referred to as the “effective pressure” is 
increased from zero to only 4 MPa. It then stays essentially constant for 4 MPa < P < 
40 MPa, and then it increases for P > 40 MPa. Fredrich et al. (1993) remarked that their 
data have considerable scattering due to inelastic deformations; that some data may be 
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“artifacts” at the higher pressures due to errors in the opening and closing valves, and 
that the core sample that they experimented on split in half when they removed it from 
the experimental setup. Thus, we did not try to predict their data.

Yale (1984) stated that in all cases that he experimented on the pore pressure Pp was 
constant. Thus, in what follows the pressure P may be replaced by P − Pp.

7.2 � Beaver River Sandstone

The Beaver River sandstone (BRS) is a formation on the west side of the Athabasca River 
near Mildred Lake and the Beaver River (in Alberta, Canada) and has been identified as 
quartzite (Kristensen et al. 2015) with fine- to medium-size and well-sorted grains, 78 per-
cent of which was quartz. Its pore space was cemented by 16 percent quartz overgrowth 
and also contained clay. Its initial porosity (before deformation) was �0 ≈ 0.076 . Figure 6 
compares the predicted permeabilities, normalized by the initial permeability of the sand-
stone before deformation (as also presented by Yale (1984)) as a function of the applied 
pressure, with the experimental data of Yale (1984). The agreement between the two is 
excellent. Because the sandstone is mostly quartz, its porosity and, thus, PSD do not change 
much over the range of the applied pressure. This is confirmed by the inset of Fig. 6 that 
shows that the porosity is reduced by only 5 percent of its initial value, as well as Fig. 7 
that presents the PSD of the sandstone at higher pressures, indicating only small changes.

7.3 � Berea Sandstones

Yale (1984) presented experimental data for two Berea sandstone. One was Berea 
100H (with H implying that the bedding was horizontal in the experiments) with a sub-
litharenite environment—one in which the sandstone is characterized by the presence 
of less than 15 percent mud matrix—with 5–25% of the grains being rock fragments, 
more than the feldspar content. The sandstone consisted of 53% quartz and had fine 
to very fine, well-sorted grains with an initial porosity of 0.165. Its cement contained 

Fig. 6   Comparison of the 
predicted permeabilities with the 
experimental data for the Beaver 
sandstone. The estimated value 
of the Young’s modulus E

e
 of the 

grains is 2.7 GPa
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11% quartz overgrowth, as well as clay. Figure 8a compares the predicted permeabili-
ties with the experimental data; the agreement is excellent.

The second Berea sandstone that Yale (1984) experimented on was Berea 500, a 
quartzenite-type porous medium composed of up to 90 percent detrital quartz, with 
limited amounts of other framework grains, such as feldspar and lithic fragments. Such 
sandstone can have higher-than-average amounts of resistant grains, such as chert and 
minerals. Sixty six percent of Berea 500 was quartz. Its initial porosity was �0 ≈ 0.2 , 
while its cement consisted of 5 percent quartz overgrowth, 8 percent Fe oxide, and 1 
percent clay, with the rest being other types of materials. Figure 8b presents a compari-
son of the pressure-dependence of the permeability with the experimental data, indi-
cating excellent agreement. In both sandstones, the porosity was reduced by only 5-6 
percent of its initial value over the entire range of pressure and, therefore, the change 
in the PSDs was small.

Fig. 7   Evolution of the pore-size 
distribution of the Beaver sand-
stone as a result of applying the 
external hydrostatic pressure P to 
the sandstone
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7.4 � Boise Sandstone

The Boise sandstone used in the experiments by Yale (1984) was of arkosic arenite, or 
arkose type, a detrital sedimentary rock that contains at least 25% feldspar, which is why 
it is sometimes referred to loosely as feldspathic sandstone. The sandstone was fine to 
medium grained, very well sorted, with initial porosity of about 0.26 and minor carbonate-
clay cement. Its grains consisted of 28 percent quartz and 44 percent feldspar. Figure  9 
compares the predicted permeabilities w the estimated Ee ≈ 38.5 GPa is close to what the 
SCA, Eqs. (21) and (22), predict, Ee ≈ 26 GPa. is close to what the SCA, Eq.s (21) and 
(22), predict, Ee ≈ 26 GPa.

7.5 � Cambrian Sandstone

Chierici et al. (1967) presented experimental data for the pressure-dependence of the per-
meability of three Cambrian sandstones. These are low-porosity sandstones from the Cam-
brian era that consist of sand-size quartz grains held together by quartz cement. The three 
were referred to as Cambrian 6, Cambrian 14 and Cambrian 16 by Yale (1984) and had 
initial porosities of 0.08, 0.11, and 0.13, respectively. Figure 10a–c presents comparison 
of the predicted pressure-dependence of the effective permeability with the experimental 
data. In all cases, the agreement between the predictions and the data is good, with the 
largest difference being about 12 percent at 45 MPa, applied to Cambrian 16. Note that the 
fact that in the cases of Cambrian 6 and Cambrian 14 the final porosities of the sandstones 
at the highest pressure applied were about 95 percent of their initial values indicates the 
rigidity of their structure. In addition, the lower value of the Young’s modulus Ee for the 
Cambrian 16 is consistent with a larger reduction in its initial porosity.

7.6 � Fahler Sandstones

Yale (1984) presented experimental data for pressure-dependence of the effective perme-
abilities of four Fahler sandstones, which he referred to them as Falher 142, Fahler 154, 

Fig. 9   Comparison of the 
predicted permeabilities with 
the experimental data for Boise 
sandstone with the fitted value of 
the Young’s modulus E

e
≈ 38.5 
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Fahler 162, and Fahler 189. Of the four, Fahler 142 was of quartzarenite type, whereas 
the other three were sublitharenite sandstones. Moreover, the initial porosity of Fahler 142 
was �0 ≈ 0.08 . It was fine grained, very well sorted, with quartz outgrowth, and clay and 
carbonate cement. It consisted of 35 percent quartz, 8 percent chert, and 3 percent feldspar, 
with the rest being various other types of rock materials. Its cement contained 23 percent 
carbonate. Fahler 154 with an initial porosity of 0.044 was very fine to fine grained and 
very well sorted, 24 percent of which was quartz, 8 percent chert, 4 percent lithics, and 2 
percent feldspar, with the rest being other rock materials. Its cement contained chalcedony 
(a cryptocrystalline form of silica), Fe oxide and carbonate. Likewise, Fahler 162 was a 
sandstone with an initial porosity of 0.03, fine to medium grained, consisting of 46 percent 
quartz, 8 percent various lithics, and 6 percent chert, with the rest being other types of rock 
materials. Its cement consisted of 25 percent quartz overgrowth, 8 percent Fe oxide, and 8 
percent clay. Finally, Fahler 189 had an initial porosity of 0.02, medium grained, and con-
tained 27 percent quartz, 27 percent chert, 11 percent various lithics, and 3 percent feld-
spar. Its cement consisted of 13 percent quartz overgrowth, 9 percent carbonate, 4 percent 
chalcedony, and 2 percent clay.

Figure  11a–d presents the predictions and compares them with the experimental 
data. We first note the consistency between the estimated values of Ee for the four sand-
stones, which indicates the internal consistency of the theoretical model. As Figure 11 
indicate, in all cases the agreement between the predictions and the data is excellent 

(a) (b)

(c)

Fig. 10   Comparison of the predicted permeabilities with the experimental data for three Cambrian sand-
stones with the fitted value of the Young’s modulus being a E

e
≈ 10 ; b 12, and c 2, all in GPa
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for pressures as high as 25 MPa, but they deviate from the data at higher pressures. We 
will come back to this point in Sect. 8.

7.7 � Indiana Dark Sandstone

The next sandstone whose pressure-dependent permeability we predicted is the Indiana 
Dark sandstone, referred to as the Indiana DH, with DH indicating that the sample was 
taken after drilling horizontally. The sandstone was of subarkose type, one in which 
feldspar sand grains exceed rock fragments, but make up 5 to 15 percent of the rock. 
Its initial porosity was relatively high, 0.27, with its major components being 57 per-
cent quartz and 7 percent feldspar. Its cement contained clay, as well as 22 percent 
hematite, Fe2O3 . Figure  12 compares the predictions with the experimental data of 
Yale (1984); the agreement is excellent. Note that since the initial porosity of the sand-
stone was high and it reduced by only 4 percent even at the highest pressure, then, con-
sistent with our arguments about the Fahler sandstone, the porous medium remained 
well connected, precisely in the range of porosity in which the EMA is highly accurate.

(a) (b)

(d)(c)

Fig. 11   Comparison of the predicted permeabilities with the experimental data for the four Fahler sand-
stones with the fitted value of the Young’s modulus being a E

e
≈ 0.12 ; b 0.15; c 0.11, and d 0.17, all in 

GPa
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7.8 � Massillon Dark Sandstone

The sandstone, referred to as Massillon DH (from Massillon, Stark County, Ohio) by 
Yale (1984), was of quatzarenite type with an initial porosity of 0.161, and medium-
size and well-sorted grains. Sixty-one percent of it was quartz, with feldspar, chert, and 
lithics each contributing 1 percent, and the rest being other types of rock material. Its 
cement contained Fe oxide at 15 percent and clay at 5 percent. Figure 13 compares the 
predictions with the experimental data of Yale (1984). The largest difference between 
the two sets is about 6 percent at a pressure of 40 MPa.

Fig. 12   Comparison of the 
predicted permeabilities with the 
experimental data for the Indiana 
DH sandstone with the fitted 
value of the Young’s modulus 
being E

e
≈ 30 GPa
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Fig. 13   Comparison of the 
predicted permeabilities with the 
experimental data for the Massil-
lon DH sandstone with the fitted 
value of the Young’s modulus 
being E

e
≈ 9.5 GPa
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7.9 � Miocene Sandstone

Chierici et al. (1967) reported experimental data for the pressure-dependence of Mio-
cene sandstone, a low-porosity rock that is of the feldspathic arenite type. Its initial 
porosity was 0.083. The roundness and sorting of the grains of such sandstones are 
typically high, implying the existence of long flow and transport distances (Saitoh and 
Masuda 2004). Figure 14 presents the comparison between the predictions for the pres-
sure-dependent permeability and the experimental data. The agreement is excellent. The 
existence of well-connected and long transport and flow paths practically guarantees 
that the predictions would be accurate, because it is precisely under such conditions that 
the EMA is accurate.

Fig. 14   Comparison of the 
predicted permeabilities with 
the experimental data for the 
Miocene 7 sandstone with the fit-
ted value of the Young’s modulus 
being E

e
≈ 5 GPa
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Fig. 15   Comparison of the 
predicted permeabilities with the 
experimental data for the Plio-
cene 35 sandstone with the fitted 
value of the Young’s modulus 
being E
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≈ 4 GPa
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7.10 � Pliocene Sandstone

Chierici et al. (1967) also reported experimental data for the pressure-dependence of the 
permeability of a Pliocene sandstone, which Yale (1984) referred to it as Pliocene 35. Sim-
ilar to Miocene sandstones, Pliocene sandstones also have round grains. The initial poros-
ity of the sample was 0.2. Figure 15 compares the predictions with the data. The agreement 
between the two is excellent.

7.11 � Tensleep Sandstone

Fatt (1957) reported on his measurements of the pressure-dependence of the permeabil-
ity of Tensleep sandstone. The porous medium represents a geological formation from the 
entire Pennsylvanian sequence in central and northern Wyoming in the very early Permian 
age (Branson and Branson 1941). Such rocks are predominantly crossbedded sandstone 
and have thin limestone and dolomite beds (Kerr et al. 1986). The initial porosity of the 
sample was 0.146. In Fig. 16, we compare the predictions with the experimental data of 
Fatt (1957), also reported by Yale (1984). The agreement is excellent over much of the 
range of the applied pressure. The largest difference, at the highest pressure, is about 10 
percent.

7.12 � Gulf Coast Sandstone

The experimental data for this sandstone were reported by Yale (1984), who referred 
to the rock as Tertiary 807. In general, tertiary rocks are those that were formed dur-
ing part of the Cenozoic era, covering the Paleogene and Neogene periods. The sample 
with which the experiments were carried out was of the subarkose type, with fine, well-
sorted grains and high intergranular porosity. It contained 52 percent quartz, 9 percent 
feldspar, 5 percent chert, and 3 percent lithics with an initial porosity of 0.22. Figure 17 
compares the theoretical predictions with the experimental data. Once again, over much 
of the pressure range the agreement between the predictions and the data is excellent. 

Fig. 16   Comparison of the 
predicted permeabilities with 
the experimental data for the 
Tensleep 35 sandstone with the 
fitted value of the Young’s modu-
lus being E

e
≈ 2.6 GPa
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The theory predicts slightly higher permeabilities at the two highest pressures, with the 
largest deviation from the data being, however, about 5 percent at 40 MPa.

7.13 � Torpedo Sandstone

Dobrynin (1962) reported permeability data for the Torpedo sandstone from Kansas. 
The initial porosity of the sample was 0.202, and it contained about 5 percent clay min-
erals that consisted mostly of kaolinite and chlorite, distributed evenly throughout the 
sample. As Figure 18 indicates, except at 45 MPa where the predicted permeability is 
larger than the measured value by 5 percent, the agreement between the predictions and 
the experimental data is excellent.

Fig. 17   Comparison of the 
predicted permeabilities with the 
experimental data for the Tertiary 
807 sandstone with the fitted 
value of the Young’s modulus 
being E

e
≈ 6.4 GPa
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Fig. 18   Comparison of the 
predicted permeabilities with 
the experimental data for the 
Torpedo sandstone with the fitted 
value of the Young’s modulus 
being E

e
≈ 3 GPa
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7.14 � Triassic Sandstones

Yale (1984) reported measurements of the pressure-dependence of the permeability of 
five Triassic sandstones. Such rocks were formed in the Triassic period, between 200 
and 251 million years ago. The morphology of such sandstones varies greatly, from very 
fine- to very coarse-grained. They represent porous formations with low- or ultra-low 
permeability, but they often contain both tectonic and diagenetic fractures that provide 
flow paths. The five sandstones studied by Yale (1984) were referred to as Triassic 26, 
27, 34, 38, and 41 with initial porosities that were, respectively, 0.18, 0.18, 0.2, 0.2, and 
0.21. Figure 19a–e compare the predictions of the permeabilities with the experimental 
data. Except for Triassic 27 sandstone, the agreement between the predictions and the 
data is uniformly excellent. Even in the case of Triassic 27, the maximum difference 
between the predictions and the data at high pressures is only about 5 percent.

8 � Discussion

Let us first point out that in a previous paper (Richesson and Sahimi 2019), we used 
the radius of contact Rc , given by Eq. (16) (originally presented by Yale (1984), with-
out derivation) in order to develop an expression for the PSD of a deforming porous 
medium. Within the MFA that we have developed, �p(P) , the pore length at pressure P, 
is given by (Yale 1984)

(23)�p(P) = �0 − Rc(P) = �0

[
1 −

Rc(P)

�0

]
,

(a)

(d) (e)

(b) (c)

Fig. 19   Comparison of the predicted permeabilities with the experimental data for the Triassic sandstone 
with the fitted value of the Young’s modulus E

e
 being a 8; b 6.5; c 83; d 40, and e 2.8, all in GPa
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where �0 is the length of the pore before deformation. If r0∕�0 is the aspect ratio of a pore 
before it is deformed, then, within the MFA the pore size at pressure P is given by

Thus, if a hydrostatic pressure P is applied to a porous medium, the change in any pore 
size can be computed by Eq. (24), implying that the initial PSD can be updated. However, 
although as we demonstrated previously (Richesson and Sahimi 2019), we obtained excel-
lent agreement between the predicted permeabilities and the experimental data for five 
sandstones, when we used Eq. (24) for updating the PSDs of the sandstones considered in 
this paper, good agreement between the theoretical predictions and the data could often be 
obtained only when the Young’s modulus Ee of the grains or the solid matrix was unphysi-
cally very high, ranging from hundreds of GPa to even thousands. Thus, we believe that 
only when the change in the PSD is determined through the quantity u, given by Eq. (17), 
can one expect physically acceptable fitted values of Ee and good agreement between the 
predictions and the experimental data.

Several other aspects of our proposed model deserve discussions, which we now present.

8.1 � The Fitted Values of the Young’s Modulus

As discussed in detail earlier, if for each sandstone that we examined the composition of 
the grains are available, then, there are a variety of theoretical methods by which their 
effective Young’s modulus can be estimated. In the absence of such information, we used 
a single point to estimate the modulus, which is similar to calibrating an experimental sys-
tem. Table 1 presented the fitted values of the Young’s moduli for the sandstones consid-
ered in this paper.

As Table 1 indicates, in many cases the fitted values of the Young’s modulus are smaller 
than what one would expect, particularly for sandstones in which quartz is a major com-
ponent. The reason is, however, clear: we fit the permeability at one point for a sandstone 
as a whole in order to estimate the modulus for its grains or the solid matrix. Clearly, the 

(24)rP(P) = �p(P)

(
r0

�0

)
.

Table 1   Fitted values of the 
Young’s modulus E

e
 of the 

sandstones’ grains

Sandstone E
e
 (GPa) Sandstone E

e
 (GPa)

Fontainebleau 40 Beaver 2.7
Berea 100H 25 Berea 500 13
Boise 38.5 Cambrian 6 10
Cambrian 14 12 Cambrian 16 2
Fahler 142 0.12 Fahler 154 0.15
Fahler 162 0.11 Fahler 189 0.17
Indiana DH 30 Massillon DH 9.5
Miocene 7 5 Pliocene 35 4
Tensleep 2.6 Gulf Coast 6.4
Torpedo 3 Triassic 26 8
Triassic 27 6.5 Triassic 34 83
Triassic 38 40 Triassic 41 2.8
Branford 0.7 Kirkwood 0.5
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datum represents and is influenced by, a variety of morphological factors and, therefore, 
the estimate of the modulus should be smaller than the actual value because, for example, 
the datum is influenced by the porosity, whereas the grain themselves are solid particles. 
We shall comeback to this point in Sect. 8.6

8.2 � Limits of Validity of the EMA

An important question is the range of the validity of the EMA, as well as the MFA that 
we developed for the deformation. Comprehensive discussions of the strengths and short-
comings of the EMA are provided by Sahimi (2003) and Hunt and Sahimi (2017). Koplik 
(1981), Adler and Berkowitz (2000), and others (see Sahimi 2003) studied the limit of the 
accuracy of the EMA. Generally speaking, the EMA is (i) accurate if a porous medium is 
not near its percolation threshold, i.e., the critical porosity at which the permeability and 
electrical conductivity vanish; (ii) more accurate for two-dimensional (2D) media than for 
3D if they are close to the percolation threshold, and (iii) not very accurate for 3D porous 
media in what is called the critical region. In random media, the critical region is defined 
roughly by (Sahimi 1994), � − �c ≤ 1∕Z , where Z is the mean pore connectivity, and �c is 
the critical porosity. (iv) If there are extended correlations between the pores’ sizes, then 
the EMA is less accurate than in completely random porous media, although Mukhopad-
hyay and Sahimi (2000) suggested ways of taking into account the effect of such correla-
tions. The extensive comparison between the theoretical predictions and the experimental 
data presented earlier is consistent with this picture, namely, if the porosity of a porous 
medium is not extremely low, to the extent that it is barely connected, the MFA developed 
in this paper together with the EMA provide accurate predictions for the effective perme-
ability of porous media.

8.3 � Effect of Structural Changes in the Pore Space

In some cases, such as the Cambrian and Fahler sandstones, the effective permeability at 
high pressures decreases a bit more slowly than the predictions. One possible reason for this 
is that the morphology of the porous media undergoes fundamental changes at high pres-
sures, such as opening up new cracks that provide new flow paths for the fluid and, hence, 
arrest to some extent the decline in the permeability at high pressures. If such changes do 
occur, the approach that we propose in the present paper would not be applicable.

8.4 � Effect of Microcracks

If the porous medium contains, in addition to pores, microcracks, then, two approaches 
may be taken to take their effect into account. One is by simply assuming that the cracks 
are large pores and use a bimodal PSD to represent both pores and microcracks. This is, of 
course, a crude approximation whose accuracy remains to be tested.

The second method is based on treating the microcracks as completely distinct from the 
pores such that they may, for example, have their own “network.” In that case an EMA, 
developed by Hughes and Sahimi (1993a, b) for flow and transport in porous media with 
two distinct types of flow and transport paths—pores and microcracks—may be used. 
One would need, of course, not only the PSD, but also the distribution of the cracks’ flow 
properties. In addition, hydrostatic deformation of a porous medium with cracks typically 
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involves an initial nonlinear elastic crack closure, followed by pore deformation. This 
implies that one should also develop an expression for the way the microcracks close, since 
it is different from that for pores that we presented here.

8.5 � Effect of Clay on Pore‑Pressure Dependence of the Permeability

It has been suggested that the permeability of sandstones that are rich in their clay content 
may be sensitive to pore pressure (Al-Wandy and Zimmerman 2004; Meng et al. 2020). For 
example, Al-Wandy and Zimmerman (2004) reported that the permeability is more sensi-
tive to changes in the pore pressure than to variations in the confining pressure, and that it 
increases with increasing pore pressure, but decreases with increasing confining pressure 
(which is the case in the data that we present and discuss). The model that we have pro-
posed in this paper cannot, in its present form, take this effect into account. If, however, the 
dependence on the pre pressure of the permeability of a pore and, therefore, the pore’s flow 
velocity, can be expressed by a functional form, then, the EMA can be extended to include 
such effects (see, for example, Sahimi 2003). This will be described in a future paper.

8.6 � Effect of Contact Law for the Grains

The theory that was developed in Section 2 in order to determine the change in the size of 
a pore as a result of deformation of a porous medium was based on the Hertz–Mindlin the-
ory of contacting grains in unconsolidated porous media. The experimental data that were 
compared with the theoretical predictions were, however, for mostly consolidated sand-
stones that have been cemented. It is known (Dvorking and Yin 1995) that cementation 
influences strongly the contact laws. This could provide an explanation as to why the fitted 
Young’s moduli of the various sandstones (see above) did not often agree with what one 
might expect for such porous media, which contain a significant amount of quartz.

Thus, one way to address the shortcoming is to use the Hertz–Mindlin theory for 
cemented sandstones, rederive the expression for the change in the effective size of the 
pores, and recompute everything. An alternative, and perhaps simpler, approach would 
be to determine the change in the radius of a hollow cylinder (a pore throat), embedded 
in a solid material of a given Young’s modulus, as a result of exposing the system to a 
hydrostatic pressure. This would indeed represent a MFA. The result can then be used to 
determine the modified PSD and, hence, the effective permeability. We will report on both 
approaches in a future paper.

8.7 � The Effect of a Grain‑Size Distribution

As described earlier, the present theory of grain deformation, Eqs. (16) and (17), requires 
an average grain size Rg . This is due to the fact that, as emphasized earlier, the present 
theory of deformation is a MFA and, as such, it considers the deformation of only two 
neighboring grains and the change in the effective radius of the pore between them. Thus, 
if a grain-size distribution (GSD) is available (see, for example, Cheung et al. 2012), one 
can compute Rg . Beyond that, and in order to take into account the effect of a GSD of a 
collection of grains, the MFA must be refined, and the effect of the interactions between a 
collection of grains must be taken into account. While numerical simulations in this direc-
tion have been made in the past (see, for example, Bakhshian and Sahimi 2016; Das and 
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Singh 2017), to our knowledge none has produced a tractable theory for the evolution of 
the PSD. This is an issue that we are currently studying.

8.8 � Effect of the Deformation Mode

Deformation of porous geological formations, such as depleted oil reservoirs, is often 
caused by uniaxial stress. What we have studied is the case in which the confining pressure 
is applied hydrostatically. It is clear that the deformations that result from the two types of 
the boundary conditions are different, because the spatial distributions of pressure in the 
two systems are different. But, when, for example, the overburden pressure exerts itself 
uniaxially in an oil reservoir, the surrounding rock limits the resulting lateral deformation. 
This implies that one obtains mostly vertical compaction, which represents smaller changes 
in the pore sizes than what is caused by hydrostatic pressure. Section 7 demonstrated that 
our theory provides accurate predictions for the macroscopic permeability as a function 
of the hydrostatic pressure, and such a pressure deforms the pore space much more exten-
sively than a uniaxial stress would. We therefore believe that a slightly modified theory 
would be at least equally accurate for the case in which a uniaxial stress is exerted on a 
porous medium.

8.9 � Universal Curves for Rescaled Permeability versus Rescaled Pressure

We have observed that, for at least some of the sandstones that we describe earlier, if we 
consider the Ke(P)∕K0 curves and rescale the pressure to a suitably selected rescaled form, 
we obtain a single, more or less universal curve, often referred to as the master curve. 
Physically, the master curve represents essentially the dimensionless response of a porous 
medium to the changes in the pressure, since the initial PSD and the Poisson’s ratio are all 
set to constant values. One clue to the proper rescaling of P is provided by Eq. (17), since it 
implies that, with R ≈ Rg , the quantity u∕Rg is a function only of P∕Ee.

The existence of such a master curve implies that it can predict the measurements by 
rescaling the pressure axis to generate a dimensionless form based on the input data—the 
initial porosity and an experimental data point that provides an estimate for the effective 
Young’s modulus Ee . Other mechanical models than the HM theory of point-contact that 
we utilized in this paper may provide a different master curve (based on different rescaled 
variables). But, the general implication is clear: with proper rescaling of the main vari-
ables, one may obtain a universal curve that provides accurate predictions for a variety of 
deforming porous media. In fact, such a master curve was proposed much earlier (Rassa-
mdana et al. 1996) for another property of oil reservoirs that represent large-scale porous 
media.

9 � Summary

Predicting physical properties of deforming porous media, and in particular their perme-
ability and transport characteristics, such as their electrical conductivity when they are sat-
urated with brine, is important to many physical processes. They include shale formations 
undergoing fracking, and oil, gas, and coal-bed reservoirs, as well as composite materials 
that are used in everyday life. We presented a new theoretical model for predicting the per-
meability Ke of such porous media and materials. The theory, a mean-field approximation, 
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determines the change in the size of a pore between two grains that deform when a hydro-
static pressure is applied to them. Then, given the initial PSD of a porous medium before 
deformation and the Young’s modulus of the grains as the input, the theory determines the 
PSD of a porous medium that is deformed by applying an external pressure P, which is 
then used with the effective-medium approximation to predict the effective permeability 
of the porous medium at the same pressure. Extensive comparison between the theoreti-
cal predictions and experimental data for the pressure-dependence of the effective perme-
abilities of twenty four sandstones indicated agreement between the two in almost all cases, 
ranging from very good to excellent.

With some modifications, the same approach can be used for predicting the electrical 
conductivity of brine-saturated porous media that undergo deformation, as well as their 
relative permeabilities to two-phase flows. Work in this direction is in progress. The results 
will be reported in Part II of this series (Richesson and Sahimi 2021).
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