
Transport in Porous Media
https://doi.org/10.1007/s11242-021-01586-2

Permeability Estimation of Regular Porous Structures:
A Benchmark for Comparison of Methods

Arndt Wagner, et al. [full author details at the end of the article]

Received: 12 August 2020 / Accepted: 15 March 2021
© The Author(s) 2021

Abstract
The intrinsic permeability is a crucial parameter to characterise and quantify fluid flow
through porous media. However, this parameter is typically uncertain, even if the geometry
of the pore structure is available. In this paper, we perform a comparative study of exper-
imental, semi-analytical and numerical methods to calculate the permeability of a regular
porous structure. In particular, we use the Kozeny–Carman relation, different homogenisa-
tion approaches (3D, 2D, very thin porous media and pseudo 2D/3D), pore-scale simulations
(lattice Boltzmann method, Smoothed Particle Hydrodynamics and finite-element method)
and pore-scale experiments (microfluidics). A conceptual design of a periodic porous struc-
ture with regularly positioned solid cylinders is set up as a benchmark problem and treated
with all considered methods. The results are discussed with regard to the individual strengths
and limitations of the used methods. The applicable homogenisation approaches as well as
all considered pore-scale models prove their ability to predict the permeability of the bench-
mark problem. The underestimation obtained by the microfluidic experiments is analysed in
detail using the lattice Boltzmann method, which makes it possible to quantify the influence
of experimental setup restrictions.
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List of Symbols
Latin Symbols
A Cross-sectional area of porous domain �, [m2]
b Width of porous domain �, [m]
ci Velocity of particle i , [m/s]
ckc Kozeny–Carman constant, [−]
cs Speed of sound, [m/s]
ei i-th unit vector, [−]
fi Probability density function for direction i , [−]
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f ei Equilibrium probability density function for particle i , [−]
FB
i Body force acting on particle i , [N]

FP
i j Pressure interaction force acting from particle j on particle i , [N]

FV
i j Viscous interaction force acting from particle j on particle i , [N]

g Gravitational acceleration, [m/s2]
h Height of porous domain �, [m]
I Identity tensor, [−]
k Scalar intrinsic permeability value, K = kI, [m2]
K Intrinsic permeability tensor, K = (ki j )i, j=1,2,3, [m2]
� Length of porous domain �, [m]
l Length for measurement of pressure drop �p, [m]
mi Mass of particle i , [kg]
n Unit normal vector, [m]
p REV-scale pressure, [Pa]
pε Non-dimensional pore-scale pressure, [−]
Q Volumetric flow rate, [m3/s]
r Radius of solid cylinder, [m]
R Radius of kernel function W , [m]
spq Slope of the linear regression, [Pa s/m3]
t Time, [s]
v Darcy velocity, [m/s]
vε Non-dimensional pore-scale velocity, [−]
wF Fluid’s seepage velocity, [m/s]
w j Non-dimensional velocity in the j-th cell problem, [−]
wi Weight for the equilibrium probability density function f ei , [−]
W Kernel function, [−]
x Position vector, [m]
xi Position vector of particle i , [m]
ẍi Acceleration of particle i , [m/s2]
y Non-dimensional local position vector, [−]
Y Two-dimensional unit cell, [−]
Yf/s Fluid/solid part of two-dimensional unit cell Y , [−]
Y phys Three-dimensional unit cell, [−]
Y phys
f/s Fluid/solid part of three-dimensional unit cell Y phys, [-]

Greek Symbols
δ Length of the periodic cell, [m]
ε Ratio of length scales, ε = δ/�, [-]
μ Dynamic viscosity, [Pa s]
π j Non-dimensional pressure in the j-th cell problem, [-]
ρ Fluid density, [kg/m3]
σ Specific surface area, [m2]
σk Standard deviation of the scalar intrinsic permeability k, [m2]
φ Porosity, [-]
� General scalar field, [-]
�i Evaluation of general scalar field for particle i , [-]
� Porous domain, [m3]
�ε Pore space of the porous domain �, [-]
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�i Sphere with fixed radius R around particle i , [m3]

Other mathematical symbols
�p Pressure drop
∇( · ) Gradient operator
�( · ) Laplace operator
�y( · ) Laplace operator with respect to a local variable
�BGK BGK collision operator

Abbreviations
BGK Bhatnagar–Gross–Krook
CFD Computational Fluid Dynamics
FEM Finite Element Method
LBM Lattice Boltzmann Method
PDMS Poly-Di-Methy-Siloxane
PTFE Polytetrafluoroethylene
REV Representative Elementary Volume
SPH Smoothed Particle Hydrodynamics
VTPM Very Thin Porous Media

1 Introduction

The characteristics of flow through porous media play an important role in a wide range
of natural and industrial applications. A classical example is found for soil through which
groundwater seeps. In this context, we can intuitively understand the terms porosity and
permeability. Porosity is a measure of the void space in the porous medium, whereas perme-
ability is a measure for the resistance of the porous medium itself against flow. In this regard,
the famous law of Darcy (1856) provides a correlation between flow and the corresponding
driving force in a porous medium via

v = −K
μ

∇ p . (1)

Here, v is the fluid’s filter (Darcy) velocity, p is the pressure,μ is the dynamic viscosity andK
is the second-order intrinsic permeability tensor. In particular, the Darcy velocity v = φ wF is
the fluid’s seepage velocitywF weighted by the porosity φ. Gravitational forces are neglected
in (1).

The computation of the total (void) porosity for porous media with a known geometrical
structure is straightforward. However, this is not the case for the permeability. The permeabil-
ity is crucial for physically consistent modelling and accurate numerical simulations of flow
and transport processes in porous media, but associated with great uncertainty. Therefore, it
deserves our particular attention.

In this paper, we use the following definition of scales to distinguish the relevant pro-
cesses and parameters accordingly. The intrinsic permeability is an effective parameter that
accounts on the scale of a representative elementary volume (REV scale) for the geometric
configuration on the pore scale. The REV scale is the one where Darcy’s law is valid; it is
therefore often denoted also as the Darcy scale. Our proposed methodology involves differ-
ent mathematical and numerical models that all resolve the flow through the porous medium
on the pore scale. It is compared to an experimental determination of permeability, which
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is inherently at the REV scale. For further details on permeability and porosity as effective
REV-scale parameters, we refer to e. g. Helmig (1997); Hommel et al. (2018).

Different experimental, semi-analytical and numerical techniques to compute or esti-
mate the permeability exist in the literature. The intrinsic permeability can be determined
experimentally by imposing a flux, measuring the corresponding pressure drop and applying
Darcy’s law. In recent years, microfluidic experiments have been increasingly used for vari-
ous experimental investigations of porous media, cf. Yoon et al. (2012); Karadimitriou and
Hassanizadeh (2012); Scholz et al. (2012).

Several approximations for the semi-analytical description of the permeability-porosity
relationship exist, the most famous being the Kozeny–Carman equation, cf. Kozeny (1927);
Carman (1997). In this context we mention also the Hazen relation (Hazen 1892), the power-
law relation by Verma and Pruess (Verma and Pruess 1988) and the Timur and Morris–Biggs
relations (Timur 1968; Morris et al. 1967). For a recent overview of porosity-permeability
relationships for evolving porous media we refer the reader to Hommel et al. (2018). These
relations have in common that they try to describe all variability using the porosity and
one or several fixed scaling factors. In practice, these scaling factors are often fitted to the
observed permeability data, if available. However, the structure and the permeability of a
porous medium is not solely described by its porosity; the same porosity can yield different
permeability values, e.g. Schulz et al. (2019). The shape, distribution, interfacial tension
and roughness of the grains as well as the coordination number, connectivity and size of
the pores significantly affect the permeability of the medium (Berg 2014; Millington and
Quirk 1961; Valdes-Parada et al. 2009; Jamaloei et al. 2010; Jamaloei and Kharrat 2010).
However, this information is unfortunately unknown for most settings. The Kozeny–Carman
relation includes geometrical information through the tortuosity, which can be estimated for
simple grain packings (Yazdchi et al. 2011). An extensive review concerning the validity of
the Kozeny–Carman relation and its modifications for different porous-medium geometries
is provided in Schulz et al. (2019).

Different averaging techniques can be applied to compute the permeability: the homogeni-
sation theory based on two-scale asymptotic expansions, the volume averaging theory and the
numerical upscaling (Whitaker 1999; Hornung 1997; Auriault et al. 2009; Gray and Miller
2014). The theory of homogenisation provides a useful tool to efficiently compute the per-
meability of regular porous media requiring solutions to flow problems in a periodic unit cell.
Another advantage of the method is that it is not restricted to the scalar case. Depending on
the geometrical characteristics (e.g. thin porous media, parabolic velocity profile) different
assumptions can be made and, therefore, different flow problems in unit cells are solved
(Fabricius et al. 2016; Chamsri and Bennethum 2015). Volume averaging (Whitaker 1999;
Gray and Miller 2014) offers an alternative technique to compute permeability based on
solving local flow problems. However, under periodic closure conditions, which is the case
for the benchmark problem considered in this work, the resulting set of equations coincides
with the one obtained from homogenisation (Valdes-Parada et al. 2009). Therefore, volume
averaging is not considered in this paper.

Finally, solutions of the pore-scale resolved models can be obtained using the lattice
Boltzmann method (LBM), Smoothed Particle Hydrodynamics (SPH) or the Finite Element
Method (FEM) and the simulation results can then be upscaled in order to compute the
intrinsic permeability (Pan et al. 2001; Sivanesapillai et al. 2014).

In reservoir simulations with a length scale of kilometres, a field scale is typically intro-
duced. In this case, Darcy’s law is considered to be valid both on the Darcy scale and the
field scale. The Darcy-scale permeability tensor is usually highly heterogeneous and needs
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to be upscaled in order to develop efficient numerical methods (Farmer 2002; Wu et al. 2002;
Jamaloei et al. 2010). However, such methods are beyond the scope of this article.

In the literature, comparisons of individual methods for permeability estimation exist
(Schulz et al. 2019; Chamsri and Bennethum 2015; Song et al. 2019; Sugita et al. 2012; Guib-
ert et al. 2015; Yazdchi et al. 2011). For highly complex geometries, the numerical methods
can generally only be applied to a small subsample of the domain, whereas experimental and
empirical relations are applied for the domain as whole, giving inherent uncertainties and
inaccuracies due to rock heterogeneities (Song et al. 2019; Guibert et al. 2015). Therefore,
we perform a comparative study of a broad variety of methods with a designed benchmark
experiment. The goal of this paper is to estimate the intrinsic permeability of an artificially
produced regular porous medium using different techniques, to investigate the applicability
of each method and to validate the considered approaches for computing effective proper-
ties of porous media. The manuscript can serve as a benchmark for researchers working on
modelling flow and transport processes in porous media, where the geometric structure is
available but the effective parameters are not known (artificially produced composite materi-
als, geometry reconstructed by imaging techniques). The results of the paper will also be of
use for scientists working on the development of advanced averaging methods for computing
effective properties of porous media.

We would like to draw the reader’s attention to the limitations of this work in terms
of scales. Since one of the objectives of this work is to compare the numerical schemes
with physical experiments, the experimental potential was the limiting factor in terms of
the length scales under consideration. Our experimental infrastructure would not allow for
formations with ultra small features (smaller than a few microns). Additionally, even if such
features were possible to achieve, in terms of the fabrication method for the artificial porous
medium employed, this would induce pressures which would lead to the deformation of
the material, leading to increased conditional inaccuracies. Consequently, this experimental
approach in general cannot account for very low permeabilities (nano- or micro-Darcy),
which would also demand for the use of gases instead of fluids, and a fundamentally different
approach to estimate the corresponding permeability (Klinkenberg effect). In accordance to
this limitation, the corresponding numerical schemes under investigation and comparison,
also do not bear these characteristics and assumptions.

The paper is organised as follows. In Sect. 2, the setup of the benchmark problem, which
serves as the basis for all considered methods, is described. Section 3 presents calculations
using the Kozeny–Carman equation providing a semi-analytical porosity-permeability rela-
tion. Further, fourmathematical homogenisation approaches are given in Sect. 4. In particular,
a three-dimensional (3D) approach is described in Sect. 4.1, a classical two-dimensional (2D)
approach in Sect. 4.2, a very thin porous medium (VTPM) approach in Sect. 4.3 and a pseudo
2D/3D approach in Sect. 4.4. Numerical methods to compute the intrinsic permeability of
the benchmark problem via upscaling the pore-scale simulations are discussed in Sect. 5,
namely FEM in Sect. 5.1, SPH in Sect. 5.2 and LBM in Sect. 5.3. The experimental setup
and the experimental results of the benchmark problem are presented in Sect. 6. Finally,
a comparison of the results is given in Sect. 7 and a concluding discussion is provided in
Sect. 8.
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Fig. 1 Setup of the benchmark example (a) and unit cell/REV (b)

Table 1 Overview of considered
radii of solid cylinders and
related porosities

radius r [mm] 0.35 0.40 0.45 0.47 0.49

porosity φ [ - ] 0.62 0.50 0.36 0.31 0.25

2 Benchmark Problem

As a common basis for the discussion of different permeability estimates, it is crucial to
precisely describe the chosen geometry of the porous structure and the related modelling
assumptions. As a benchmark example, a simple regular and homogeneous porous medium
is chosen. In a 3D domain of dimensions 14mm×10mm× 0.091mm (length l × width b ×
thickness h), equidistantly aligned cylinders with the same radius r are embedded, cf. Fig. 1.
The radius for the manufactured sample investigated in the experiments is r = 0.4mm, cf.
Sect. 6. In addition, the other methods consider also radii of 0.35mm, 0.45mm, 0.47mm and
0.49mm. The smallest repeating unit consists of a square of 1mm edge length.

We chose the REV having one cylinder in the centre, which corresponds to the unit cell
in this example. The computation of the porosity φ is straightforward and given in Table 1
for different radii. In terms of basic modelling assumptions, we consider no-slip boundary
conditions at the internal boundaries (interfaces) of the cylinders as well as at the top and
bottom surface of the domain. Furthermore, we assume creeping flow conditions of a viscous
liquid at very low Reynolds numbers and, thus, neglect inertia effects. Finally, we assume
the solid structure as impermeable and rigid, i. e. no solid deformations.

3 Semi-Analytical Approach

The well-known Kozeny–Carman equation is a semi-analytical, semi-empirical relation for
estimating the permeability of porous media (Kozeny 1927; Carman 1997):

k = φ3

ckc (1 − φ)2 σ 2 , (2)

where k is the intrinsic permeability, φ is the porosity, σ is the specific surface area and ckc
is the Kozeny–Carman constant. The porosities φ of the considered geometries are given
in Table 1. The specific surface area for cylinders is σ = 2/r . In general, it is difficult to
estimate the value of ckc since it depends on many factors including the flow tortuosity and
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roughness of the grains. Carman (1997) originally proposed the value ckc = 5 or granular
porous media, which has also been suggested for cylindrical grains by Schulz et al. (2019).
We will hence also use ckc = 5 in the current study. Table 3 lists the values of permeability k
obtained from relation (2) for different radii of solid cylinders.

A typical procedure in practical applications is to use the Kozeny–Carman constant as a
fitting parameter. This is not done here as our goal is to find the permeability values given by
the Kozeny–Carman equation without using extra information to fit parameters. However,
fitting of ckc for cylindrical obstacles does not give one unique value of ckc applicable for
several cylinder radii (Yazdchi et al. 2011). Moreover, the Kozeny–Carman equation (2)
provides a permeability estimation for porous media, which are extended over infinite space.
Thus, the influence of the walls in the benchmark problem (cf. Fig. 1) is not considered in
the Kozeny–Carman approximation, cf. the discussion in Sect. 7. For modifications of the
Kozeny–Carman relationship (2) we refer the reader to e.g. Schulz et al. (2019).

4 Mathematical Homogenisation

In this section, we compute the permeability using the theory of homogenisation (Auriault
et al. 2009; Hornung 1997). We consider fluid flow through the three-dimensional porous
medium domain� = [0, �]×[0, b]×[0, h]with a periodic arrangement of pores, cf. Fig. 1a.
We denote by ε = δ/� the ratio of the characteristic pore size δ to the length � of the domain
of interest. At the pore scale, flow in the pore space �ε is described by the steady Stokes
equations completed with the no-slip condition on the boundary of solid inclusions

ε2�vε − ∇ pε = 0 in �ε ,

∇ · vε = 0 in �ε ,

vε = 0 on ∂�ε \ ∂� ,

(3)

and appropriate boundary conditions on the external boundary ∂�. We denote by vε and pε

the non-dimensional velocity and pressure of the fluid. This problem formulation ensures
non-trivial flow in the range of Darcy’s law (Hornung 1997).

As it is common in the theory of homogenisation, we define the porous microstructure by
periodic repetition of the scaled unit cell Y , which consists of the solid part Ys and the fluid
part Yf, cf. Fig. 2. To obtain the permeability of the porous medium we follow the classical
procedure of homogenisation (Hornung 1997). We assume two-scale asymptotic expansions
for the pore-scale velocity and pressure

vε(x) =
∞∑

i=a

εivi (x, y), pε(x) =
∞∑

i=b

εi pi (x, y), y = x/ε, (4)

where a, b ∈ N0 depend on the homogenisation approach applied and vi , pi are y-periodic
functions. Computing the derivatives ∇ = ∇x + ε−1∇y, substituting expansions (4) into the
pore-scale problem (3) and combining terms with the same degree of ε, we obtain Darcy’s
law (1) valid in the porous-medium domain �.

We consider different assumptions for the geometric structure of the medium (full 3D,
2D, very thin porous medium and pseudo 2D/3D) with the appropriate unit cells (circular
and cylindrical solid inclusions) and apply four different homogenisation approaches to
compute the intrinsic permeability. We use the software package FreeFem++ (Hecht 2012)
for numerical simulations of all homogenisation approaches considered in this section.
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(a) 1

1Ys

Yf

(b)

h

1

1
Y phys
s

Y phys
f

Fig. 2 Unit cell Y for a two-dimensional cell problem (a) and unit cell Y phys for a three-dimensional cell
problem (b)

4.1 Classical Three-Dimensional Approach

We consider solid cylinders with height h > 0. Thus the corresponding unit cell Y phys =
Y phys
s ∪ Y phys

f is also characterised by the macroscopic height h, cf. Fig. 2b.
To compute the permeability by means of homogenisation we solve the following three-

dimensional cell problems for j = 1, 2, 3:

�yw j − ∇yπ
j = −e j in Y phys

f ,

∇y · w j = 0 in Y phys
f ,

w j = 0 on ∂Y phys
f \ ∂Y phys ,

w j = 0 on {y3 = 0} ∪ {y3 = h} ,

{w j , π j } is 1-periodic in y1, y2, y = x
ε

,

(5)

taking into account
∫
Y phys
f

π j dy = 0. The non-dimensional intrinsic permeability is given

by

ki j = 1

h

∫

Y phys
f

w
j
i (y) dy,

wherew j = (w
j
1 , w

j
2 , w

j
3 ) andπ j are the solutions to the cell problems (5) for j = 1, 2, 3. For

the considered geometry (cylindrical solid inclusions) we obtain the diagonal permeability
tensor K = (ki j )i, j=1,2,3 = diag{k, k, 0}.

The intrinsic permeability k is computed numerically, the units are taken into account
and the physical permeability values are presented in Table 3 for different cylinder radii.
Taylor–Hood P2/P1 elements are applied for the velocity and the pressure, respectively. For
the solid inclusions with radius r = 0.4 the 3D unit cell Y phys is partitioned into twelve
elements in x3-direction and approx. 29 000 elements in the whole fluid part of the unit cell
Y phys
f .

4.2 Classical Two-Dimensional Approach

The classical two-dimensional approach corresponds to the case where no effect from the
top and bottom of the porous domain is included, and hence corresponds to the height h
of the medium being infinite. This is a very strong simplification which is not valid for
our benchmark in general (see discussion in Sect. 7). However, in comparison to the 3D
homogenisation approach the 2D approach is computationally much cheaper. In this case,
we define a two-dimensional unit cell Y (Fig. 2a) and obtain the cell problems in two space
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dimensions ( j = 1, 2):

�yw j − ∇yπ
j = −e j in Yf ,

∇y · w j = 0 in Yf ,

w j = 0 on ∂Yf \ ∂Y ,

{w j , π j } is 1-periodic in y, y = x
ε

,

(6)

where
∫
Yf

π j dy = 0. With this approach we obtain the non-dimensional permeability

ki j =
∫

Yf
w

j
i (y) dy, i, j = 1, 2,

where w j = (w
j
1 , w

j
2 ) and π j are the solutions to the cell problems (6) for j = 1, 2. Again,

we get a diagonal tensorK = (ki j )i, j=1,2 = diag{k, k} and present the physical permeability
values k in Table 3 for different radii. For discretisation of velocity and pressure the Taylor–
Hood finite element pair is used with approx. 20 500 elements for the radius r = 0.4.

We observe that for highly porous structures (r = 0.35, r = 0.4) the permeability is one
order of magnitude higher than the one obtained by the 3D approach. This is due to the fact
that the 2D approach neglects the wall friction at the top and bottom, compared to the 3D
approach, where the no-slip condition is valid at these boundaries.

4.3 Very Thin Porous Media

We apply the homogenisation approach proposed in Fabricius et al. (2016) for Very Thin
Porous Media (VTPM) where the cylinder height h is much smaller than the distance δ − 2r
between the cylinders. In this case, the relation h = δ2 is used for the derivation of the
permeability tensor. The main idea is to pass the limit h/ε → 0 in the 3D approach. In this
case we get the following cell problems for j = 1, 2:

−�yw
j = 0 in Yf ,

(∇yw
j + e j ) · n = 0 on ∂Yf \ ∂Y ,

w j is 1-periodic in y, y = x
ε

,

(7)

taking into account
∫
Yf

w j dy = 0. The non-dimensional permeability is given by

ki j = h2

12

∫

Yf
(∇yw

j (y) + e j ) · ei dy, i, j = 1, 2 ,

where w j is the solution to the cell problems (7) for j = 1, 2. As in Sects. 4.1 and 4.2 , we
obtain a diagonal permeability tensor K = diag{k, k} and present the physical permeability
values k in Table 3. For the numerical simulations P1 finite elements are used, and for
inclusions of the radius r = 0.4 the fluid part of the unit cell is partitioned into approx.
20 500 elements.

The cell problems (7) are computationally very cheap compared to problems (5) and (6).
However, applying the VTPM approach we assume that the height h is much smaller than
the interspatial distance between two solid obstacles (Fabricius et al. 2016) and the fluid
flow in x3-direction is negligible. Therefore, this approach fails for porous media where
the distance between the cylinders is smaller than the height. For r = 0.45 the interspatial
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distance is 0.1 > h. The interspatial distance for r = 0.47 and r = 0.49 is 0.06 < h and
0.02 < h, accordingly. Therefore, the computational results for the two last radii in Table 3
(homogenisation VTPM) are not relevant.

4.4 Pseudo Two-/Three-Dimensional Approach

Another simplification of the 3D homogenisation approach is obtained assuming that the
velocity is horizontal and its vertical variability is resolved through a parabola as no-slip
boundary conditions are assumed and the viscous boundary layer is larger than half of the
cell height. Such a simplification is applicable when the height of the domain is dominating
the flow profile. The procedure is in accordance to Flekkøy et al. (1995), where the Stokes
flow between two parallel plates is considered. In particular, the effect from the top and
bottom boundaries is incorporated into the model through a viscous drag force. Hence, this
pseudo 2D/3D homogenisation approach also relies on the porous medium being thin, where
the thickness is still comparable to the typical pore size. Therefore, only the flow in themiddle
of the domain (x3 = h/2) needs to be considered, and the following 2D-cell problems are
obtained ( j = 1, 2):

�yw j − ∇yπ
j = −e j + 8

h2
w j in Yf ,

∇y · w j = 0 in Yf ,

w j = 0 on ∂Yf \ ∂Y ,

{w j , π j } is 1-periodic in y, y = x
ε

.

(8)

The non-dimensional permeability in this case is given by

ki j = 2

3

∫

Yf
w

j
i (y) dy ,

where the scaling factor 2/3 comes from the integral of the parabolic profile. As in Sects. 4.1–
4.3, we obtain a diagonal permeability tensor K = diag{k, k} and present the physical
permeability values k in Table 3. For the numerical simulations we applied Taylor–Hood
elements and for the setting with radius r = 0.4mm approx. 20 500 elements are used.

Computational costs for the cell problems (8) are the same as for the classical 2D approach
but the permeability estimation complies with the 3D approach for moderate cylinder radii
(r < 0.47mm). However, the difference between the 3D approach and the pseudo 2D/3D
approach increases for larger radii (r = 0.47mmand r = 0.49mm). This is due to decreasing
gaps between the cylinders leading to a violation of the assumption on the parabolic flow
profile.

5 Pore-Scale Models

In this section, three different numerical methods for pore-scale resolved computations are
applied to the benchmark problem, namely the FEM, SPH and LBM. In these models, imple-
mentations of the Navier–Stokes equations are available and, thus, used in the numerical
computations. However, the solution of this more general formulation reduces to the solution
of the stationary Stokes problem in the limit case of Reynolds numbers tending towards zero,
as it is postulated in the benchmark problem.
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Fig. 3 Setup and boundary conditions of the CFD simulation with radius r = 0.4mm (a) and pressure distri-
bution of the pore liquid (b)

5.1 Finite-Element Method for the Navier–Stokes Equations

The simulation is realised using the commercial finite-element (FE) software tool Abaqus
/CFD1. Thereof, a FE implementation of the incompressible Navier–Stokes equations is used
for the performed computational fluid dynamics (CFD) simulations. For the flow domain, a
constant flow rate of 10 μL/min is prescribed at the inlet surface, while the outlet surface is
assigned with a constant pressure of 0 Pa, cf. Fig. 3a.

The remaining surfaces, i. e. the top, bottom, lateral and internal surfaces of the cylinders,
are assigned with no-slip boundary conditions. For the spatial discretisation, a finite-element
mesh is generated with linear hexahedral elements since quadratic elements are not available
in Abaqus for fluids. Linear elements are not optimal to approximate the parabolic velocity
profile but numericallymuch cheaper. Therefore, the geometry ismeshed in totalwith 327440
elements using ten elements along the thickness of the structure in order to adequately resolve
the arising parabolic velocity profile. For the material properties of the liquid, a density of
1000kg/m3 and a viscosity of 8.9 × 10−4 Pa s are chosen according to water at 25◦C. For
the considered example, a linear pressure drop from the left to the right side (i. e. a constant
pressure gradient in the steady state) is obtained, cf. Fig. 3b. The volumetric flow rate through
the pore structure is provided as an output variable within Abaqus. Thus, the Darcy filter
velocity can be computed by dividing it with the permeable cross-sectional area. Based on
these quantities, the intrinsic permeability

k = − φ μwF1

∇ p
(9)

is obtained via the Darcy equation (1), applied in the flow direction. The estimated perme-
ability values are collected in Table 3.

5.2 Smoothed Particle Hydrodynamics for the Navier–Stokes Equations

In Smoothed Particle Hydrodynamics (SPH), the discretisation of the governing weakly
compressible Navier–Stokes equations spans a set of integration points xi , also referred to as
particles, cf. Monaghan (1988); Gingold and Monaghan (1977). At each of these interacting
collocation points, scalar fields �, cf. Nomenclature of physical properties are interpolated
employing convolution with a continuously differentiable kernel function W (x, R). The
kernel radius R determines a sphere of influence and likewise declares neighbouring particles

1 Dassault Systèmes, Vélizy-Villacoublay, France, cf. http://www.3ds.com.
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Fig. 4 Visualisation of the simulation results for r = 0.4mm using the SPHmethod (a) discretised REV (fluid
particles in blue and solid particles in grey) and (b) steady state flow behaviour (v1-component)

j . The approximation of integrals converts continuous field functions into particle properties
� cf. Nomenclature, kernel representation into spatial discretisation W (x, R) = Wi j , and
turns differential operators into short-range interaction forces. Hence, the motion equation
to be solved for each fluid particle is found as

mi ẍi =
∑

j :x j∈�i

FV
i j −

∑

j :x j∈�i

FP
i j + FB

i , (10)

where FV
i j denotes viscous interaction forces, FP

i j pressure interaction forces and FB
i body

forces. In this context, the implemented SPH formulation is derived on top of the tool
HOOMD-blue (Anderson et al. 2008; Glaser et al. 2015; Sivanesapillai et al. 2016) pro-
viding state of the art no-slip no-penetration fluid-solid boundaries (Adami et al. 2012),
ghost-particle methods for periodic boundaries (Sivanesapillai et al. 2016), a Verlet time
integration scheme and stabilisation via an artificial viscosity term (Monaghan and Gingold
1983). Internal surfaces and boundaries in x3-direction are assigned with no-slip conditions.
The domain is periodic in x1- and x2-directions, cf. Fig. 1a. For the liquid, material param-
eters of water are chosen. A body force equivalent to a pressure gradient is applied as the
driving force.

In terms of the considered benchmark problem, cf. Fig. 1, the arising flow is computed
for a single REV, cf. Fig. 1b, as in homogenisation. The REV structure is discretised using a
resolution of 200×24×200 particles for all radii configurations. The discrete structure of the
REV and the velocity field in steady state are shown in Fig. 4. Based on the resulting velocity
profiles of the SPH simulation, the permeability is computed using the rearranged version (9)
of Darcy’s law (1). As in Sect. 5.1, the mean particle velocity wF (seepage velocity) needs
to be multiplied by the porosity φ to obtain the filter velocity v used in (1). The computed
permeabilities are collected in Table 3.

As a basic requisite of the SPH approach the fluid domain is discretisedwith fluid particles.
For a meaningful approximation of the velocity profile in the pore-space passages, at least
10–15 particles are required. For example, with the chosen resolution, a radius r = 0.35mm
results in 60 particles, while r = 0.47mm allows only 12 particles over the passage. This
leads to an enormous increase of the computational effort for larger radii (r > 0.47mm)
due to the need to increase the resolution. Therefore, the SPH is not suited to simulate the
benchmark problem for a radius of 0.49mm with acceptable computational costs.
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5.3 Lattice BoltzmannMethod

The lattice Boltzmann method (LBM) is based on the mesoscopic representation of fictional
particle movements (Succi et al. 1991) and provides the third pore-scale resolved method
discussed in this paper. Particles stream on a lattice with discrete velocities and collide to
relax to an equilibrium. The probabilities fi (x, t) of finding a particle with velocity ci at
lattice node x at time t evolve according to the lattice Boltzmann equation

fi (x+ci�t, t+�t)= fi (x, t) + �BGK
(
f ei (x, t)− fi (x, t)

)
, i = 1, . . . , Q , (11)

with the Bhatnagar–Gross–Krook (BGK) collision operator �BGK, the time step �t and
the number Q of discrete velocities. The collision operator governs the rate at which the
probabilities fi relax towards the equilibrium distribution

f ei = wiρ

(
1 + ci · v

c2s
− v2

2c2s
+ (ci · v)2

2 c4s

)
, (12)

where wi are the weights of each discrete velocity and cs is the speed of sound. The dis-
cretisation of velocities limits the applicability of the lattice Boltzmann method to flows with
a maximum Mach (Ma) number of 0.3 (Krüger et al. 2017), which is the case here (Ma
≈ 0.001). It is commonly known that the continuum flow approximation holds up to a Knud-
sen number ofKn ≈ 0.001. For the application andflow rates chosen hereKn	 0.001, taking
the cylinder diameter (millimetre range) as reference length. Further details on the Knudsen
number limits of the LBM can be found in Silva and Semiao (2017); Silva (2018), whereas
He and Luo (1997) provides a detailed derivation of lattice Boltzmann equation from the
Boltzmann equation. The LBM is not directly applicable for high-speed flows (Re > 10000)
as the spatial and temporal resolutions required for such flows become computationally pro-
hibitive (Jain et al. 2016). For the benchmark problem, Re < 1.0 (Fig. 8b). Therefore, the
lattice Boltzmann equation is valid within the limits for the application considered here.

The macroscopic velocity v and pressure p are obtained from the particle distribution
functions, cf. Succi et al. (1991). For this benchmark problem, a D3Q19 stencil is chosen,
i. e. 19 discrete velocities (Q = 19) in three dimensions (D = 3) are used (Krüger et al.
2017). No-slip boundary conditions are prescribed at the obstacles as well as the top and
bottom walls of the domain. A flow rate guaranteeing a low Reynolds number is prescribed
in the form of velocity boundary conditions at the inlet and outlet. The simulations are
performed using the LBM solver of the open-source software ESPResSo, cf. Arnold et al.
(2013); Roehm and Arnold (2012). In order to justify the resolution for the LB simulation,
a grid convergence study (using a quarter of the benchmark setup) is performed prior to the
calculation of the permeability of the benchmark geometry, cf. Fig. 5.

In accordance to Sect. 5.1, at least 10 lattice cells are required to resolve the quadratic
velocity profile in the pore space. Therefore, a height resolution of 10 lattice cells is chosen
to minimise the numerical effort. For the radius r = 0.49 mm, the lattice resolution was
increased to 40 cells in x3-direction and only a subset of 4×1 cylinders, periodically repeated
in x2-direction, is considered. The permeability is estimated using the computed velocity and
pressure values according to (9). The values are collected in Table 3.
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Fig. 5 Convergence of permeability for r = 0.4 mm with increasing lattice resolution (a) and normalised
velocity profile of the LB simulation (b)

Fig. 6 Design of the PDMS
micromodel

6 Experiments

6.1 Micromodel Experimental Setup

The experimental setup is comprised of themicromodel, a syringe pump, the pressure sensors
and a computer for data acquisition. The micromodel is manufactured out of Poly-Di-Methy-
Siloxane (PDMS), following the principles of soft-lithography (Xia and Whitesides 1998;
Karadimitriou et al. 2013; Karadimitriou and Hassanizadeh 2012; Auset and Keller 2004).
Using this technique, micromodels with a very low surface roughness, in the order of a few
tens of nanometers, are produced. Therefore, the influence of the surface roughness on the
permeability estimation of the benchmark problem is negligible. The micromodel’s flow
network is presented in Fig. 6. A CETONI neMESYS 1000N mid-pressure syringe pump2

is used for the introduction of the fluid, in combination with 2.5 ml glass syringes. The flow-
induced pressure difference between the inlet and the outlet of the flownetwork�p, cf. Fig. 6,
is measuredwith twoElveflowMPS2 pressure sensors3, with ameasurement range of 0–1 bar
and acquired with a 16 bit data acquisition system (CETONI QMix I/O). The flow network is
connected to the syringe pump and the pressure sensors via Teflon (Polytetrafluoroethylene,
PTFE), 1/16 OD, 0.5 mm ID tubing. The connected computer is able to control the syringe
pump and communicate with the pressure sensors via a CETONI BASE 120 module2, cf.
Fig. 7.

2 https://www.cetoni.com/products.
3 https://www.elveflow.com/microfluidic-flow-control-products.
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Fig. 7 Schematic description of
the entire experimental set-up

Fig. 8 Pressure drop over time (a), pressure drop over flow rate (including error bars) and the corresponding
Reynold’s numbers (b)

6.2 Permeability Estimation

The intrinsic permeability of the flow network is estimated by imposing a flux and measuring
the arising pressure drop �p = p2 − p1 , cf. Fig. 6. For this purpose Darcy’s law (1) is
employed. In order to increase the accuracy of the results and get a better estimation of the
measurement error, three runs of series of different flow ratesxxx ranging from 1 to 7 L/s are
applied for one minute each, cf. Fig. 8, while the induced pressure is measured at the inlet
and outlet, cf. Fig. 6.

The absolute pressure drop across the length of the flow network is directly proportional
to the flow rate. Therefore, a linear regression was applied. Rearranging Darcy’s law (1), we
obtain the following expression for the intrinsic permeability

k = μ l

A spq
, (13)

where A = bh is the cross-sectional area of the porous domain, l is the length of the porous
domain and μ = 10−3 Pa s is the dynamic viscosity of water. The permeability is calculated
by equation (13) using the slope spq (pressure over flow rate) of the linear regression, cf.
Table 2.
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Table 2 Intrinsic permeability obtained from microfluidic experiments

l [m] A [m2] spq [Pa s/m3] k [m2]

1.4 × 10−2 9.1 × 10−7 3.9 × 10+11 3.9 ± 0.2 × 10−11

The corresponding Reynolds numbers range from 0.1 to 0.7, cf. Fig. 8b. The error bars in
Fig. 8b are related to the pressure measurement. Note that apart from the quantifiable error
in the pressure measurement, there are additional uncertainties in the procedure towards
obtaining the permeability of the porous domain. The pressure drop caused by the triangular
inlet and outlet domains is neglected in this case, cf. Fig. 6. Also, during the photo-lithography
step of the manufacturing process, the photo-resist-covered silicon wafer is exposed to ultra
violet light under a mask. If the illumination source is not collimated, this will create a slope
in the resulting photo-resist walls, which will later be transferred to the walls of the actual
micromodel via the soft lithography process. This bias in the process will eventually create
channels in the flownetworkwith a smaller cross-sectional area than the intended one, leading
to a potentially smaller intrinsic permeability of the network in total. As expected, this is
found in comparison to the homogenisation and pore-scale methods, cf. Fig. 11. Therefore,
further studies of the full microfluidic setup (Fig. 6) are performed using LBM.

6.3 Numerical Study of theMicrofluidic Setup

For the simulation of the entire microfluidic device with the inlet and outlet, the computer
aided design (CAD) file was discretized with about 176 million lattice cells. This resolution
was chosen based on our previous comprehensive mesh convergence study (Jain et al. 2016).
For this simulation the Musubi LBM solver (Klimach et al. 2014) is chosen since this
feature is currently not implemented in the ESPResSo framework. Simulations are executed
using 512 CPU cores of the compute cluster installed at the Institute for Computational
Physics at the University of Stuttgart. The boundary conditions are prescribed according to
the experiments with a flow rate of 1L/s, which translates to a velocity boundary condition
at the inlet and a zero-pressure condition at the outlet.

The pressure drop across the full device (p2 − p1) was calculated as�pLBM = 3.96mbar
from LBM simulations, which is slightly different from the experimental measurement
�pexp = 4.2 ± 1.2mbar, but well within the error margin. This indicates that the inclu-
sion of the inlet and outlet in the numerical simulations results in a better agreement with the
experimental values, compared to the LBM simulations without the inlet and outlet (Fig. 5).

To further quantify the role of the inlet and outlet, we analysed the flow physics in these
regions, and its effect on the flow field within the porous structure thereof. As can be observed
from Fig. 9c, the inlet geometry leads to an uneven flow distribution not only in the inlet
itself, but also ranging into the array of cylinders. These observations are reflected in Fig. 10a
which shows the normalised pressure across the micromodel geometry. The pressure values
are obtained by averaging across various x2− x3 cross sectional planes placed between every
column of cylinders in the porous domain, and at a distance of 1mm in the inlet and outlet
domains. The dotted vertical lines indicate the beginning and end of the porous domain
corresponding to M1 and M2 in Fig. 9a.

It can be clearly seen from Fig. 10a that the disturbed flow from the tortuous inlet causes
significant pressure drop even after the first array of cylinders, and the outlet has same effect
up to second-to-last array of cylinders (highlighted with grey vertical bars).
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Fig. 9 Pressure (a) and velocity magnitude (b) fields of the full microfluidic device computed from LBM,
normalised by their maximum values p/pmax and v/vmax, respectively. The points P1 and P2 refer to the
locations where pressure is probed in accordance with the experiments. The markers M1 and M2 indicate
the beginning and the end of the regular porous domain. (c) Zoomed in view of flow distribution at the inlet
corresponding to the region marked in (b)

(a) (b)

Fig. 10 Normalised pressure (a) and stepwise pressure drop (b) over the length of the full device. The pressure
values are averaged at x2 − x3 cross sectional planes, each placed between successive columns of cylinders
in the regular domain and at a distance of 1 mm in the inlet and outlet. The dotted vertical lines indicate the
beginning and end of the porous domain. The grey shaded region indicates the pressure before and after the
first column of obstacles indicating the influence of the inlet and outlet

To further elucidate the role that these irregularities play in the permeability estimates we
calculate the stepwise pressure drop �pi at the cross sectional plane i as a central derivative,
i. e.�pi = (pi−1− pi+1)/2. The results are shown in Fig. 10b and confirm that the effects of
the inlet and outlet channels carry over into the regular domain about one column deep before
diminishing. Quantitatively, the permeability computed from the pressure drop between M1
and M2 is 17.4 × 10−11 m2, while the permeability computed from the linear pressure drop
region between the second and second to last column of cylinders is 15.9 × 10−11 m2. This
suggests that even if in the experiment the pressure is measured directly in front of the regular
domain, there would be still a systematic difference to models assuming a periodic repetition
of cylinders in x1-direction. This difference, however, is of the order of the variation of the
results provided by the numerical and semi-analytical methods, cf. Table 3 and can therefore
be considered minor.
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Table 3 Collection of the intrinsic permeability values for different radii of the solid cylinders derived from
different methods

Radius r [mm] 0.35 0.40 0.45 0.47 0.49
Porosity φ 0.62 0.50 0.36 0.31 0.25

Method Reference Intrinsic permeability k [× 10−11 m2]

Kozeny-Carman Section 3 963 390 120 65.7 31.3

Homogenisation 3D Section 4.1 25.8 17.4 8.14 3.97 0.47

Homogenisation 2D Section 4.2 518 183 31.7 8.82 0.57

Homogenisation VTPM Section 4.3 30.5 22.2 13.6 9.71 5.03

Homogenisation 2D/3D Section 4.4 25.4 16.8 7.49 3.43 0.35

Pore-scale FEM Section 5.1 25.7 17.7 7.54 3.62 0.46

Pore-scale SPH Section 5.2 22.9 16.4 8.59 5.35 –

Pore-scale LBM Section 5.3 26.7 17.7 8.11 3.86 0.54

Experiment Section 6 – 3.9 – – –

Due to the current design of the micromodel, the exact pressure drop of the main porous
domain cannot be measured in the experiment, making a more detailed quantitative compar-
ison with simulations of the benchmark problem impossible. Furthermore, despite a detailed
grid convergence study there are non-quantifiable errors in any numerical methods that can
contribute to the discrepancies with experiments. It is remarked that numerical dissipation in
LBM, even at the scales of grid spacing, and the numerical dispersive effects are smaller com-
pared to other second-order accurate methods (Marié et al. 2009). It can thus be inferred that
the LBM simulation, which captures the whole experimental setup, achieves a marvellous
agreement with the experimental measurements.

7 Comparison of Methods

The results from all applied approaches are collected in Table 3 and visualised in Fig. 11.
It stands out that for r = 0.4mm the 3D and pseudo 2D/3D homogenisation approaches as
well as all pore-scale models provide similar permeability estimates.

An analysis of the homogenisation and the pore-scale approaches shows that the no-
slip boundary conditions in x2-direction do not influence the results, thus the width of the
benchmark problem is chosen to be large enough. In contrast, the no-slip boundary condition
in x3-direction has an influence on the results of the estimated permeability. This can be seen
in the difference between the permeability values obtained from the Kozeny–Carman relation
and the classical 2D homogenisation with the ones obtained by the other methods. The 2D
homogenisation assumes no frictional effect from the top and bottom boundaries, which
is obviously a crude assumption for the considered case. To evaluate the influence of the
frictional effects, a corresponding FEM simulation for cylinders (r = 0.4mm), periodically
repeated in all directions (infinite height), yields a permeability of k = 1.9 × 10−9 m2.
This value is much closer to the value k = 3.9 × 10−9 m2 obtained from the Kozeny–
Carman relation (2), cf. Sect. 3, and the value k = 1.8 × 10−9 m2 obtained from the 2D
homogenisation, cf. Sect. 4.2,whichdonot account for the frictional effects of the surrounding
walls.
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Fig. 11 Visualisation of the results collected in Table 3

As mentioned in Sect. 3, the Kozeny–Carman constant ckc can often be fitted in practical
applications. If a fit of the parameter ckc towards the 3D homogenisation permeability values
is carried out for this benchmark problem, then ckc = 167 gives a least-squares fit, or
ckc = 133 minimises the 2-norm of the logarithm of the permeability values. However, even
with fitted ckc onewould find that the curve still has the wrong shape. Therefore, relationships
like Kozeny–Carman fail to describe the evolution of the permeability even for simple porous
media.
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Fig. 12 Velocity profile in a pore throat in the centre of the domain obtained by the pore-scale models

The 3D homogenisation and the pseudo 2D/3D homogenisation approaches consider
the frictional influence in x3-direction, while the other homogenisation methods do not.
In particular, for the 3D approach no additional simplifications are made, making it the
most accurate homogenisation approach which can be used as reference solution for the
other homogenisation approaches. For decreasing pore-space passages (r → 0.5mm), the
frictional influence is reduced relatively and, thus, the permeability estimate of the classical
2D homogenisation approach tends towards the 3D one. Homogenisation approaches are
computationally more efficient than pore-scale simulations but they are solely applicable
for periodic microstructures. Pore-scale models provide accurate, detailed local information,
such as 3D velocity and pressure fields also in the case of arbitrary geometries. We compare
simulation results obtained by the pore-scale models and present in Fig. 12 the velocity
profiles of FEM, SPH and LBM along the pore throat in the center of the domain (x1 = 7.5
mm, x2 = [4.9, 5.1] mm). The considered pore-scale methods deliver very similar velocity
profiles. All models work with different driving forces, therefore the normalised and not the
absolute velocities are compared.

For the considered benchmark problem, the use of a 1D Darcy’s law is reasonable to
estimate the scalar-valued intrinsic permeability. However, if certain 3D effects may play a
role they can be extracted from pore-scale simulations in further studies, e. g. to estimate an
anisotropic permeability tensor. As seen in other comparison studies using 3D CT scans of
real rock samples, further uncertainties in terms of rock heterogeneities are expected to affect
the estimated permeability results (Guibert et al. 2015; Zhang et al. 2019; Song et al. 2019).

8 Conclusions

The intrinsic permeability k of the benchmark problem (r = 0.4mm) was estimated by the
applicable approaches – classical 3D and pseudo 2D/3D homogenisation as well as all pore-
scale models – in the range between 16.4 × 10−11 m2 and 17.7 × 10−11 m2, cf. Table 3
and Fig. 11. In addition to the benchmark problem, further pore structures with different
radii were studied and the results were discussed with regard to the individual strengths and
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limitations of the used methods. The experimentally determined permeability is underesti-
mated in comparison with the computational approaches that consider the regular domain
only and not the inlet and outlet channels between the location of pressure measurement and
the porous domain, due to the design of the PDMSmicromodel. However, it is consistent with
our expectations and confirmed by the performed numerical LBM study of the microfluidic
setup. The Kozeny–Carman relation does not provide a good estimate for the permeability.
The 3D homogenisation gives accurate information about the permeability, while simplified
2D approaches have a limited range of applicability. Classical 2D homogenisation yields an
overestimation of the permeability due to the wall effects on the top and bottom boundaries
of the porous domain. Pore-scale resolved numerical simulations provide accurate estimates
about the permeability, but are limited by computational costs.
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