
Vol.:(0123456789)

Transport in Porous Media (2021) 137:667–682
https://doi.org/10.1007/s11242-021-01582-6

1 3

Convective Stability of a Net Mass Flow Through a Horizontal 
Porous Layer with Immobilization and Clogging

Boris S. Maryshev1,2  · Lyudmila S. Klimenko1,2

Received: 7 September 2020 / Accepted: 12 March 2021 / Published online: 28 March 2021 
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Solutal convection in a horizontal layer filled with porous media with horizontal seepage 
of a mixture is investigated considering the solute immobilization and clogging. A flow 
through porous media is modelled within the standard Darcy–Boussinesq model, and the 
immobilization process is described by the mobile/immobile media (MIM) approach. To 
describe the clogging process, the present model takes into account and the dependence 
of media permeability on porosity within the Carman–Kozeny equation. The presence of 
immobile (or adsorbed) particles of the solute decreases the porosity of media, and porous 
media become less permeable. The variation of porosity is modelled by a linear function of 
solute concentration in the immobile phase. We consider the case of high solute concentra-
tions, in which the immobilization is described by the nonlinear MIM (mobile/immobile 
media) model. As a result, it was shown that the immobilization leads to the stabilization 
of the homogeneous filtration regime and to slowing down of the perturbation dynamics. 
The stability maps were plotted in a wide range of system parameters. The results showed 
that for some specific value of clean media porosity the system becomes most unstable and 
dynamics of perturbations (frequency of oscillations) is most intensive. This value cor-
responds to the minimal effect of porosity change to variation of permeability due to the 
immobilization.
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1 Introduction

Convection in porous media is a subject of extensive investigation not only due to its 
numerous applications in natural and engineering sciences, but also has a fundamental 
interest in the context of pattern formation in nonequilibrium systems. First investigations 
were mostly focused on thermal convection in porous media (Bories and Combarnous 
1973; Elder 1967). Later, convection in porous media has received a new interest within 
investigations of different particle suspension and mixture seepage, for example, in filtra-
tion systems (which are widely used in deep-bed filtration in oil recovery, groundwater 
treatment, catalysis) or geological carbon storage, etc (see, for example, Liang et al. 2018).

The most simple and well-established approach describing solutal convection is the 
Darcy–Boussinesq model, according to which the density variation can be ignored every-
where except the gravity term. To describe evolution of solute concentration, the Fick’s law 
is usually applied. However, the porous medium has a rather complex spatial structure, and 
many experiments (for example, Kay and Elrick 1967; Gouze et al. 2008) demonstrate that 
the diffusion process is often slower than predicted by the Fick’s law. One of the common 
alternative approaches, which is used in the present study, is the MIM approach (Deans 
1963; Van Genuchten and Wierenga 1976), according to which the presence of two solute 
phases (mobile and immobile) can be considered.

The mobile phase is associated with particles moving with a fluid flow, while the immo-
bile one linked to the particles, which are stuck to the solid matrix or stagnation of some 
particles ( Lindstrom et al. 1967; Van Genuchten and Wierenga 1976; Selim and Amacher 
1997). Within the MIM model, the transport of the mobile phase is described by the clas-
sical diffusion equation with the additional influx to the immobile phase. The dependence 
of this influx on the mobile and immobile solute concentrations describes the kinetics of 
“phase transition”. The detailed description of the different MIM model can be found in 
Maryshev (2016).

The present paper is devoted to the study of solutal convection in a horizontal layer of 
a porous medium with imposed horizontal seepage. Since the solutal and thermal convec-
tions are described by identical equations Nield and Bejan (2017), the problem under con-
sideration is similar to the classical Horton–Rogers–Lapwood (HRL) problem (Horton and 
Rogers 1945; Lapwood 1948). It is known that for the HRL problem convection regimes 
arise as a set of convective cells, with a width equal to the layer thickness. The influence of 
an external horizontal flux on such a regime was made in Prats (1966). It was shown that 
the steady external flux leads to excitation of an oscillatory mode; however, the wavelength 
of critical perturbations and convection threshold (the critical value of the Rayleigh–Darcy 
number) do not change. Later on, the problem was complicated by the account of solute 
particle immobilization (Maryshev 2015; Klimenko and Maryshev 2017) using the MIM 
approach (Deans 1963; Van Genuchten and Wierenga 1976). The investigation was carried 
out numerically in the framework of the linear MIM model (Maryshev 2015) and the frac-
tal one (Klimenko and Maryshev 2017). It was demonstrated that the particle immobiliza-
tion leads to the dependence of the critical parameters on the external flux intensity.

In the present study, we focus on a solute mixture with a moderate and even high con-
centration. We took into account the effect of saturation of the immobile phase (the con-
centration of immobile solute should not exceed some value). As it was shown in Selim 
and Amacher (1997), the second-order kinetic model, in which the adsorption rate linearly 
depends on the difference between the limiting saturation concentration of porous medium 
and the concentration of immobile solute, is a fruitful approach. Moreover, occupation by 
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immobile solute particles of some part of the pore space leads to an essential decrease in 
the media porosity. To describe such an effect, we use the simplest and most universal 
Carman–Kozeny equation, which links the permeability and porosity of the media (Car-
man 1937). The described problem, first of all, is interesting from the fundamental point 
of view; however, the same situation can be realized in the natural system when permeable 
layer bounded by the soluble rock (for example salt) or in the industrial application as a 
thin layer between two reservoirs with different solute concentrations.

The paper contains six sections. Section 1 is an introduction where the previous study 
and motivation are discussed. Section 2 is devoted to the problem statement and derivation 
of governing equations. In Sect. 3, the base solution as a regime of the homogeneous hori-
zontal equation is obtained. Section 4 contains the derivation of equations for small pertur-
bations and its reduction to ODE for normal perturbations. Section 5 is devoted to the dis-
cussion of the stability maps which are obtained from the numerical solution of equations 
for normal perturbations. Section 6 provides a conclusion.

2  Problem Statement

We consider a flow of a mixture through a horizontal layer, which is filled with a porous 
medium. Configuration of the problem is sketched in Fig. 1. A mixture consists of solid 
nanoparticles and incompressible fluid; the solid nanoparticles are considered as a solute 
within continuous approach. The flow is generated by the external filtration flux with given 
velocity � = (V(y), 0).

The solute flow can be described within the Darcy–Boussinesq approximation (Nield 
and Bejan 2017) with the pore velocity � , which obeys the Darcy law and incompressibil-
ity condition;

where � is the permeability of the porous medium, � is the dynamic fluid viscosity, � is the 
fluid density, �c is the coefficient of concentration expansion, p is the deviation of pressure 
from the hydrostatic one, g is the gravity acceleration, � is the unit vertical vector and �0 is 
the porosity of the clean medium. The porous medium is assumed to be ideal (nondeform-
able, inert, uniform, homogeneous, and isotropic).

The solute concentration c can be obtained within the mobile-immobile media 
(MIM) model (or two-region solute transport model). According to this model, the 

(1)
−∇p =

��0

�(�)
� − ��ccg�,

∇ ⋅ � = 0, p = p� + �gy,

Fig. 1  Sketch of the problem
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solute can be partitioned into distinct mobile (or flowing, with volume concentration c) 
and immobile (stagnant, with volume concentration q) phases. These phases are coupled 
by kinetic equation, which described the solute influx ( �tq ) into both phases, or it also 
can be interpreted as phase transition kinetics. The general form of equations for solute 
concentrations is

where D is the effective diffusivity and the coupling function R(q, c) is defined from the 
specific type of the MIM model. The formulation of the boundary value problem is com-
pleted by prescribing this function.

In order to investigate solute transport of moderate and high concentration, which is 
the aim of present paper, we used nonlinear kinetic function with Langmure saturation 
of porous matrix ( q0 ) in the form Selim and Amacher (1997)

where � is the mass transport coefficient and Kd is the solute distribution coefficient. The 
main mechanism of adsorption [described by Eq. (3)] is van der Waals interaction between 
solute particle and pore wall. This interaction for fine particles (with size r < 1𝜇m ) is 
much greater than the hydrodynamic viscous force induced by the flow (see Elimelech 
et al. 2013; Klimenko and Maryshev 2020) because of that the mass transport coefficient is 
determined by the frequency of particle-wall impact as ordinary diffusion. The parameter 
Kd is determined by the competition of van der Waals interaction between the solute parti-
cle and pore wall and thermal fluctuations (see for example Elimelech et al. 2013). Using 
the estimations which presented in Klimenko and Maryshev (2020), we can conclude that 
the Kd increases as the square root of particle size because van der Waals interaction inten-
sity is proportional to 1∕r3 , while the intensity of random force, which is induced by ther-
mal fluctuation, is proportional to 1∕

√
r5 . The parameter q0 is determined by the Van der 

Waals interaction between particles. The estimation for two spheres gives (see Elimelech 
et al. 2013) the decreasing of interaction intensity with size as 1/r.

Accounting of dynamic of the immobile concentration, q leads to the decrease in 
the volume of pore space (due to process of solute sorption onto the pore walls), which 
means that the porosity of the medium reduces as well, specifically, as � = �0 − q . To 
describe such effect of porosity decreases, we use the Carman–Kozeny equation for the 
permeability of porous medium �;

with � is the Carman–Kozeny constant. The Carman-Kozeny model is applicable for flow 
through natural porous media with porosity variation, but the Carman-Kozeny constant in 
the form of original work � = Dp∕150 ( Dp is mean diameter of spherical granules) should 
be applied only for the porous matrix which consists of spherical granules. In the present 
paper, we applied the general approach where the Carman–Kozeny constant is assumed as 
a parameter of the model and in a described case can be measured from the permeability of 
clean media � = �0 (see, for example, Roth et al. 2015; Parvan et al. 2020).

Thus, the governing equation system for solute convection with immobilization and 
clogging yields

(2)
�tc + �tq = D∇2c − � ⋅ ∇c,

�tq = R(q, c),

(3)�tq = �(c(q0 − q) − Kdq),

�(�) = ��3∕(1 + �)2,
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Let us describe boundary conditions. We assume that the boundaries of a layer are imper-
meable for the fluid, and solute concentrations are kept constant: C+ is at the upper bound-
ary and C− is at the lower one. The pressure gradient along the layer boundaries is constant 
as well

We now formulate the dimensionless governing equations and boundary condi-
tions by measuring distance, time, velocity, pressure and concentration as h, h2∕D , (
1 − �0

)2
∕�3

0
D∕h , Ah, C0 = C+ − C− , respectively.

In the dimensionless form the problem (4)–(5) is

Here, �0 = �(�0)∕� is the dimensionless permeability of the clean medium.
The boundary value problem (6) is characterized by governing parameters: the 

solutal Rayleigh–Darcy number, the Péclet number, the dimensionless adsorption and 
desorption rates and the dimensionless concentration for the Langmure saturation;

Further, we investigated numerically how convective threshold (in terms of the critical 
Rayleigh–Darcy number) depends on the rest governing parameters.

(4)

�

�t
(c + q) = −� ⋅ ∇c + D∇2c,

−∇p =
��0

�(�)
� − ��ccg�,

∇ ⋅ � = 0,

�q

�t
= �

(
c(q0 − q) − Kdq

)
,

�(�) = ��3∕(1 + �)2, � = �0 − q.

(5)

� ⋅ �|y=0,1 = 0,

c|y=1 = C+, c|y=0 = C−,

�p

�x

||||y=0,1
= −A.

(6)

�

�t
(c + q) = −

1

�0
� ⋅ ∇c + ∇2c,

� = �(−Pe∇p + Rp c�),

�q

�t
= ac

(
qC0 − q

)
− bq,

∇ ⋅ � = 0,

�(�) = �3∕(1 + �)2, � = �0 − C0q,

�|y=0,1 = 0,

c|y=0 = 1, c|y=1 = 0.

Rp =
C0g�(�0)��ch

D��0

, Pe =
A�(�0)h

D��0

, a =
�C0h

2

D
, b =

�Kdh
2

D
, qC0 =

q0

C0

.
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3  Homogeneous Horizontal Filtration: Base State

We note that the steady solution of boundary values problem (6) yields x-independ-
ent components of velocity, concentration and pressure fields; c = c0(y) , q = q0(y) , 
(V) = (V)0 =

(
u0(y), 0

)
 , p = p0(y) . Indeed, for such solution, equations (6) can be simplified 

as

where symbol �2
y
 denotes the second derivative with respect to vertical coordinate y.

Taking into account, the boundary conditions (5), solution of Eq. (7) can be written in the 
form

In order to justify this steady solution, we consider two limiting cases: (1) 𝜙0 − C0qC0 ≪ 1 
together with b ≪ 1 , and (2) C0 ≪ 𝜙0, q0 . The first one corresponds to the saturated porous 
media, while the second case describes the convection with small initial concentration.

Indeed, for the first case from Eq.  7, the second equation one can find that q0 = qC0 , 
𝜙 = 𝜙0 − C0qC0 ≪ 1 and 𝜅(𝜙) ≪ 1 . Thus, the solution has the form

which coincide with slow seepage through fully clogged porous media with very slow 
kinetics of solute phase transition.

While for the second case (Eq.  7), the second equation can be linearised as 
0 = ac0qC0 − bq0 , which leads, in turn, to the following solution

(7)

�2
y
c0 = 0,

0 = ac0
(
qC0 − q0

)
− bq0,

�� = �
(
−Pe∇p0 + Rp c0�

)
,

(8)

p0 = −x −
Rp

2Pe
y2,

u0 = �(�0)Pe =

(
�0 − C0q

0
)3

(
1 − �0 + C0q

0
)2 Pe,

q0 =
aqC0

ay + b
y,

c0 = y,

�0 = �0 + C0q
0.

(9)

p0 = −x −
Rp

2Pe
y2,

u0 = 𝜅(𝜙0)Pe ≪ 1,

q0 = qC0,

c0 = y,
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which coincide with linear MIM model without clogging (Maryshev 2015).
As it can be seen, the stationary solution of the problem (6) depends on the sorption 

parameters as well as on filtration rate (the Peclet number). The linear stability analysis of this 
regime with respect to the small perturbations is performed in the next Section.

4  Small Perturbation Equations

We are interested in the evolution of perturbations to the base state (8) given by q = q0 + Q , 
c = c0 + C , � = �0 +� , p = p0 + P , � = (U,V).

We focused on two-dimensional perturbations which are corresponded to transversal 
rolls with axes perpendicular to the main imposed throughflow. Any other perturbations can 
be constructed by the superposition of described rolls with the rolls co-directed to imposed 
throughflow. The threshold of last rolls does not depend on immobilisation process as it is 
shown in Maryshev and Klimenko (2019). Because of that, the most interesting perturbations 
have a form of rolls normal to throughflow.

Substituting of latter expression in Eq. (6) and keeping only linear terms one can gain the 
following system for small perturbations

It is convenient to rewrite this equation system in terms of the stream function � related to 
the velocity components as U = −�y� , V = �x�;

(10)

p0 = −x −
Rp

2Pe
y2,

u0 = �(�0)Pe =
�3
0

(
1 − �0

)2 Pe,

q0 =
aqC0

b
y,

c0 = y,

(11)

�

�t
(C + Q) = −

1

�0
u0

�

�x
C −

1

�0
V + ∇2C,

� = �0(−Pe∇P + Rp C�) + �
(
−Pe∇p0 + Rp c0�

)
,

�Q

�t
= aC

(
q0 − q0

)
−
(
b + ac0

)
Q,

∇ ⋅� = 0,

�0 = �(�0) =

(
�0 − C0q

0
)3

(
1 − �0 + C0q

0
)2 ,

� ⋅ �|y=0,1 = 0,

C,Q|y=0,1 = 0,

�xP
||y=0,1 = 0.
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Here, symbols �t , �x and �y denote the derivatives with respect to t, x and y.
A solution of the problem (12) can be performed in the form of normal perturbations: 

Q,C,� ∼ exp (kx − �t) , where k is horizontal wave number and � is the frequency of neu-
tral perturbations. In the terms of normal neutral perturbations, the problem (12) becomes

In case of constant �0 , this system coincide with obtained in Maryshev (2015) for small 
concentration, which is described in “Appendix A”.

Problem (13) is an eigenvalue problem. It was solved numerically by the differential 
sweep method (Goldshtik and Stern 1977). As a result, the neutral curves ( Rp(k) and �(k) ) 
and the critical values of parameters Rp , � , k are described in the next Section.

5  Results

The solution of Eq. (12) is neutral curves similar to the classical Horton–Rogers–Lapwood 
problem (Horton and Rogers 1945). The example of neutral curves in terms of the depend-
ences Rp(k) and �(k) is plotted in Fig. 2.

As it is shown in Fig. 2, the increase in the concentration difference between the bound-
aries ( C0 ) leads to the stabilization of horizontal seepage and slowing down of the oscilla-
tion dynamics. This effect can be explained by the clogging of porous media with a high 
concentration of solute, which leads to the solute accumulation in the immobile phase. A 
flow through porous media slows down which is the reason for stabilization and oscilla-
tions frequency decreasing.

The neutral curves contain information about all perturbations, but the information 
about critical perturbation is the most useful. The critical perturbation corresponds to 

(12)

�t(C + Q) = �2
x
C + �2

y
C −

1

�0
u0�xC −

1

�0
�x� ,

�2
x
� + �2

y
� = −Rp�0�xC − C0

��

�0
�yq

0�y�

+ C0
2PeQ

(
��2

�0
− ���

)
�yq

0 + C0�
�Pe�yQ,

�tQ = aC
(
q0 − q0

)
−
(
b + ac0

)
Q,

�� =
��

��
(�0) =

(
�0

)2(
3 − �0

)

(
1 − �0

)3 , ��� =
�2�

��2
(�0) =

6�0

(
1 − �0

)4 ,

� ∣y=0,1 = 0, C,Q ∣y=0,1= 0.

(13)

−i�(C + Q) = (�2
y
− k2 − ik

�0

�0
Pe)C −

ik

�0
� ,

(�2
y
− k2)� = −ikRp�0C − C0

��

�0
�yq

0�y�

+ C0
2PeQ

(
��2

�0
− ���

)
�yq

0 + C0�
�Pe�yQ,

−i�Q = aC
(
q0 − q0

)
−
(
b + ac0

)
Q,

� ∣y=0,1 = 0, C,Q ∣y=0,1= 0.
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the minimal value of the Rayleigh–Darcy number and further we focus on the critical 
values of problem parameters for obtaining the stability maps.

The stability map in the plane Rp , Pe is plotted in Fig. 3. It is seen that a more inten-
sive regime of horizontal seepage is more stable because the intensive flow made pertur-
bations of solute concentration more homogeneous. The homogeneity of the solute also 
leads to an intensification of solute transition between phases, which, in turn, increases 
the frequency of oscillations. The wave number of critical perturbations is not monoto-
nous but its variation is tiny.

The dependences of critical parameters on the adsorption rate are presented in Fig. 4. 
The adsorption intensification leads to the clogging of media which stabilizes the hori-
zontal filtration and slowing down of the oscillatory dynamics. The effect of the clog-
ging also leads to an increase in the size of critical convective cells (the critical wave-
length ( kmin ) decreases). Analytical investigation of the case without adsorption ( a = 0 ) 
is in a good agreement with the numerical data (see “Appendix B, C”).
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The effect of the desorption rate variation to critical parameters is presented in Fig. 5. 
This effect is reversed to the effect of the adsorption rate variation.

The effect of concentration of a solid matrix saturation variation ( qC0 ) is presented in 
Fig. 6. It is seen that enlargement of qC0 value leads to stabilization and slowing down of 
the oscillatory dynamics. This effect is conditioned by an increase in the ability of media 
to accumulate the solute and, as a sequence, the media become less permeable. The influ-
ence of a clean media porosity variation ( �0 ) on the critical parameters is shown in Fig. 7. 
For the range �0 ∈ [0..0.4] , this effect is opposite to the effect of qC0 variation because 
an increase in qC0 decreases porosity and permeability of media, but the growth of �0 
increases these both parameters of the media.

However, the curves in Fig. 7 contain an extremal point between values �0 = 0.5 and 
�0 = 0.6 . In this point, the regime of horizontal seepage is the most unstable. We denote 
the values of critical parameters in the extremal point as �∗ , Rp∗min , k∗min and �∗min . We 
can propose plenty of explanations of this effect, but the most plausible is that �∗ is the 
extremal point of a relative permeability variation ��∕� . If we describe the clean media 
� = �0 than in the point �0 = 3 −

√
6 ≈ 0.55 the effect of �0 variation to permeability � 

variation is minimal and the effect of porosity change due to the immobilization as weak-
est as possible. The additional argument to this explanation is the dependence of all for the 
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parameters �∗ , Rp∗min , k∗min on qC0 . If the main effect is in the optimal porosity of media 
then for the clean media without the immobilization ( qC0 = 0 ) we should obtain �∗ = 0.55 
and the dependence of �∗ on qC0 should be linear due to (6). All these suggestions are 
proved by Fig. 8.

6  Conclusion

Summarizing, we have considered the problem of exciting of convective motion inside the 
horizontal porous layer under horizontal seepage of a mixture taking into account immo-
bilization and clogging processes. We focus on the case of high solute concentrations, in 
which the immobilization is described by the nonlinear MIM (mobile/immobile media) 
model. The presence of immobile solute decreases the porosity of the media; hence, the 
porous media become less permeable. The variation of porosity is modelled by a linear 
function of solute concentration in the immobile phase, while the dependence of the per-
meability of the media on porosity is modelled within the Carman–Kozeny equation. The 
solution of the problem in the regime of the homogeneous horizontal filtration is obtained 
analytically. The equations for small perturbations of the obtained regime are derived. The 
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stability problem is presented as a system of ODE and solved by the standard differential 
sweep method. As a result, neutral curves in the parameter space are plotted. It is shown 
that the immobilization leads to stabilization of the considered regime and to slowing down 
of the perturbation dynamics. The stability maps were plotted in a wide range of system 
parameters.

The presented results correspond to the dimensionless parameters which are varied in 
the range 0 < Pe < 20 , 0 < a < 40 , 0 < b < 40 and 40 < Rp < 140 . If we imagine the con-
vection in the layer between two large reservoirs of solute with different concentrations 
than it may be safely suggested that at such values of the parameters the instability near 
the threshold can occur in the layer of thickness h ∼ 1m . For NaCl in water �c = 1.16 
, � ∼ 10−6 (usual value for natural systems see Van Genuchten and Wierenga 1976; De 
Smedt and Wierenga 1979), Kd ∼ 0.1 and q0 ∼ 0.6 (see Martinez-Vertel et al. 2019). The 
layer should be prepared from porous material with porosity 0.1 < 𝜙0 < 0.5 and perme-
ability �0 = 1..100Da (the pore size d = 1.10 μm ), the effective diffusivity of salt in such 
media is D ∼ 10−7 (see, for example, Maryshev et al. 2017). The concentration difference 
between the layer boundaries and its value should be C0 = 0.2..0.5 . The values of the actual 
external pressure gradient are A = 0..10 kPa/m.
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Appendix A: Verification of the Numerical Calculations for the Case 
with Constant Permeability

The equation system for neutral perturbations (13) for the case of � = �0 = �0 = const 
reads

For the limiting case of the saturated porous media ( b ≪ 1 and Q = qC0 = const ), Eq. (14) 
after substitution (9) becomes

and using the perturbations in form of C,� ∼ sin(n�y) the well-known solution Prats 
(1966) can be obtained

While for the limiting case of the convection with small initial concentration ( C0 ≪ 𝜙0, q0 ), 
Eq. (14) together with (10) correspond to

The Eq. (14) can be reduced to one complex equation for Q,C,� ∼ sin(n�y) in the form of

which is coincided with Eq. (10) in Maryshev (2015) up to replacement aqC0 → a.

Appendix B: The Case Without Adsorption

We shall rewrite solution Eq.  (8) for the case a = 0 (the immobilization effect is 
excluded)

(14)

−i�(C + Q) = (�2
y
− k2 − ikPe)C −

ik

�
� ,

(�2
y
− k2)� = −ikRp�C,

−i�Q = aC
(
q0 − q0

)
−
(
b + ac0

)
Q,

� ∣y=0,1 = 0, C,Q ∣y=0,1= 0.

(15)

−i�C = (�2
y
− k2 − ikPe)C −

ik

�
� ,

(�2
y
− k2)� = −ikRp�C,

Q = const,

(16)
� = kPe

Rp =
(n2�2 + k2)2

k2
.

(17)

−i�(C + Q) = (�2
y
− k2 − ikPe)C −

ik

�
� ,

(�2
y
− k2)� = −ikRp�C,

−i�Q = aqC0C − bQ.

(18)−i�
(
1 +

aqC0

b − i�

)
− k2

Rp

n2�2 + k2
+ ikPe = −�2n2 − k2,
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Then, equations for normal neutral perturbations (13) are

The last equation has only trivial solution: Q = 0 . Thus, substitution of C,� ∼ sin�y gives

Finally,

which is a well-known solution Prats (1966).

Appendix C: The Case Without Desorption

For the case b = 0 (desorption is absent), solution Eq. (8) reads

Then, equations for normal neutral perturbations (13) become

(19)

q0 = 0,

c0 = y,

p0 = −x −
Rp

2Pe
y2,

u0 = �(�0)Pe = const,

�0 = �0.

(20)

−i�(C + Q) = (�2
y
− k2 − ikPe)C −

ik

�0
�

(�2
y
− k2)� = −ikRp�0C,

q − i�Q = −ayQ.

(21)
(i� − �2 − k2 − ikPe)C −

ik

�0
� = 0

ikRp�0C − (�2 + k2)� = 0.

(22)
� = kPe

Rp =
(�2 + k2)2

k2
.

(23)

q0 = qC0 = const,

c0 = y,

p0 = −x −
Rp

2Pe
y2,

u0 = �(�0)Pe,

�0 = �0 − C0qC0.

(24)

−i�(C + Q) =

(
�2
y
− k2 − ik

�0

�0
Pe

)
C −

ik

�0
�

(�2
y
− k2)� = −ikRp�0C,

−i�Q = −bQ.
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The last equation has only trivial solution: Q = 0 . Thus, substitution of C,� ∼ sin�y gives
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