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Abstract
Capillary dominated flow or imbibition—whether spontaneous or forced—is an important 
physical phenomena in understanding the behavior of naturally fractured water-driven res-
ervoirs (NFR’s). When the water flows through the fractures, it imbibes into the matrix 
and pushes the oil out of the pores due to the difference in the capillary pressure. In this 
paper, we focus on modeling and quantifying the oil recovered from NFR’s through the 
imbibition processes using a novel fully implicit mimetic finite difference (MFD) approach 
coupled with discrete fracture/discrete matrix (DFDM) technique. The investigation is car-
ried out in the light of different wetting states of the porous media (i.e., varying capillary 
pressure curves) and a full tensor representation of the permeability. The produced results 
proved the MFD to be robust in preserving the physics of the problem, and accurately map-
ping the flow path in the investigated domains. The wetting state of the rock affects greatly 
the oil recovery factors along with the orientation of the fractures and the principal direc-
tion of the permeability tensor. We can conclude that our novel MFD method can handle 
the fluid flow problems in discrete-fractured reservoirs. Future works will be focused on 
the extension of MFD method to more complex multi-physics simulations.

Keywords  Spontaneous imbibition · Mimetic finite difference · Capillary dominated flow · 
Full tensor permeability · Discrete fractures

1  Introduction

Naturally fractured reservoirs (NFR’s) have been an important research topic in the field 
of multiphase flow in porous media due to the complex nature of the multi-phase flow in 
the fracture–matrix system. Such reservoirs form the vast majority of oil and gas reserves 
in the world (Saidi 1983; Gong and Rossen 2018) as they are a target for EOR applications 
Massarweh and Abushaikha (2020), and are characterized by their heterogeneous distribu-
tion of porosity and permeability Thomas et al. (1983). Thus, it is critical to understand 
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the underlying physical phenomena that control the amount of recoverable hydrocarbons 
from NFR’s. A fractured reservoir is composed of two main domains: a matrix block and a 
fracture block. Typically, the fracture network is highly permeable compared to the matrix 
block that is characterized with high porosity, but other classification with different poros-
ity/permeability ratios can exist Allan and Sun (2003). In such systems, fractures should be 
closely examined and their properties accurately evaluated to ensure a realistic representa-
tion of the reservoir during numerical simulations.

Fluid communication between the matrix and the fracture blocks in NFR’s is established 
through various phenomena: diffusion, advection, gravity drainage, and imbibition whether 
it’s forced or spontaneous. The physical phenomena of spontaneous imbibition (SI) is gen-
erally of great interest since no external force is applied to induce the fluid exchange, and 
the oil production is determined by the mass transfer rate (Qasem et al. 2008; Hatiboglu 
and Babadagli 2007). The oil is carried through the high permeability conduit thus pre-
venting the buildup of pressure differentials across the reservoir, and limiting the influence 
of viscous displacement. We call the production process in this case as capillary dominated 
flow. In simple words, spontaneous imbibition is defined as “the process by which a wet-
ting fluid is drawn into a porous medium by capillary action” Morrow and Mason (2001). 
The main driving force in this process is the differential capillary pressure between the 
matrix and the fracture, leading to efficient imbibition of water into the matrix which in 
turn displaces oil into the fracture. The capillary pressure drives the wetting phase into the 
matrix, and thus the degree of wettability of the porous media greatly influences the ulti-
mate recovery of the reservoir (Austad and Milter 1997; Alyafei 2019).

Spontaneous imbibition usually occurs in two main forms: counter-current and co-
current flow. As the name imply, counter-current is when the wetting phase and the non-
wetting phase flow in opposite directions resulting in a total net flow of zero. The bounda-
ries are well sealed and closed except for the inlet boundary and no external pressure is 
applied. Is some cases, the non-wetting phase escapes from the inlet through which the 
water imbibes in which can be limited by applying a force equivalent to the capillary back-
pressure. On the contrary, fluids flow in one direction from the inlet through the outlet 
with the other boundaries sealed in co-current imbibition. In water-wet reservoirs, counter-
current imbibition is predominant and requires sensitive care when modeled. The work of 
Abd et al. (2019) highlights the importance of counter-current imbibition in hydrocarbon 
recovery and describes extensively all the major breakthroughs in the experimental, ana-
lytical and numerical aspects of this topic. Early efforts to understand the physical signifi-
cance of the imbibition process focused on experimental work (Mattax and Kyte 1962; Iffly 
et al. 1972; Du Prey 1978; Hamon and Vidal 1986; Zhang et al. 1996), while subsequent 
efforts highlighted the key differences between the two modes of imbibition assisted oil 
recovery (co-current and counter current SI) and their unique characteristics (Bourbiaux 
and Kalaydjian 1990; Pooladi-Darvish and Firoozabadi 2000; Morrow and Mason 2001). 
These experimental efforts were later tested and verified using numerical techniques and 
semi-analytical solutions (Fischer and Morrow 2006; Schmid et al. 2011, 2016; Nooruddin 
and Blunt 2016; Khan et al. 2018; Abd and Alyafei 2018; Abd and Alyafie 2019) allowing 
for better interpretation of spontaneous imbibition processes (Fig. 1). 

Numerically, NFR’s can be represented by two distinctive models: dual porosity and dis-
crete fracture/discrete matrix (DFDM) approach. In dual porosity models, the petrophysi-
cal properties of the matrix and the fracture are averaged, and a transfer term is utilized to 
establish fluid flow between the domains (Barenblatt et al. 1960; Warren and Root 1963; 
Abushaikha and Gosselin 2008). The main assumption in the development of this model is 
that a unified transfer rate is used implying that the fracture is filled with the wetting phase 
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instantly Di Donato and Blunt (2004). However, recent modifications have been imple-
mented to account for multiple transfer rates, and create a more realistic representation of 
the physical problem Geiger et al. (2013). On the other hand, the DFDM approach relies on 
discretizing the fracture and the matrix domain through numerical approximation methods, 
thus allowing to generate a simpler problem in terms of numerical complexity. Although 
this approach provides highly accurate results, it cannot be used for systems with complex 
network of interconnected fractures.

In the DFDM approach, the system can be discretized using various numerical schemes 
including finite element method (FEM) and finite volume method (FVM). In a matrix–frac-
ture framework, FEM is generally used to discretize the domain, and is categorized into differ-
ent families including classical FEM and Mixed-FEM (MHFE) methods. The main difference 
between FEM and MHFE is that the latter is locally conservative Abushaikha et al. (2017). 
This property allows for the extension of the method to account for anisotropic properties of 
the reservoir lithology. However, the resultant algebraic system is numerically challenging 
to solve, and thus mixed-hybrid finite element (MHFE) method was introduced. In MHFE 
method, Lagrange multipliers are used to account for the physical properties at the interface. 
This method has been tested for the effect of fractured media on the imbibition of water into 
the matrix in counter-current flow and proved to be accurate. However, MHFE is limited to 
some types of elements because of the evaluation of the MFE basis functions. Among these 
three methods, unlike MHFE and FVM, FEM is globally mass conservative and not locally, 
the property that rises from the intrinsic property of the method. For FVM, the local conserva-
tion is satisfied, however, especially for large-scale cases, the application of FVM may suffer 
from two mesh systems and constrained by memory consumption Bathe and Zhang (2002). 
MHFE is another locally mass conservative method Brezzi and Fortin (2012). It has the 
advantages of FEM and also naturally satisfies the locally mass conservation, which is suitable 

Fig. 1   Different imbibition scenarios. a and b display geometries where there is a combination of counter- 
and co-current spontaneous imbibition. c and d show counter-current spontaneous imbibition. Reproduced 
from Abd et al. (2019)
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for the complex flow. However, in MHFE, the construction of the basis functions can be only 
applied to simple meshes due to the analytical evaluation of basis functions. If a simple and 
good grid is necessary for FVM and MHFE, this is not necessarily required for mimetic finite 
difference (MFD) method whose formulation resembles the mixed-hybrid formulation (Brezzi 
et al. 2005, 2005; Brezzi and Fortin 2012; Brezzi et al. 2006). To overcome these restrictions, 
mimetic finite difference (MFD) method was introduced to model highly unstructured poly-
gons (Da Veiga et al. 2009; Lipnikov et al. 2014) based on numerical computation of the basis 
thus broadening its applicability. This gives the mimetic scheme an advantage for reservoir 
simulation applications (Lipnikov et al. 2008; Campbell and Shashkov 2001) that can handle 
complex unstructured grids. In fractured media where the mesh size varies considerably, and 
unstructured grids are required to capture the changes in the geology of the domain, MFD 
is accurate in predicting hydrocarbon recovery (Abushaikha and Terekhov 2018, 2020; Hjeij 
and Abushaikha 2019) even when chemical reactions are considered Abd and Abushaikha 
(2021) contrary to the other methods (Abushaikha et al. 2015; Abd and Abushaikha 2020b, a). 
Moreover, fractured porous media consists of matrix and fractures. The fracture distribution 
is complex and variable in these reservoirs with strong characters of anisotropy. This kind of 
anisotropic porous medium is usually both heterogeneous and anisotropic. Full permeability 
tensor is therefore needed in modeling flow in anisotropic medium. FV schemes and MHFE 
schemes are currently widely applied to solve the flow model with a full permeability tensor. 
As we mentioned above, there are some limitations in the application of these two methods. 
MFD method allows for the utilization of full tensor permeability in both the matrix and the 
fracture which maintaining the flexibly of polygonal grids, thus mimicking closely the fluid 
flow in the actual reservoir given that it is implemented properly.

In this work, we aim to study the flow kinetics of imbibition processes for different rock 
wetting states, using full tensor permeability and descritized fractures using the MFD method. 
The investigation of the impact of capillarity on multiphase flow for highly heterogeneous 
and anisotropic reservoirs is a novel approach, specifically with the application of unstruc-
tured grids using the MFD. The paper will discuss the governing equations and the physical 
problem formulation of the domain using MFD and DFDM approaches, then multiple cases 
will be examined and analyzed for different systems with different fracture structures and rock 
properties. The results will show that this newly developed and novel approach yields highly 
accurate simulations in modeling spontaneous imbibition processes for fractured reservoirs 
while preserving the integrity of the complex geometry and the heterogeneous petrophysical 
properties using MFD.

2 � Governing Equations

The governing equations for the two phase flow of a fluid in porous media are given by the 
conservation of mass and Darcy’s law. It is assumed that the diffusion and dispersion forces 
are very small so they can be neglected. The continuity equation is expressed as follows:

where � is the porosity of the medium, S� denotes the saturation of the phase, �� is the den-
sity of the phase, �� is Darcy’s velocity, and q� is the mass flow rate. Darcy’s velocity can 
be written for each phase as:

(1)
�(���S�)

�t
+ ∇ ⋅ (����) = ��q� , � = w, o
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where kr� is the phase relative permeability, �� is the phase viscosity, � is the intrinsic per-
meability tensor, ��g is the vertical pressure gradient and ∇� is the vertical depth.

We then introduce the local constraints to fully close and define the system, represented 
by the saturation and capillary pressure relationships.

The phase mobility is expressed by:

2.1 � Numerical Discretization Using MFD

The starting point for the MFD methods are the governing equations of mass balance and 
Darcy velocity described in Eqs. 1 and 2 earlier. In this method, we utilize a vectorial basis 
function �

�
 to descritize the momentum balance. These basis functions have the following 

properties:

•	 The vectorial functions have a flux of {1} at interface i and zero elsewhere.
•	 The divergence of the basis function in constant over an element.
•	 The velocity field � can be estimated using � =

∑Nf

i=1
�

�
Qi where Qi is the flux at the 

interface.

The key element of the MFD method is the local inner product Wi . According to the MFD 
method, Darcy’s law (Eq. 2) over a mesh element �i , the flux variable Qi is written in the 
terms of element-average and face-average pressures:

where Qi = [Q1,Q2,… ,Qm]
T is the vector of fluxes on the interface, m is the number of 

faces of element �i , � is the matrix of relative permeabilities, ei = (1,… , 1)T
1×m

 , Xi is the 
scalar quantity at the centroid of element �i , �i is the vector of scalar quantities defined at 
the centroid of faces of element �i . Wi is a positive definite matrix, which is a key part of 
MFD method. The quantities for MFD are shown in Fig. 2. A linear pressure can be writ-
ten in the form p = Xia + b , where a and b are constant vector and scalar constant scalar 
quantity. Here, we consider the capillary pressure and gravity, thus their quantities at the 
centroid and face are satisfied by the linear relationships below:

(2)�� = −
kr�

��

�(∇p� − ��g∇�)

(3)Sw + So =1

(4)pc(Sw) =po − pw

(5)��(S�) =
kr�(S�)

��

, � = w, o

(6)Qi = �Wi(eiXi − �i)

(7)pi − �k,i =(xi − xk) ⋅ ap,

(8)pc,i − �c,k,i =(xi − xk) ⋅ ac,
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where pi is the pressure at the centroid of element �i , �k,i is the interface pressure at inter-
face Ak ; pc,i is the capillary pressure at the centroid of element �i , �c,k,i is the interface 
capillary pressure at interface Ak ; zi is the depth at the centroid of element �i , �z,k,i is the 
interface depth at interface Ak ; xi , xk are the coordinate vector of the centroid of element �i 
and the centroid of interface Ak , respectively.

According to Darcy’s law (Eq. 2), the flux through the interface Ak of element �i is

where v is the velocity, vk is the Darcy velocity on the interface Ak , |Ak| is the area of inter-
face Ak , n̂k is the outward unit normal vector on interface Ak.

Based on the linear relationships (Eqs. 7–9) and Eq. 2, the above equation can be rewritten 
as:

where � is oil or water phase.
Substituting Eq. 11 and Eqs. 7–9 into Eq.6, we can see that the matrix Wi satisfies the fol-

lowing conditions:

where X = [x1 − xi,… , xk − xi,… , xm − xi]
T , N = [|A1|n̂1,… , |Ak|n̂k,… , |Am|n̂m]T . m is 

the number of interfaces within element �i.
The way to obtain a symmetric positive-definite matrix Wi has been discussed by Lie et al. 

(2012). Here, we use the following inner product for Wi:

where d denotes the spatial dimension. Ai is a diagonal matrix composed by interface 
areas. Q̄i = orth(AiXi) is orthonormal basis, where Xi is a diagonal matrix composed by 
the distance from centroids to interface centroids. tr(K) is the trace of K . Ii is an identity 
matrix.

After calculating the matrix Wi , the interface flux Q�,i of phase � can be rewritten as

(9)zi − �z,k,i =(xi − xk) ⋅ az,

(10)Qi,k = ∫Ak

vds = −|Ak|vk ⋅ n̂k,

(11)Q�,i,k = −|Ak|�k ⋅ (a�,p − a�,c − ��gaz)

(12)WiX = NK,

(13)Wi =
1

|𝛺i|NKN
T +

6

d
tr(K)Ai(Ii − Q̄iQ̄i

T
)Ai.

(14)Q�,i = ��Wi[ei(p� − p�,c − ��g∇z) − (�� − ��,c − ��g∇�)],

Fig. 2   Schematic of matrix and fracture elements. a Grid analysis used to define the mimetic inner product. 
b Discretization of the matrix and fractures
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 where p� , p�,c and z are element pressure vector, capillary pressure vector and depth vec-
tor for element �i , respectively. �� , ��,c and � are interface pressure vector, capillary pres-
sure vector and depth vector for interfaces of element �i , respectively.

We re-arrange and simplify the interface flux Q�,i of phase � , and can get the numeri-
cal expression of eq. 14:

 where LWi
=
∑Nf

j=1
Wi,j , po is the oil pressure, pc,� is the capillary pressure of phase � , D is 

the depth, �o,j, �c,�,j, �D,j are the Lagrange multipliers on interface j for oil pressure, capil-
lary pressure of phase � and depth, respectively.

The standard approach in modeling the flow within Darcy’s equation focuses on 
treating the permeability as a scalar value. Although such a treatment results in sim-
plified equations that be solved with less computation times compared to full tensor 
permeability implementation, the latter is needed naturally fractured-reservoir modeling 
to correctly solve fluid flow problems in a variety of realistic settings. The full tensor 
permeability � is then written as,

The off-diagonal permeability elements kxy, kxz, kyx, kyz, kzx, kzy account for the dependence 
of flow rate in one direction on pressure differences in orthogonal directions while the 
diagonal permeability elements kxx, kyy, kzz represent the dependence of flow rate in one 
direction on pressure differences in the same direction. Note that the full tensor permeabil-
ity � is embedded in the formulation of the � matrix Zhang and Abushaikha (2019).

Combining with Eq. (15), the velocity in Eq. 1 can be expressed in the terms of flux, 
. We can then represent the governing equations (Eq. 1) for oil and water in space and 
time as:

Ve is the volume of the element �i . Q�,i is the face flux of the element �i . The rock is 
assumed to be slightly compressible, and thus approximated by:

Assuming that the fluxes are continuous at a givens shared interface by two elements, the 
governing equations are then discretized in time using Euler approximation, and written as 
a residual term:

(15)

Q�,i =
kr,�

��

[
(LWi

po − pc,� − ��gD) −

Nf∑
j=1

(Wij�o,j − �c,�,j − ��g�D,j)

]
� = o,w

(16)� =

⎡⎢⎢⎣

kxx kxy kxz
kyx kyy kyz
kzx kzy kzz

⎤⎥⎥⎦

(17)Ve

��(1 − Sw)�o

�t
−

Nf∑
i=1

Qo,i = �oqo

(18)Ve

��Sw�w

�t
−

Nf∑
f=1

Qw,i = �wqw

(19)� ≈ �o(1 + cr(p − psc))
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where e represents the element number, Δt is the time step, �∗
�
 is the upstream mobility 

of the phase and indices n and n + 1 refers to the previous and current newton iteration, 
respectively.

In the MFD method, we need to ensure flux continuity at the interface by adding a con-
straint represented by the momentum balance equations. If the interface of a certain ele-
ment is not shared by another element (i.e., interface is at boundary), then the flux at that 
interface is assumed to be zero:

However, if an interface is shared by two adjacent element, then Q�,i = −Q
�

�,i
 . This implies 

that the Lagrange multipliers enforced at the interface are equal as well. The expanded total 
flux Qt�,i

 at the shared interface for each phase � can be written as:

The details of the derivation and the final equations for approximating solutions of the 
original system have been clarified in Zhang and Abushaikha (2019).

2.2 � Fracture Discretization Using DFDM

For the discrete fracture treatment, the above flux equations are only applicable for frac-
tures in a lower space-dimension. Thus, the interface flux QF

�,i
 of phase � for fracture sys-

tem can be rewritten as

where LF
W
=
∑NF

f

j=1
WF

i,j
 and NF

f
 is the number of edges of fractures. pF

c,i
 is the capillary pres-

sure of phase � for fracture system. DF
i
 is the depth, �F

o,j
, �F

c,i,j
, �F

D,i,j
 are the Lagrange multi-

pliers on interface j for oil pressure, capillary pressure of phase � and depth for fracture 
system, respectively. The superscript F represents fracture system.

For the fracture–matrix connections, a fracture F is consider as a lower-dimensional object 
as interior face, and the fracture element usually represented as a face of a matrix face, as 
shown in Fig. 3. Obviously, the fracture element pressure pF

o
 are part of the matrix interface 

(20)Ro =
Ve

Δt

[
�(po)

n+1(1 − Sn+1
w,e

) − �(po)
n(1 − Sn

w,e
)

]
− �∗

o
(Sw)

n+1

Nf∑
i=1

Qo,i − Ve�oqo

(21)Rw =
Ve

Δt

[
�(po)

n+1(Sn+1
w,e

) − �(po)
n(Sn

w,e
)

]
− �∗

w
(Sw)

n+1

Nf∑
i=1

Qw,i − Ve�wqw

(22)Q�,i = �∗
o
(Sw)

n+1

[
(LWi

po − pc,� − ��gD) −

Nf∑
j=1

(Wij�o,j − �c,�,j − ��g�D,j)

]
= 0

(23)Qt�,i
= Q�,i + Q

�

�,i

(24)

QF
�,i

=�F
w

⎡
⎢⎢⎣
(LF

W
(pF

o,i
− ��g∇D

F
i
) −

NF
f�

j=1

WF
ij
(�F

i,j
− ��g∇�

F
D,i,j

)

⎤⎥⎥⎦

+ �F
w

⎛⎜⎜⎝
LF
W
pF
c,i
−

NF
f�

j=1

WF
ij
�F
c,i,j

⎞⎟⎟⎠
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pressure �i ( �j ). When calculating the final linear system, the fracture interface pressures are 
eliminated and only the matrix element pressures are kept.

Simultaneously, the flux in Eq. 15 is written locally for all faces within each matrix ele-
ment. In order to couple the matrix and fracture elements together, the following continuity 
conditions for the flux are imposed at each interface of two neighboring elements (taking 
the interface F of �i and �j as an example in Fig. 3: 

(1)	 If F is a matrix element, the flux satisfies: 

(2)	 If F is a fracture, the fracture flux satisfies: 

where qF is the sink/source for fracture. The above equation is the mass conservation rela-
tion in the fracture.

Thus, the equations for matrix and fracture systems can be coupled through the 
matrix–fracture transfer function (Eq. 25). The details of the derivation for this part can be 
referred to Zhang and Abushaikha (2019).

3 � Building the Numerical Model

The rock properties for the matrix were developed using the parameters presented in 
Schmid et al. (2016) study. The relative permeability curves were constructed based on the 
power law model:

(25)Qi + Qj = 0,

(26)
∑
i

QF
i
= Qi,k + Qj,k + qF,

(27)krw = krw max

[
Sw − Swi

1 − Swi − Sor

]n

(a) (b)

Fig. 3   a Relative permeabilities for the strongly water-wet SWW, weakly water-wet WWW and mixed-wet 
MW cases, as well as b the respective capillary pressures based on Blunt (2017). The spontaneous imbibi-
tion process stops at the respective Sw∗
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where krwo max is the maximum relative permeability of oil, krw max is the maximum rela-
tive permeability of water, n and m are the relative permeability exponents, Sw is the water 
saturation, Swi is the initial water saturation, Sor is the residual oil saturation, krw is water 
relative permeability and kro is the oil relative permeability.

On the other hand, the capillary pressure prediction model for generalized mixed-wet 
systems Skjaeveland et al. (1998) is written as:

where Pc is the capillary pressure, a and c are constants representing either drainage or 
imbibition processes. All constants are positive except for co , and the capillary curve con-
sists of two asymptotic branches: positive water branch and negative oil branch. A sum-
mary of the test parameters used for different wetting cases is found in Table 1, while the 
relative permeability and capillary curves are plotted in Fig. 3

4 � Numerical Convergence: Model Verification

We aim to demonstrate the accuracy and the converge of the fully implicit MFD method 
with discrete fractures for different wetting states in an oil-water system when spontane-
ous and forced imbibition are considered. The ability of the method to accurately predict 
[rgb]0,0,1thermodynamic equilibrium between phases and map the changes in the water 
and oil saturation profiles are presented next.

We consider a 3D domain with a homogeneous matrix of size 20 m × 20 m × 100 m. 
Initially, the domain is saturated with equal volumes of oil and water; the water phase lies 
on top of the oil phase. The domain is fully sealed and the fluids do not interact with the 
surrounding thus eliminating any external influence on the flow mode. Since gravity forces 
dictate the flow in the domain along with the capillary forces of the oil and water phases, 

(28)kro = krwo max

[
1 − Sw − Sor

1 − Swi − Sor

]m

(29)
Pc =

cw(
Sw−Swr

1−Swr

)aw
+

co(
So−Sor

1−Sor

)ao

Table 1   Rock and fluid 
properties for rocks with different 
wetting states

Parameter Strongly water 
wet (SWW)

Weakly water 
wet (WWW)

Mixed wet (MW)

S
wi

0 0 0
S
or

0 0 0
K
rwmax

0.25 0.25 0.5
n 1.2 1.5 3.6
K
romax

1 1 1
m 1.75 2.4 4
Sw

∗ 0.65 0.6 0.5
c
w

62 60 60
c
o

− 50 − 55 − 60
a
w

0.2735 0.2735 0.2735
a
o

0.2606 0.2606 0.2606
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the water tend to flow vertically downwards due to the imbalance between the capillary 
pressure and gravity until the equilibrium is reached. This behavior is governed by the 
equation below that predicts the height of the water column as it moves:

In order to study the behavior of spontaneous imbibition flow in the domain with capil-
lary and gravity forces for the MFD method, three different cases have been considered to 
account for varying fracture locations as shown in Fig. 4. Each model is tested for three 
different wetting states described in Table  1 while Table  2 shows the fluids and matrix 
properties.

The comparison between the numerical and the analytical solutions is demonstrated in 
Fig. 5 while Fig. 6 shows the water saturation profiles at equilibrium for the Models I, II 
and III generated through the simulation of the MFD method in a 3D domain. Based on 
Eq. 30, the computed height of the water column from the numerical solutions agrees well 
with the analytical solution of the capillary curves. The water imbibes downwards because 
of the imbalance between capillary forces and gravity forces. After those forces reach 

(30)H =
Pc(Sw)

(�w − �o)g
,

Fig. 4   3D reservoir model for the validation test: a model with no fracture. (The mesh is composed by 
1043 tetrahedral elements.) b model with one fracture (aperture = 0.1 cm) (The mesh is composed by 1191 
tetrahedral elements, where 40 triangles are for the discrete fracture model); c model with three fractures 
(aperture = 0.1 cm). (The mesh is composed by 1643 tetrahedral elements, where 122 triangles are for the 
discrete fracture model.)

Table 2   Test 1 fluid and other parameters

Parameters K (mD) Kf (mD) � �o (cp) �w (cp) �w(kg/m
3) �o(kg/m

3)

Value 100 1000 0.3 3.0 1.0 1000 750
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equilibrium, the water saturation remains unchanged. The good agreements show that this 
approach models the capillary pressure and gravity cases correctly for different wetting 
states of the rock and different fracture placements.

5 � Applied Computational Cases

The main objective of the tests is to model the behavior of the flow in naturally fractured 
reservoirs for different wetting states. The capillary forces have a significant impact on 
the amounts of oil recovered from a domain and the pressure distribution profiles as will 
be shown. We designed the tests to compare and highlight the effect of various capil-
lary curves on the recovery factor, and we further added multiple full permeability ten-
sor cases with different rotation angles and compared it to the scalar approach to show 

(a) (b)

(c)

Fig. 5   The analytical and numerical solution both plotted for Models I, II and III. The solutions coincide 
for different wetting states regardless of the existence and the location of fractures in the domain, proving 
an effective estimation of the water column height using the MFD method. The solution for all models are 
the same since only gravity and capillary forces are allowed to influence the flow of fluids. The wetting 
state will only change the rate at which a solution will be achieved, but does not affect the final equilibrium 
conditions
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the ability of the MFD scheme used in incorporating the effects of the full tensor. The 
recovery factors were discussed in the light of the wetting state and the direction of the 
permeability tensor.

In this section, we present two tests to demonstrate the capability of the MFD method 
in robustly and accurately predicting the flow of oil and water in complex domains with 
the existence of multiple fractures, and for different capillary pressure profiles. First, we 
test the method for a fractured domain where the fractures are aligned along the injec-
tor and the producer, as we observe closely the behavior of the flow while varying the 
capillary pressure and the permeability tensor. The second test comprises of two full 
reservoirs connected with a communicating fracture, with a producer and an injector 
placed in each reservoir.

We analyze the simulation results in terms of the pore volume injected (PVI) written 
as:

Fig. 6   The oil and water saturations at the end of the simulation are practically similar for the three different 
models regardless of the changes in the wetting state and fracture existence. Initially, water is positioned on 
top of the oil; as the simulation starts, fluid exchange takes place and the water displaces the oil upwards 
due to gravity segregation and capillary forces. The location of the fractures in the system, and the rock 
wetting states dictates the time taken to reach equilibrium. At the end of the simulation, the oil is fully 
mobilized to the upper part of the domain and sits on top of the water as the visualizations show
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where Vp is the total pore volume of the model, qt is the injected rate. We also measure 
Courant–Friedrichs–Lewy (CFL) number as a condition for convergence while solving for 
the governing equations (Fig. 7).

5.1 � Test I: Two Phase Flow with 3 Fractures

In the first test, we examine the effect of permeability tensor on the spontaneous imbibition 
process while varying the wetness of the matrix in the domain. The matrix permeability 
tensor is represented as:

where Ro(−�) is the rotation matrix. The permeability tensor of fracture is Kf = 
diag(500,500,500) and the aperture is 0.1 cm. We place two wells on the opposite sides 
of the domain, while aligning the flow from the injector to the producer along the existing 
fractures. The movement of the fluids in the well is controlled by a constant flow rate of 
0.02 m3/day). The other parameters are listed in Table 3.

Here, we consider three cases; a case where the permeability is a scalar and fixed at 
value of 30 md (C1), and two other cases represent by the following rotation angles:

(31)PVI =
1

Vp
∫

t

0

qtdt

(32)Km = Ro(−�)diag(30.0, 1, 1)R
T
o
(−�),

(33)� =

{
0◦ for o = x Case 2 (C2)

45◦ for o = z Case 3 (C3)

Fig. 7   Test I: the reservoir model in a has the dimensions of 10.0 ×  10.0 ×  1.0  m) with three fractures 
present (aperture = 1.0 cm). The mesh in b is an unstructured grid composed of 1583 tetrahedral elements 
with 3636 interfaces, where 98 triangles are for the discrete fractures

Table 3   Fluid and other 
parameters for Test 2

Parameters �f �
m

�o (cp) �w (cp) �o(kg/m
3) �w(kg/m

3)

Value 1.0 0.4 3.0 1.0 800 1000
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The domain is initially fully saturated with oil and is swept through slow continuous 
water injection. The water saturation profiles are illustrated in Fig.  8 for three different 
permeability scenarios. We notice that when capillary forces are ignored, the flow of water 
from the injector to the producer is mainly controlled by the positioning of the faults and 
their relative placement to the major principal direction of the permeability tensor. The 
water tends to flow in the least resistant path (i.e., faults with higher permeability than the 
matrix). When the angle of the tensor is aligned parallel to the faults and the direction of 
flow (45◦ ), the water flows into the major fault sweeping the surrounding oil. We notice 
that the water breakthrough at the producer is fast compared to the other permeability cases 
where the flow occurs in the major x-direction of the domain. The pressure and velocity 
profiles in Figs. 9 and  10, respectively, confirm the earlier observation as the rate of flow 
along the major fracture when a rotation angle of 45◦ is used is almost double compared to 
the scalar and 0 ◦ cases.

The general observations on the behavior of the flow as the permeability tensor changes 
holds true even when capillarity is introduced and the rock wetness is varied. If we look at 
the second column of visualizations in Fig. 8, we notice that the sweep efficiency of water 
is much higher when capillarity is considered. The water front moves uniformly across the 
domain and mobilizes the oil. The direction of the water front is dictated by the angle of 
the permeability tensor, and the water does not have a concentrated velocity in the frac-
ture conduits as compared to the case when capillary effects are absent. This behavior is 
attributed to the strongly water wet property of the rock, where water tend to be imbibed 
by the throat pores of the domain, and thus expelling the oil out towards the producer. The 
strong capillary forces associated with the wetness of the rock towards water overcomes the 
high permeability of the fracture channel, thus causing the water to move uniformly in the 
matrix and recover more oil. This is confirmed by the corresponding pressure and velocity 
profiles in Figs. 9 and 10, respectively, as the velocity of the flow in mainly uniform across 
the domain.

Subsequently, the same analysis can follow for when WWW and MW wettability 
cases are encountered. The WWW behavior is closely similar to that of the SWW case, 

Fig. 8   Test I: water saturation after 0.25 PVI for different permeability cases. First row: C1, middle row: 
C2, last row: C3. Each column represents no Pc, SWW, WWW and MW cases, respectively
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but we tend to see some overshooting in water saturation through the fracture conduits 
and at the producer. This is explained by the decrease in the capillary forces due to 
the wetting nature of the rock, thus allowing the water to escape through the fractures. 
This observation is more evident in the MW case where the rock have regions favor-
ing both oil and water equally. This causes the flow of water in the matrix to be much 
slower compared to the SWW and WWW cases, but still faster than when no capillarity 
is introduced. In the MW case, the water flows rapidly in the fractures channels and an 
early breakthrough happens at the prouder well. This is most evident when the rotation 
angle for the permeability tensor is 45◦ . The pressure and velocity profiles dictate that 
the oil is drained slowly while the water travels fast across the domain.

Fig. 9   Test I: Pressure profiles after 0.25 PVI for different permeability cases. First row: C1, middle row: 
C2, last row: C3. Each column represents no Pc, SWW, WWW and MW cases, respectively

Fig. 10   Test I: Velocity profiles after 0.25 PVI for different permeability cases. First row: C1, middle row: 
C2, last row: C3. Each column represents no Pc, SWW, WWW and MW cases, respectively
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The curves plotted in Fig. 11a, b show the water cut and the recovery factors, respectively. 
The hydrocarbon recovery factor is computed using:

(34)RF =
Produced Hydrocarbons

Initial Hydrocarbons in Place

(a)

(b)

Fig. 11   a Water cut at the producer for different cases versus the simulation time in days b Recovery factor 
versus the simulation time for different stability cases and varying permeability tensor. The water break-
through is the fastest when capillarity is ignored, but a significant amount of hydrocarbon is left unswept. 
Recovered oil is higher with capillarity especially when the rock is strongly water wet
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The water cut profiles agrees with the water saturation profiles analyzed earlier. When cap-
illarity is ignored and a tensor permeability with 45◦ rotation angle is used, we notice an 
early breakthrough of water at 18 days which increases slowly and steadily till the end of 
the simulation. However, when the permeability is treated as a 0 ◦ tensor or scalar, water 
breakthrough is delayed till 90  days but happens instantly as the water at the producer 
jumps from 0 to 80% in 1 day and then keeps increasing gradually. This indicates, that once 
the water approaches the fracture channels, it flows all the way to the producer as no resist-
ance from the rock matrix is encountered. The early breakthrough means that oil is not 
efficiently displaced yielding only a 50% recovery factor for all permeability cases.

On the other hand, introducing capillarity does not affect the final water content at 
the producer but rather controls the rate at which the water breakthrough is achieved. We 
notice from Fig. 11a that water arrives at the producer first when MW conditions are used, 
followed by WWW and SWW subsequently. In SWW and WWW cases, and once the 
water front approaches the fracture channels, the water cut increases rapidly in the pro-
ducer from 0 to 40%, followed by a gradual increase till 100%. The SWW case yields the 
highest recovery factor at around 78% as the water tends to imbibe the pores of the rock 
and expel the oil out. In brief, the final values of the water cut are not greatly affected by 
the changes in the wettability of the rock, but rather the path of the curve and the time at 
water breakthrough happens. On the other hand, the wetting state affects remarkably the 
amount of the oil produced from a certain model.

All the permeability scenarios had the same CFL number and the same number of time 
steps and newton iterations regardless whether capillarity was considered or not as shown 
in Fig. 12a–d. This indicates that the variations in the permeability tensor does not affect 
the computational performance of the simulator but only changes the physics of the prob-
lem under study. We also notice that the newton iterations and the CPU time needed to 
arrive to a plausible solution almost doubled when capillarity is considered. The same 
observation holds true regardless of the wetting sate of the rock. The capillary forces poses 
physical complexities on the problem especially with the existence of fractures, and thus 
more computational effort is needed to converge to a physical solution.

Capillarity forces greatly affect the kinetics of the recovery in the hydrocarbons reser-
voirs as we explained here. In this test, we explored the differences in the solution gener-
ated by different capillary pressure curves, and demonstrated the robustness of the MFD 
methods in predicting the flow and recovery factors for varying permeability tensor in the 
presence of faults. In the next test, we impose a more challenging domain with two reser-
voirs connected by a fault to further test the accuracy of the MFD method with capillarity 
present.

5.2 � Test II: Two Reservoirs Connected with a Geological Fault

In this test, we model two reservoirs connected by one fracture, as shown in Fig. 13a. The 
fault has the dimensions of 933.0 ×  500.0 ×  1.7  m and is treated as a 2D surface. The 
resultant mesh is shown in Fig. 13b. The model consists of 8960 hexahedral elements for 
the matrix and 256 quadrilateral elements for the fracture. Initially, both upper and lower 
compartments of the reservoir are saturated with oil, and the other physical properties of 
the fluids are listed in Table 4. An injector well is placed in the bottom reservoir operating 
at a constant rate of 1000 m3/day. Also, a producer flowing at the same rate is positioned in 
the upper compartment of the reservoir. The direction of the flow is mapped by the relative 
permeability and the capillary pressure curves for which a weakly water rock is chosen and 
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follows the models presented in Table 1. The capillary pressure is assumed to be zero in the 
fracture while the relative permeability profiles are linear.

The matrix permeability tensor is fixed Km = diag(60, 60, 60) while the permeability of 
the fracture is written as:

where Ro(−�) is the rotation matrix. Here, we consider three cases; a case where the per-
meability is a scalar and fixed at value of 1000 md (C1), and two other cases represent by 
the following rotation angles:

In Figs. 14, 15 and 16, we show the water saturation, pressure and velocity profiles at 
700 and 1200 days of simulation time. Let us first examine C1 and C2 after 700 days of 
continuous water injection. In these cases, we notice that the oil starts to mobilize slowly 

(35)Kf = Ro(−�)diag(60, 60, 10000)R
T
o
(−�),

(36)� =

{
0◦ for o = x Case 2 (C2)

30.96◦ for o = y Case 3 (C3)

(a) (b)

(c) (d)

Fig. 12   Test I computational results. All the scenarios have the same average CFL when capillarity is con-
sidered, but the CPU time triples compared to wen Pc = 0
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in the bottom reservoir without reaching the connecting fault when capillarity is not con-
sidered. The vertical direction of the flow is perpendicular to the alignment of the fault, 
causing resistance to the flow. This means that the velocity of the flow will be low as water 
travels though the matrix domain. On the contrary, accounting for the WWW capillary 
curves will permit the water to interact with the matrix and thus get imbibed into the pores 
of the rock. This capillary force dictates a faster movement of the water, thus reaching the 
fracture earlier. However, if we look at C3, we see clearly that the water has not reached the 
fault after 700 days regardless whether capillarity is considered or not. This is explained 
by the alignment of the fault permeability tensor with the direction of the flow at an angle 
of 30.96◦ . This means that water will travel slower due to fluid-matrix interactions and the 
permeability tensor alignment; an observation that is evident when the velocity profiles are 
observed in Fig. 16a. After 1200 days of continuous injection, water reaches to the top of 
the reservoir for C1 and C2 when both Pc is zero and capillarity is considered. The main 
difference is that the WWW nature of the rock implies higher water saturation at the top 
reservoir, and faster flow of fluids in the fracture due to the direction of the permeability 
tensor.

In Fig. 17, the water cut and the recovery factors are plotted. The observed trends of 
the curves are quite similar to those examined in Test I, as early breakthrough is noticed 
for all permeability variations when capillarity is not considered. However, the distance 
between the water cut profiles is not large, because the vertical upwards direction of the 
flow assisted by the imbibition process into the matrix for capillarity cases counteracts 

Fig. 13   Test II: The domain a is composed of two reservoirs and one connecting fractures while the mesh 
b is composed of 8960 hexahedral elements representing the matrix and 256 quadrilateral elements for the 
fracture

Table 4   Test 3 fluid and other parameters

Parameters �
m

�f �o (cp) �w (cp) �o(kg/m
3) �w(kg/m

3) Sor S
wc

Value 0.5 0.6 3.5 1.0 800 1000 0 0
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the downward gravity forces in the domain. The capillary forces assist the flow in trave-
ling through the fracture and all the way to the producer. The recovery profiles for the 
oil produced show the average recovery factor is almost 5% higher when capillarity is 
introduced compared to when Pc = 0. This indicates that the fluid-matrix interactions 
support a better drainage of the hydrocarbons in place. One interesting observation that 
is different from Test I is that the water breakthrough is earlier when the permeability 
is treated as a scalar. This is attributed to the angles and the rotation axis considered 
when the permeability is represented as a tensor in the fault, spanning both the x and y 
planes. This means that the direction of the full permeability tensor will not be perfectly 
aligned with the direction of the flow in the fracture and hence will create a resistance 
to the flow. This necessitates that the water will mover slower in the fault plane and will 
take longer time to reach to the producer, and hence a delayed breakthrough is expected. 
This opposes the results of the previous test as the major principal direction of the per-
meability tensor in the matrix was parallel to the fracture placement, creating a highly 

Fig. 14   Test II: Water saturation profiles after a 700 days and b 1200 days. The top row refers to the cases 
when capillarity is ignored whole the bottom row represents the WWW condition. Also, each column refers 
to cases C1, C2 and C3 for varying fault permeability
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conductive channel for water to reach the producer faster when permeability tensors are 
modeled.

In order to examine the movement of fluid in the fracture plane more closely, we take a 
sliced cross section in the y-direction of the reservoir-fault system. The velocity profiles in 
the fracture and the two wells are plotted in Fig. 17c for the different capillarity and perme-
ability scenarios. The velocity of the flow is computed from the information on the fluxes 
passing through the system and the resolution of the grids. The velocity is observed to be 
much higher in the fracture compared to that in the well, because a finer grid is used to rep-
resent the fracture elements. We notice that for all permeability cases, the velocity is higher 
when capillary pressure is used; an observation consistent with the conclusion drawn from 
the saturation and water cut profiles earlier. Furthermore, the angle of the permeability 
tensor did not affect the velocity of the flow in the fault as the profiles of cases C2 and C3 
overlap. However, for case C1, the velocity is the highest when scalar permeability is used, 
as the flow occurs naturally without any opposition.

Fig. 15   Test II: Pressure profiles after a 700 days and b 1200 days. The top row refers to the cases when 
capillarity is ignored whole the bottom row represents the WWW condition. Also, each column refers to 
cases C1, C2 and C3 for varying fault permeability
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Finally, we show some computational results in Fig. 18 which highlights that the intro-
duction of capillarity into the problem add physical complexities to the modeling process 
and thus requiring a larger number of steps and nonlinear iterations to converge to a desir-
able solution. However, the final answer would be more representative of the real nature of 
fluid flow in the porous media.

6 � Conclusions and Recommendations

The results of the numerical study presented in this work show the robustness and the 
efficiency of the novel fully implicit numerical approach combining MFD and DFM 
techniques to model two phase flow in fractured porous media in the presence of capil-
larity effects. The imbibition phenomenon was investigated during the production of oil 

Fig. 16   Test II: Velocity profiles after a 700 days and b 1200 days. The top row refers to the cases when 
capillarity is ignored whole the bottom row represents the WWW condition. Also, each column refers to 
cases C1, C2 and C3 for varying fault permeability
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from fractured reservoirs, and was successfully analyzed in the light of the wettability 
of the rock while considering full permeability tensors and unstructured grids.

The following conclusions can be drawn from this work: 

(1)	 The comparison between the numerical and the analytical solutions for spontaneous 
imbibition processes in a closed system with different wetting rock states showed a 
great match as the oil and water phases mobilize to achieve equilibrium in the system.

(2)	 The orientation of the fracture and the full permeability tensor affects greatly the speed 
of water breakthrough in certain producing systems. If the principal direction of the 
permeability tensor is aligned with the fracture orientation, water tends to flow in the 
fracture first thus missing oil spots in the matrix (depends greatly on the wetness of 
the rock.

(a) (b)

(c)

Fig. 17   a Water cut at the producer for different cases versus the simulation time in days and b recovery 
factor versus the simulation time for different stability cases and varying permeability tensor. The water 
breakthrough is the fastest when capillarity is considered, but a significant amount of hydrocarbon is recov-
ered. The velocity profiles at the wells and the fault are shown in a slice section of the domain in c 
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(3)	 The amounts of recovered water at the producer are not greatly affected by the changes 
in the wettability of the rock, but rather the path of the curve and the time at water 
breakthrough happens. On the other hand, the wetting state affects remarkably the 
amount of the oil produced from a certain model.

(4)	 Introducing capillary forces between the fractures and the matrix impose physical 
complexities on the problem, which in turn adds to the computational time and the 
newton iterations needed by the MFD method to converge to a satisfactory solution.

In summary, this work introduced a new approach to study the effect of the wettability of the 
rock and the associated capillary forces on the performance of the fully implicit MFD method 
to predict oil recovery ratios with fractures present in the system. The MFD method proved to 
be robust in preserving the physics of the problem, and accurately mapping the flow path in 
the investigated domains. Future work will focus on comparing the performance of the MFD 
method against other discretization schemes for the same application of modeling spontaneous 
imbibition, and investigating the effect of heterogeneous permeability on the wettability of the 
rock and the oil recovery process.

Appendix

According to the no-flow boundary conditions and continuous conditions for matrix and frac-
ture systems, we can get the residual terms as follows:

(37)Ru�1
=

[
��,i[(LTi (po,i − ��g∇Di) −

Nf∑
l=1

Til(�i,l − ��g∇�D,i,l)]

]n+1

(a) (b)

Fig. 18   Test II computational results. The nonlinear iterations increase in b because of the high complexity 
of the problem due to the imbibition phenomena in b 
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Consider the set of primary variables y = {po,�o,�c,�
F
o
,�F

c
, Sw, S

F
w
} , the linear system on 

each nonlinear iteration has the following form:
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where �Rx

�y
 is Jacobian matrix of unknowns y, Ry is the residual for the mass balance and 

saturation equations. As a result, we simultaneously solve all the governing equations fully 
implicit in time.
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